This application relates to improved cooling techniques for combustor panels for use in a gas turbine engine.
Gas turbine engines are known and, typically, include a compressor which compresses air and delivers it into a combustor. The air is mixed with fuel and ignited. Products of this combustion pass downstream over turbine rotors driving them to rotate.
The combustor sees very high temperatures due to the combustion. As such, efforts are made to assist the combustor in surviving these high temperatures.
To assist in protecting combustors, heat resistant panels are placed along an outer shell. The heat resistant panels are provided with cooling air openings. In particular, the outer shell may be spaced from an inner panel which faces the products of combustion. Holes extend through the outer shell and impinge on an outer face of the inner panel and then move through other holes in the inner panel to provide film cooling to an inner face of the inner panel.
In the prior art, the holes are generally spaced uniformly about the inner panel.
In a featured embodiment, a combustor for use in a gas turbine engine has a panel with first cooling holes extending through the panel. The first cooling holes communicate with an inner face of the panel to deliver cooling air to the inner face of the panel, and an outer shell attached to the panel. The outer shell has second cooling holes extending to deliver air to a chamber between the outer shell and the panel, and then into the first cooling holes. There is a nominal average spacing of at least one of the second cooling holes and the first cooling holes per an entire surface area of the outer shell or the panel, respectively. There is a reduced spacing area of the at least one of the second cooling holes and the first cooling holes adjacent to at least one edge on the panel. At least one of the second cooling holes and the first cooling holes in the reduced spacing area is spaced by a distance less than the nominal average spacing.
In another embodiment according to the previous embodiment, the edge is an outer surface of a boss around a circumference of one of the dilution or an ignitor hole.
In another embodiment according to any of the previous embodiments, a rail is provided about an outer face of the panel, and the edge is measured from a wall of the rail facing into the panel.
In another embodiment according to any of the previous embodiments, the edge is a leading edge of the panel.
In another embodiment according to any of the previous embodiments, the edge is a trailing edge of the panel.
In another embodiment according to any of the previous embodiments, the edge is circumferential edges of the panel.
In another embodiment according to any of the previous embodiments, at least at the circumferential edges, the first cooling holes extend from the outer face of the panel to an outlet at the inner face at a location aligned with the rail at the circumferential edges.
In another embodiment according to any of the previous embodiments, the first cooling holes extend in opposed angular directions that are non-perpendicular and non-parallel to the outer face, such that the outlets are spaced closer to each of the circumferential edges than are inlets to the first cooling holes.
In another embodiment according to any of the previous embodiments, at least one of the second cooling holes and the first cooling holes is the second cooling holes.
In another embodiment according to any of the previous embodiments, at least one of the second cooling holes and the first cooling holes is both the second cooling holes and the first cooling holes.
In another embodiment according to any of the previous embodiments, the reduced spacing area also has a greater density of cooling hole area than a nominal average density of cooling hole area.
In another embodiment according to any of the previous embodiments, a spacing between adjacent ones of at least one of the second impingement cooling holes and the first cooling holes in the reduced spacing area is equal to or less than ten (10) average diameter of the first cooling holes.
In another embodiment according to any of the previous embodiments, the term adjacent is defined by being spaced by a distance from at least one edge equal to or less than ten (10) average diameter of the at least one of the second cooling holes and the first cooling holes.
In another embodiment according to any of the previous embodiments, the first cooling holes are effusion cooling hole and the second cooling holes are impingement cooling holes.
In another embodiment according to any of the previous embodiments, the reduced spacing area is between the first cooling holes and at both circumferential edges, one of a leading and a trailing edge of the panel, and at a circumference of a dilution or ignitor hole.
In another featured embodiment, a combustor section for a gas turbine engine has a panel with effusion cooling holes extending through the panel, and communicating with an inner face of the panel to deliver cooling air to the inner face of the panel. An outer shell is attached to the panel, and has impingement cooling holes extending to deliver air to a chamber between the outer shell and the panel, and then into the effusion cooling holes. There is a nominal average density of effusion cooling hole area per surface area of the panel, and an increased density area of cooling holes adjacent to at least one edge on the panel. The increased density area has a density greater of cooling hole area than the nominal average density.
In another embodiment according to the previous embodiment, the impingement cooling hole also has an increased density area adjacent to the at least one edge.
In another embodiment according to any of the previous embodiments, an outer face of the panel has a rail, at least at the circumferential edges, and the effusion cooling holes extends from the outer face of the panel to an outlet at the inner face at a location aligned with the rail at the circumferential edges.
In another embodiment according to any of the previous embodiments, the term adjacent is defined by being spaced by a distance from at least one edge equal to or less than ten (10) average diameter of the effusion holes.
In another embodiment according to any of the previous embodiments, the increased density area is found at both circumferential edges, one of a leading and a trailing edge of the panel, and at a circumference of a dilution or ignitor hole.
In another embodiment according to any of the previous embodiments, a combustor for use in a gas turbine engine has a panel with a pair of circumferential edges, a leading edge and a trailing edge, with first cooling holes extending through the panel and communicating with an inner space of the panel to deliver cooling air to the inner face of the panel. An outer shell is attached to the panel. The panel has an outer face with a rail extending to contact the outer shell. The rail is formed at least at the circumferential edges of the panel. The outer shell has second cooling holes extending to deliver air to a chamber between the outer shell and the panel, and then into the first holes. The first cooling holes include an inlet on the outer face, and extend to outlets at the inner face, with the outlets of some of the first cooling holes being spaced closer to the circumferential edges of the panel than the inlets such that outlets of some of the first cooling holes will be aligned with the rails at each of the circumferential edges.
These and other features may be best understood from the following drawings and specification.
The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.
The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five (5:1). Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFC’)”—is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. “Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)]0.5. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second.
A plurality of impingement cooling holes 117 provide impingement air flow into a chamber 113 defined between the surfaces 110 and 116.
A plurality of effusion cooling holes 120 extend at an angle which is non-perpendicular, and non-parallel, to the surface 116 and provide film cooling to an inner face 119 of the panel 106. The film cooling air 118 passing along face 119 assists the panel 106 in surviving the hot temperatures.
Applicant has recognized that the cooling load along the faces 110 and 119 is not uniform across the entirety of the outer shell 104 and inner panel 106.
As shown in
The leading edge 142 would preferably have the greater density on an aft panel. There are also forward panels, where the greater cooling load may be at the trailing edge. For purposes of this application, the greater density could be at either, depending on the ultimate use of the panel. Thus, in an alternative to
As will be explained below, the “edge” will be measured from a wall of the rail facing a central portion of the panel 106.
As shown in
As shown in
A boss 159 is shown surrounding the circumference of the hole 158. A peripheral surface 161 becomes the measuring point for the “edge” as defined within this application.
In general, this application discloses a greater volume or density of holes adjacent at least one of the edges of the panel, with the edges being either the leading or trailing edge, one of the side edges or the circumference of a hole, such as a hole for dilution cooling or surrounding an ignitor.
The greater density is defined with regard to the density of the other effusion cooling holes at locations spaced away from the edge. For purposes of this application, the holes 120 have an average diameter and the term “adjacent” the edge is less than or equal to ten (10) average diameters from the edge.
Stated another way, an average density of an area of the holes 120 across the entire surface area of a panel 106 may be defined and there is greater density area adjacent at least one of edges 136, 138 and 142 or along the circumference of the holes 158. One could say that there is a nominal average density of a effusion cooling hole area for the entire surface area of the panel, and there is an increased or greater density area of cooling hole area adjacent to at least one of the edges. In embodiments, the greater density may be at more than one edge, and may be at all of the edges.
In embodiments, a ratio of the cooling hole area per unit of area at said greater density area to the nominal average density of cooling hole area is between 1.25 and 2.0.
The wall 131 and the peripheral surface 161 would also be used to define the location of the “edge” for the reduced spacing and higher density areas of the impingement cooling holes 120 on the outer shell.
Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the true scope and content of this disclosure.
This application claims priority to U.S. Provisional Application No. 61/875,850, filed Sep. 10, 2013.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/49686 | 8/5/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61875850 | Sep 2013 | US |