The disclosed subject matter relates generally to electrical connector systems, and in particular to hermaphroditic or genderless connectors for use in data or power connection applications
In contrast to common male-female type connector systems, which comprise a male connector and a female connector that engage with one another to establish an electrical connection, hermaphroditic (or genderless) connectors are designed such that two connectors of the same type can engage with one another to establish the connection. Despite their advantages, hermaphroditic connectors are not commonly used within the realm of ethernet-based data connectivity, which more typically relies on cabling infrastructures built on male/female registered jack (RJ) connectors that support four twisted pair channels.
While conventional ethernet protocols have been designed to transmit data packets over four twisted pair channels—necessitating the use of cables having four twisted pair conductors—new ethernet protocols are being developed that leverage a single differential or balanced pair of conductors (e.g., a twisted pair or another differential pair configuration) for packet transmission. As these single-pair ethernet protocols gain in popularity, new cabling and connectivity requirements will be required for both new network installations as well as migration of existing four-pair networks to single-pair protocols.
Moreover, RJ connectors are ill suited for high-frequency signal applications due to the presence of sharp discontinuities or stubs on the electrical contacts, which may act as resonant entities that disturb the characteristic impedance and compromise high-frequency signal integrity by creating signal reflections.
The above-described deficiencies of current connector systems are merely intended to provide an overview of some of the problems of current technology, and are not intended to be exhaustive. Other problems with the state of the art, and corresponding benefits of some of the various non-limiting embodiments described herein, may become further apparent upon review of the following detailed description.
The following presents a simplified summary of the disclosed subject matter in order to provide a basic understanding of some aspects of the various embodiments. This summary is not an extensive overview of the various embodiments. It is intended neither to identify key or critical elements of the various embodiments nor to delineate the scope of the various embodiments. Its sole purpose is to present some concepts of the disclosure in a streamlined form as a prelude to the more detailed description that is presented later.
Various embodiments described herein provide a hermaphroditic connector suitable for use in single differential pair or multiple differential pair applications. Embodiments of the hermaphroditic connector described herein include structural features that yield a robust connection resistant to bending and pull forces. For example, the connector housing can comprise an inner shell component that, when mated with a corresponding inner shell component of a mating hermaphroditic connector, forms a shield that protects the connection area of the electrical contacts within the connectors. While mated, the connectors are held in place by latching teeth formed on outer shell components of the two connectors, or by other features on the inner shells of the two connectors. The connectors can be disengaged by applying pressure to a release bar on one or both of the outer shell components, causing the outer shell components to displace relative to the inner shell components.
The electrical contacts of the hermaphroditic connector comprise curved tines that rest on a dielectric support plate disposed within the connector housing between the inner and outer shell components. While the connector is disengaged, the tines have a first curved profile having a lead-in shape that facilitates reliable electrical engagement with corresponding tines of a mating connector as the two connectors are being mated. As the two hermaphroditic connectors are plugged together, the tines of the two connectors are pressed between the tine support plates of the two connectors, causing the tines to morph from the first curved profile to a second curved profile that is flattened relative to the first curved profile. By emulating a flat edge-coupled stripline transmission line, this flattened tine shape promotes a high level of signal integrity even in high frequency signal applications.
Moreover, the design of the tines and their interaction with the tine support plates yield multiple in-line redundant points of contact between each tine of a connector and its corresponding tine in a mating connector. Such in-line redundant contact points can yield a connector with a smaller width relative to connectors that rely on bifurcated contact points for contact redundancy. This design minimizes consumption of connector panel area by the connector, which can be beneficial in high-density connectivity environments.
The hermaphroditic connector comprises a relatively small number of component parts that assembly simply, and can therefore be manufactured at low cost. Providing a hermaphroditic connector suitable for differential pair communication (e.g., communication over twisted pairs or other types of balanced or differential pairs) or Power over Ethernet applications allows end users to standardize on a single type of connector for use in such applications, rather than stocking both male and female connectors.
To the accomplishment of the foregoing and related ends, the disclosed subject matter, then, comprises one or more of the features hereinafter more fully described. The following description and the annexed drawings set forth in detail certain illustrative aspects of the subject matter. However, these aspects are indicative of but a few of the various ways in which the principles of the subject matter can be employed. Other aspects, advantages, and novel features of the disclosed subject matter will become apparent from the following detailed description when considered in conjunction with the drawings. It will also be appreciated that the detailed description may include additional or alternative embodiments beyond those described in this summary.
The subject disclosure is now described with reference to the drawings wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the subject disclosure. It may be evident, however, that the subject disclosure may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the subject disclosure.
One or more embodiments described herein provide a hermaphroditic connector suitable for use in single-pair ethernet network architectures or other connectivity applications. The connector is constructed using a simple assembly of a small number of component parts, and can therefore be manufactured inexpensively. While two hermaphroditic connectors are mated, the resulting assembly has a rigid double-layered form designed to resist bending and pull forces, as well as to protect the integrity of the connections between the electrically conductive contacts within the connectors.
While disengaged, the electrical contacts or tines within the connector can conform to a curved profile having a curved lead-in shape that facilitates smooth and reliable electrical engagement with the corresponding tines of a similar mating connector. As two connectors are mated together, the tines of both connectors are deformed to a more flattened shape that, by emulating an edge-coupled stripline, can promote high signal integrity in high frequency signal applications.
Outer shell component 104 comprises an outer half-shell segment 126 that protrudes from a looped release bar 114. Release bar 114 comprises a loop having a generally round shape in some embodiments. In the illustrated example, release bar 114 has a rounded rectangular shape (see, e.g.,
Outer half-shell segment 126 extends from a segment of a front edge 130 of the release bar 114. In the illustrated example, outer half-shell segment 126 extends from a segment of the front edge 130 comprising a top horizontal edge and portions of the two adjacent vertical edges of the release bar 114. Thus, the front profile of the outer half-shell segment 126 substantially follows the contour of this segment of the front edge 130 of the release bar 114, yielding a flat top surface and two downward-facing edges.
One or more latching teeth 122 are formed on each of the two downward-facing edges of outer half-shell segment 126. As will be described below, these latching teeth 122 are configured to engage with similar latching teeth 122 formed on a mating connector in order to hold the two connectors in their mated positions. Behind each set of latching teeth 122, a notch 154 is formed and is positioned to engage with a corresponding engagement protrusion 152 on the inner shell component 106. Outer shell component 104 can be made of any suitable material, including but not limited to metal or a rigid or flexible plastic.
Inner shell component 106 comprises an elongated inner half-shell segment 120 that is longer than outer half-shell segment 126 of the outer shell component 104. Similar to the outer shell component 104, inner shell component 106 can be made of metal or of a rigid or flexible plastic. Embodiments in which the inner shell component 106 is made of metal, or is metal-plated, can beneficially provide shielding for the electrical contacts within the connector. Inner half-shell segment 120 comprises a substantially flat bottom surface 134 (see, e.g.,
A multipurpose hole 112 is formed on the bottom surface 134 near the front end of the inner half-shell segment 120 and can be used in conjunction with supplemental latching mechanisms. Multipurpose hole 112 can also be used to facilitate engagement with other types of connectors that are not similar hermaphroditic connectors (e.g., PCB-mounted connectors). In applications in which multipurpose hole 112 is used to latch the connector to its mating connector, the outer shell component 104 may be omitted. Another hole 124 is formed on the bottom surface 134 near the rear end of the inner half-shell segment 120 and is configured to engage with a corresponding attachment stud 148 on the tine support plate 116 of the tine assembly 118. Inner shell component 106 also comprises a loop structure 132 formed near the rear end of the inner shell component 106, which can assist with disengagement of the connector, as will be described below. The tine assembly 118 is configured to reside partially within the loop structure 132 when the components 104, 106, and 118 are assembled into the composite connector.
Tine assembly 118 comprises a tine support plate 116 on which two electrically conductive tines 108 are supported. In some embodiments, tine support plate 116 can be made of a dielectric material. Although only two tines 108 are depicted in the illustrated examples—depicting an embodiment suitable for use in single-pair applications—other embodiments of tine assembly 118 may include more than two tines 108 as space allows, rendering the connector 102 suitable for applications requiring greater numbers of conductors (e.g., multiple twisted pairs). Tines 108 are held in place by a wall 138 that projects substantially perpendicular to the top surface of the tine support plate 116 at or near the rear end of the tine support plate 116. The tines 108 pass through respective openings 144 in the wall 138 such that the contacting segments of the tines 108 (that is, the end segments of the tines 108 that will overlap and engage with corresponding tines of a similar mating connector) are disposed over the top surface of the tine support plate 116. In the illustrated embodiment, the contacting segments of the tines 108 have similar curved profiles. Specifically, as shown in
Engagement between the protrusion 152 on the inner shell component 106 and the notch 154 on the outer shell component 104 can prevent lateral displacement between the inner and outer shell components. In alternative embodiments, this lateral displacement can be prevented using other means (e.g., by locating release bar 114 behind loop structure 132 to prevent forward displacement).
In some embodiments, outer shell component 104 can be connected to inner shell component 106 using springs (e.g., compression springs, see
The width of the outer half-shell segment 126 of outer shell component 104 is slightly greater than the width of the inner half-shell segment 120 of inner shell component 106, and the outer shell component 104 and inner shell component 106 are assembled such that the latching teeth 122 overlap slightly with the outer side surfaces of the inner half-shell segment 120 (see, e.g.,
When the connectors 102a and 102b are brought together to the fully engaged positions, latching teeth 122a and 122b of the respective outer shell components 104a and 104b overlap and engage with one another to hold the two connectors 102a and 102b together in the fully engaged position. As the two connectors 102a and 102b are brought together, interaction between the inclined edges of the latching teeth 122a and 122b cause the outer shell components 104a and 104b to translate away from their corresponding inner shell components 106a and 106b to allow the latching teeth 122a and 122b to overlap. When the connectors 102a and 102b are further pushed together to the fully engaged position, the spring-loaded pressure applied to the outer shell components 104a and 104b causes the outer shell components 104a and 104b to return to their default position, thereby locking the latching teeth 122a and 122b together. This engagement between latching teeth 122a and 122b serves to hold the connectors 102a and 102b together while also providing strain relief for the electrically connected tines 108 (not shown in
While engaged, the overlapping inner half-shell segments 120a and 120b of the two connectors 102a and 102b come together to form a complete inner shell that encloses the tine assembly 118, including the contacting segments of tines 108. In the illustrated example, the amount of overlap between the two, engaged connectors 102a and 102b encompasses nearly the entire lengths of the connectors 102a and 102b. This relatively long length of the overlap between the inner half-shell segments 120a and 120b of the respective connectors 102a and 102b yields a rigid shell that provides resistance to bending and to non-longitudinal cable forces (e.g., pull forces applied to the cables at an angle relative to the axis of the connectors 102a and 102b).
To disengage the connectors 102a and 102b from one another, pressure can be applied to one or both of the release bars 114a or 114b, displacing the corresponding outer shell component 104a or 104b away from its corresponding inner shell component 106a or 106b, thereby disengaging the latching teeth 122a and 122b and allowing the connectors 102a and 102b to be unplugged from one another. To provide leverage when applying pressure to the release bars 114a or 114b, the user can place a finger or thumb on loop structure 132a or 132b while applying pressure to the release bar 114a or 114b using another finger or thumb, allowing the connectors 102a and 102b to be disengaged using a squeezing action between a thumb and finger.
The curved design of the tines 108 and their behavior when two connectors 102a and 102b are plugged together yield benefits in terms of contact redundancy, high-frequency signal integrity, and mitigation of connector performance degradation due to arc erosion. In general, the electrical connection between two contacts or tines of respective two mated connectors can be rendered more reliable if the two contacts touch one another at multiple contact points. If vibration or other environmental factors cause one of these multiple contact points to temporarily separate and lose connectivity, one or more of the other redundant contact points may maintain contact, thereby preserving the electrical connection without interruption. Contact redundancy is sometimes realized using parallel bifurcated contacts, as found in forked contacts in which each of two parallel prongs of the contact achieves independent contact with the surface of a mating contact. However, such bifurcated redundant contacts may require connector housings of additional width to contain the laterally spaced redundant contacts, increasing the size of the connector's footprint.
By contrast, tines 108 are designed to form a connection having multiple redundant in-line contact points disposed along the lengths of the tines.
These multiple in-line contact points provide contact redundancy, which improves reliability of the electrical connection relative to electrical contacts that connect at only a single point. This contact point redundancy can be particularly beneficial in high vibration environments, which elevate the risk of a momentary disconnect at one or more contact points. The three redundant contact points occur along the profiles of the tines 108a and 108b, and therefore consume less width relative to bifurcated redundant contact points.
The design and behavior of tines 108 can also mitigate deterioration of connectivity reliability due to arc erosion pitting when the connectors 102 are used in Power over Ethernet (PoE) applications. Power over Ethernet systems deliver power to end devices via ethernet cabling. Typically, PoE power supplies only apply power to the ethernet cable conductors after a device has been plugged into the cable's terminating connector. When a PoE power supply detects that a device has been connected to the network cabling, the power supply may identify the power specifications of the device, set the output current and/or voltage of the PoE power accordingly, and begin delivering power to the device via the ethernet cabling and associated connector. According to this sequence, power is not initially present on the conductive tines when a first connector associated with the device is plugged into a second connector that terminates the ethernet cable. However, since power is present on the tines when the connectors are unplugged from one another, inductive elements in the conductive channels can cause an electrical arc to discharge at the point of final disconnection between the two conductive tines at the moment when the connectors are disconnected. Over time, this repeated electrical arcing at or near the same locations on the two tines can damage the tines' surfaces at the point of disconnect, eroding the conductive surfaces of the tines. In many connector systems (e.g., RJ-45 connectors and jacks, or other types of connector systems), the point of disconnect between two electrical contacts or tines is at or near the sole point of contact when the connectors are fully plugged in. Consequently, pitting damage incurred at this point due to repeated arcing can degrade the reliability of the electrical connection between the two tines or contacts.
The tine design depicted in
Moreover, the design of tines 108 can promote integrity of high frequency signals by emulating a flat stripline while the connectors 102a and 102b are engaged. The contact tips of typical male-female connectors often comprise lead-in shapes—such as highly curved ski-tips or bell-shaped ends—that are sufficiently curved to facilitate smooth and reliable mating with the opposing contact when the two connectors are plugged together. These highly curved lead-in contact shapes are typically maintained while the two connectors are fully engaged, resulting in appendages or stubs along the transmission path that may act as resonant entities that disturb the characteristic impedance and compromise signal integrity by creating signal reflections, particularly in high-frequency signal applications that support high data capacity. Consequently, designers must often seek a compromise between providing a sufficiently curved contact tip shape that ensures a smooth lead-in as the connectors are plugged together and minimizing contact discontinuities that may serve as resonant entities that degrade high-frequency signal integrity. Ideally, the mated contacts should be as flat as possible—that is, should emulate a flat stripline to the degree possible—while plugged together in order to minimize disturbances to characteristic impedance, crosstalk, stray reflections, and other behaviors detrimental to high-frequency signals.
The tine design depicted in
Although the illustrated examples depict tines 108 as having continuously curved profiles, in some embodiments the curved profile of each tine 108 may include one or more abrupt discontinuities along the profile, including angles, bumps, or acute points. The addition of such discontinuities to the tine profiles may increase both the number of redundant contact points as well as the relative pressure-independence of each redundant contact point while the connectors 102a and 102b are engaged.
In some embodiments, hermaphroditic connector 102 can be encased in a soft, flexible boot that provides further protection as well as water-resistance.
Since boots 1302a and 1302b are made of a flexible material, the mated connectors 102a and 102b can be disengaged from one another while encased in boots 1302a and 1302b by applying pressure to one or both of the release bars 114 through the boots 1302a and 1302b. In some embodiments, boot 1302 can apply sufficient pressure to outer shell component 104 to hold the outer shell component 104 in place on the inner shell component 106 without the use of a compression spring. In such embodiments, the flexibility of boot 1302 allows the outer shell component 104 to be displaced in response to pressure applied to the release bar 114 to facilitate disengagement of the connector 102, while also forcing the outer shell component 104 back into its default position against inner shell component 106 when pressure is removed from the release bar 114.
The above description of illustrated embodiments of the subject disclosure, including what is described in the Abstract, is not intended to be exhaustive or to limit the disclosed embodiments to the precise forms disclosed. While specific embodiments and examples are described herein for illustrative purposes, various modifications are possible that are considered within the scope of such embodiments and examples, as those skilled in the relevant art can recognize.
In this regard, while the disclosed subject matter has been described in connection with various embodiments and corresponding figures, where applicable, it is to be understood that other similar embodiments can be used or modifications and additions can be made to the described embodiments for performing the same, similar, alternative, or substitute function of the disclosed subject matter without deviating therefrom. Therefore, the disclosed subject matter should not be limited to any single embodiment described herein, but rather should be construed in breadth and scope in accordance with the appended claims below.
In addition, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. Moreover, articles “a” and “an” as used in the subject specification and annexed drawings should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
What has been described above includes examples of systems and methods illustrative of the disclosed subject matter. It is, of course, not possible to describe every combination of components or methodologies here. One of ordinary skill in the art may recognize that many further combinations and permutations of the claimed subject matter are possible. Furthermore, to the extent that the terms “includes,” “has,” “possesses,” and the like are used in the detailed description, claims, appendices and drawings such terms are intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This application claims priority to U.S. Provisional Patent Application No. 62/767,126, filed on Nov. 14, 2018, and entitled “EDGE-COUPLED DIFFERENTIAL STRIPLINE CONNECTOR,” the entirety of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62767126 | Nov 2018 | US |