The present invention relates to an electrical connector, and more particularly to an edge connector for transmitting signals at a high frequency for example, higher than 400 MHz or even higher than 2.0 GHz.
In a computer or telecommunication system, an interface connecting to the external is generally designed as a bus for transmitting various data. The hardware interface is fabricated to be an expandable slot, i.e., a so-called edge connector. The slot is attached to a motherboard. A modular daughter board, such as an interface card or memory card, can be inserted into the slot, so as form a connection interface. The edge connector generally connects a motherboard and a daughter board in the following manner. Through holes for connecting the connectors are formed on the motherboard. A conductive metal layer is plated to the inner surface and the periphery of the through holes, and the circuits to be connected to the bus on the motherboard are connected to the corresponding through holes. Pins of the edge connector pass through the through holes of the motherboard and are temporarily retained on the motherboard. The pins are then firmly retained on the motherboard by soldering or other processes, so as to achieve electrical connection with the motherboard.
The daughter board includes various electronic elements and circuit structures required for achieving the interface function, and “gold fingers,” i.e., a row of conductive pads, in the shape of rectangle or ellipse, connected to the circuits of the daughter board, are fabricated on the end or edge portion of the daughter board for connecting to the edge connector. The end or edge portion with gold fingers of the daughter board is inserted into the slot of the edge connector. Two inner sides of the slot contain contact areas of conductors; the other ends of the conductors are pins of the connector to be soldered on the motherboard. The gold fingers contact the contact areas of the conductors of the connector correspondingly, so that the circuits of the motherboard and the daughter boards are communicated.
The electrical connector is mainly used for transmitting signals completely and correctly, and is a typical passive element. In recent years, the speed of central processing unit (CPU) for computers is improved continuously, from the earliest 33 MHz, 66 MHz, to Pentium III 500 MHz and to the latest Pentium IV 3.06 GHz. As such, the electronic signal transmission speeds of main board and computer peripherals must be increased accordingly, so as to match the processing speed of the CPU.
Signal transmission through a connector can be classified into two modes, namely single-ended signal and differential mode signal. The single-ended signal means that only one conductor is used when transmitting one signal between two electronic elements or devices that are connected. The transmission of a differential mode signal requires two matching conductors, so as to transmit the signals back and forth between two electronic elements or devices that are connected.
The differential mode signals transmitted on two conductors are two complementary signals, i.e., having the same amplitude but opposite polarities (with a phase difference of 180 degrees). In a high-speed transmission environment, a better electrical characteristic is obtained by differential mode signal transmission. The time sequence and response capability required by the system can be easily achieved, thereby the probability of the system's misjudging or missing part of the data can be reduced. Therefore, in practice, when an edge connector is used to connect various interface cards and memory modules to the motherboard, each pair of conductors (generally referred to as “contacts”) on one side of the connector is mostly used to transmit signals under the differential mode.
Although better electrical characteristics of a connection system can be obtained by using differential mode signal transmission, the electrical characteristics of a pair of differential mode signals with opposite polarities is affected by the design factors of the connector, such as the material and shape of the conductor, the arrangements of the conductors in relation to each other, as well as the arrangement of the conductors with the insulative material. Particularly, as computers and communication apparatus are getting smaller, the structure of the electronic connector also becomes more and more impact, e.g. with the distance between the conductors of the connector greatly reduced, and the density of the pins increased. These changes, however, aggravates the problems related to signal transmission with high speed or high frequency, such as impedance, cross talk, propagation delay, attenuation, skew and rise time degradation. Therefore, obtaining desired performance of the system with a appropriate connectors has become a challenge to the industry.
A purpose of the present invention is to provide a connector for transmitting differential mode signals with a good electrical characteristic in an environment of high-density pins and high-speed transmission environment.
Another purpose of the present invention is to provide a connector with high density pins which can be press-fitted in an assembled state and that pin retraction or inappropriate bending can be greatly reduced when the terminals of the press-fit connector are pressed into the through holes on a motherboard.
In one embodiment, a connector for establishing electrical connection between a motherboard and a daughter board is provided. More particularly, an edge connector for transmitting signals at a high frequency, for example in a system environment with a frequency higher than 2.0 GHz or 3.0 GHz, is provided. The connector includes a housing and at least a first and a second conductors disposed in the housing. Each conductor has a contact portion and a terminal portion, while each contact portion form a contact surface. The at least first and second conductors are disposed in the housing in such a manner that, both the contact surfaces face a first direction, the terminal portion of the first conductor is offset from the contact portion of the first conductor along the first direction, and the terminal portion of the second conductor is offset from the contact portion of the second conductor along a second direction which is opposite to the first direction.
For a better understanding of the present invention and its purpose and preferred embodiments, further description accompanied by figures is provided in detail below.
Preferred embodiments of the present invention will be illustrated with reference to the accompanying drawings, and reference numerals in the drawings are used to indicate corresponding elements.
As shown in
It can be clearly seen in
An embodiment of the present invention illustrates that the connector 12 is mounted on the motherboard in a manner other than soldering. As shown in
When using the above mentioned press-fit manner to press-fit the assembled connector onto the motherboard, a sufficient interference retaining force between the terminal portion 34 of the conductor 38 and the through hole on the motherboard is necessary, so the force for press-fitting the terminal portion 34 into the through hole must be sufficiently large. Accordingly, the generated counter force has a tendency to deform the terminal portion 34 of the conductor 38, or to disengage the conductor 38 and makes it move upward out of the housing 26. In order to solve this problem, protrusion 37 towards one or two sides is formed on the upper portion of the terminal portion of the conductor 38, as shown in
As shown in
As described above, the connector 12 can be electrically connected with the motherboard by the press-fit structure 35, and thus electrical signals between the motherboard 3 and the daughter board 5 can be transmitted back and forth through the contact point 31 of the conductor 38 and the press-fit structure 35.
In order to obtain the electrical characteristics required for high-speed transmission, particularly when the signal frequency is higher than 2.0 GHz or even 3.0 GHz, a connector according to the present embodiment uses the press-fit assembly process to connect the press-fit structure 35 with the motherboard. This improves the quality and reliability of signal transmission. Since the differential mode signals are signals of the same amplitude but opposite phases, which are transmitted by two matching conductors, the lengths of the signal transmission paths formed by the adjacent conductors 38 of the connector along the length direction of the slot 23 are preferably the same in each pair. Therefore, the lengths of the adjacent conductors 38 in each pair extending from the contact point 31 to the press-fit structure 35 may be the same, and the shapes of signal transmitting sections extending from the lower part of the contact portion 32 connecting with the bent portion 33 to the beginning of the terminal portions 34 may be symmetrical.
In order to have better electrical characteristics required for high speed transmission, the bent portion 33 of the conductor, or preferably including a portion of terminal portion 34 under the bent portion 33, are preferably located in the compartment 21 of the housing 26, instead of being exposed outside the housing 26. Since the dielectric constant of the insulative material of the housing 26 is greater than that of air, the housing 26 can provide same shield effect to the entire signal transmission path of the conductor 38, thereby attenuating outward signal radiation. As a result, the signals along the signal transmission path have high intensity, and interference from the conductor to other surrounding conductors may be reduced and therefore, cross talk can be reduced. As to the pairs of conductors 38 disposed on two opposite sides of the slot 23 and facing to each other, or those conductors used for grounding, since they are not differential mode signal transmitting pairs, it is not necessary that their signal transmission paths are to be identical or symmetrical.
In another embodiment as shown in
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
95125101 A | Jul 2006 | TW | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/006113 | 7/10/2007 | WO | 00 | 10/15/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/006550 | 1/17/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3474387 | Krum et al. | Oct 1969 | A |
3594699 | Jayne et al. | Jul 1971 | A |
3671917 | Ammon et al. | Jun 1972 | A |
3868166 | Ammon | Feb 1975 | A |
4262981 | Goodman | Apr 1981 | A |
4586772 | Cobaugh et al. | May 1986 | A |
4619495 | Sochor | Oct 1986 | A |
4781612 | Thrush | Nov 1988 | A |
4795374 | Rishworth et al. | Jan 1989 | A |
4934961 | Piorunneck et al. | Jun 1990 | A |
4996766 | Piorunneck et al. | Mar 1991 | A |
5041023 | Lytle | Aug 1991 | A |
5667392 | Kocher et al. | Sep 1997 | A |
5801421 | Sher et al. | Sep 1998 | A |
5848920 | Klein et al. | Dec 1998 | A |
6036548 | Braithwaite | Mar 2000 | A |
6071152 | Achammer et al. | Jun 2000 | A |
6160716 | Perino et al. | Dec 2000 | A |
7351091 | Zhang | Apr 2008 | B1 |
7896661 | Yao et al. | Mar 2011 | B2 |
7976345 | Szczesny | Jul 2011 | B2 |
Number | Date | Country |
---|---|---|
1 070 075 | May 1967 | GB |
Number | Date | Country | |
---|---|---|---|
20100062649 A1 | Mar 2010 | US |