The present invention relates to photonics chips and, more specifically, to structures for an edge coupler of a photonics chip and methods of forming an edge coupler for a photonics chip.
Photonics chips are used in many applications and systems including, but not limited to, data communication systems and data computation systems. A photonics chip integrates optical components, such as waveguides, optical switches, optical power splitters, and directional couplers, and electronic components, such as field-effect transistors, into a unified platform. Among other factors, layout area, cost, and operational overhead may be reduced by the integration of both types of components on the same chip.
An edge coupler, also known as a spot-size coupler, is commonly used for coupling light of a given mode from an optical fiber to optical components on the photonics chip. The edge coupler may include a section of a waveguide core that is located adjacent to the edge of the photonics chip. The waveguide core routes the light away from the edge coupler to the optical components of the photonics chip.
Processing with reactive ion etching (ME) is susceptible to micro-trenching along the borders of features that tend to enhance the vertical etch rate. High-energy reactive ion etching processes and relatively large features may be more prone to the occurrence of micro-trenching. A portion of the back-end-of-line stack may be completely removed with a high-energy reactive ion etching process to define an opening that may be used in the construction of a fiber-to-chip coupler. The opening penetrates fully through the back-end-of-line stack and reveals a portion of a waveguide core adjacent to the boundary of the opening. Because of the occurrence of micro-trenching, the high-energy reactive ion etching process forming the opening may erode and damage the revealed portion of the waveguide core after penetrating through the back-end-of-line stack, which is an undesired process artifact.
Improved structures for an edge coupler of a photonics chip and methods of forming an edge coupler for a photonics chip are needed.
In an embodiment of the invention, a structure includes a dielectric layer, a waveguide core on the dielectric layer, and an interconnect structure including a interlayer dielectric layer positioned over the dielectric layer and an opening penetrating through the interlayer dielectric layer to the waveguide core. The interlayer dielectric layer includes a region positioned to overlap with a portion of the waveguide core. The region of the interlayer dielectric layer has a surface that is rounded with a curvature.
In an embodiment of the invention, a method includes forming a waveguide core on a dielectric layer, forming an interconnect structure including a interlayer dielectric layer positioned over the dielectric layer, and forming an opening penetrating through the interlayer dielectric layer to the waveguide core. The interlayer dielectric layer includes a region positioned to overlap with a portion of the waveguide core. The region of the interlayer dielectric layer has a surface that is rounded with a curvature.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various embodiments of the invention and, together with a general description of the invention given above and the detailed description of the embodiments given below, serve to explain the embodiments of the invention. In the drawings, like reference numerals refer to like features in the various views.
With reference to
With reference to
An interconnect structure 26 may be formed by back-end-of-line processing that includes multiple wiring levels that are positioned over the dielectric layers 16, 24 and waveguide core 12. The interconnect structure 26 includes multiple interlayer dielectric layers 28, 30, 32 in each of which lines and vias may be formed by a damascene process to define the different wiring levels. Specifically, each of the interlayer dielectric layers 28, 30, 32 may be deposited and patterned using lithography and etching processes to define trenches and via openings that are lined with a barrier layer (e.g., a bilayer of tantalum and tantalum nitride) and filled by a planarized conductor (e.g., copper or aluminum) to define lines and vias that connect the lines in different wiring levels. Each of the interlayer dielectric layers 28, 30, 32 of the interconnect structure 26 may be comprised of a dielectric material, such as silicon dioxide, silicon nitride, or a low-k dielectric material, that is deposited by, for example, chemical vapor deposition. The number of interlayer dielectric layers 28, 30, 32 may vary depending upon the number of wiring levels in the interconnect structure 26. In the representative embodiment, the interlayer dielectric layer 28 is positioned directly over the dielectric layer 24 and waveguide core 12, the interlayer dielectric layer 30 is positioned directly over the interlayer dielectric layer 28, and the interlayer dielectric layer 32 is positioned directly over the interlayer dielectric layer 30.
With reference to
The patterned interlayer dielectric layers 28, 30, 32 each include a rounded region 36 that is located adjacent to the opening 42. Each rounded region 36 is laterally positioned along a sidewall of the opening 42 between a region 38 and a region 40. A revealed portion 22 of the waveguide core 12 protrudes from beneath the rounded regions 36 of the interlayer dielectric layers 28, 30, 32 and is located inside the opening 42. The rounded regions 36 of the interlayer dielectric layers 28, 30, 32 are positioned to overlap with a portion 20 of the waveguide core 12 that is covered by the interconnect structure 26 after the formation of the opening 42. The overlapped portion 20 of the waveguide core 12 is arranged between the dielectric layer 16 and the rounded regions 36 of the interlayer dielectric layers 28, 30, 32.
The rounded region 36 of the interlayer dielectric layer 28 includes a surface 29 that is curved or rounded with a curvature, the rounded region 36 of the interlayer dielectric layer 30 includes a surface 31 that is curved or rounded with a curvature, and the rounded region 36 of the interlayer dielectric layer 32 includes a surface 33 that is curved or rounded with a curvature. The regions 38, 40 may have substantially planar or flat surfaces bordering the opening 42 adjacent to the surfaces 29, 31, 33. In an embodiment, the rounded regions 36 may have a width dimension W2 that is greater than the width dimension W1 of the waveguide core 12 (
In an embodiment, the curvatures of the surfaces 29, 31, 33 of the rounded regions 36 of the interlayer dielectric layers 28, 30, 32 may be equal to each other. In an embodiment, the curvatures of the surfaces 29, 31, 33 of the rounded regions 36 of the interlayer dielectric layers 28, 30, 32 may be substantially equal to each other. In an embodiment, the surfaces 29, 31, 33 of the rounded regions 36 may be characterized by a positive radius of curvature. In an embodiment, the surfaces 29, 31, 33 of the rounded regions 36 may have a central angle θ that is equal to 90°. In an embodiment, the surfaces 29, 31, 33 of the rounded regions 36 may have a central angle θ that is approximately equal to 90°. In an embodiment, the surfaces 29, 31, 33 of the rounded regions 36 may have a central angle θ that ranges from about 90° to about 180°. In an embodiment, each rounded region 36 may be characterized as a section of a cylinder. In an embodiment, each rounded region 36 may be characterized as a sector of a right circular cylinder. In an embodiment, each rounded region 36 may be characterized as a sector of a right circular cylinder equal to one-quarter of an entire right circular cylinder. In an embodiment, each rounded region 36 may be characterized as a sector of a rounded three-dimensional shape different from a right circular cylinder.
The rounded regions 36 of the interlayer dielectric layers 28, 30, 32 may alleviate damage to the revealed portion 22 of the waveguide core 12 when etching with reactive ion etching through the interconnect structure 26 to form the opening 42. In that regard, the rounded regions 36 of the interlayer dielectric layers 28, 30, 32 may generate a local shift in the vertical etch rate component above the revealed portion 22 of the waveguide core 12 as the opening 42 is formed. For example, the rounded regions 36 of the interlayer dielectric layers 28, 30, 32 may reduce micro-trenching by locally deflecting energetic ions of the chemically-reactive plasma away from the location of the transition between the overlapped portion 20 and revealed portion 22 of the waveguide core 12. The rounded regions 36 may be introduced by a minor design layout change in the etch mask and may provide protection independent of the etching process and equipment.
With reference to
The structure 10, in any of its embodiments described herein, may be integrated into a photonics chip that includes electronic components and additional optical components. For example, the electronic components may include field-effect transistors that are fabricated by CMOS processing.
A tip of an optical fiber 50 may be inserted into the groove 48 and supported by the groove 48 adjacent to the end surface 13 of the waveguide core 12. A low-index adhesive may be used to assemble the tip of the optical fiber 50 to the photonics chip and may fill all or part of the groove 48 and/or undercut 52. The structure 10 may provide a fiber-to-chip coupler used for coupling light (e.g., laser light) between the optical fiber 50 and the optical components on the photonics chip.
With reference to
The rounded region 36 is characterized by a turning point 46 at which the derivative of a function describing the curvature of the surfaces 29, 31, 33 of the rounded regions 36 is equal to zero. In an embodiment, the end surface 13 of the waveguide core 12 may be positioned beneath the rounded region 36 with a lateral offset relative to the turning point 46.
The methods as described above are used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (e.g., as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. The chip may be integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either an intermediate product or an end product. The end product can be any product that includes integrated circuit chips, such as computer products having a central processor or smartphones.
References herein to terms modified by language of approximation, such as “about”, “approximately”, and “substantially”, are not to be limited to the precise value specified. The language of approximation may correspond to the precision of an instrument used to measure the value and, unless otherwise dependent on the precision of the instrument, may indicate +/−10% of the stated value(s).
References herein to terms such as “vertical”, “horizontal”, etc. are made by way of example, and not by way of limitation, to establish a frame of reference. The term “horizontal” as used herein is defined as a plane parallel to a conventional plane of a semiconductor substrate, regardless of its actual three-dimensional spatial orientation. The terms “vertical” and “normal” refer to a direction perpendicular to the horizontal, as just defined. The term “lateral” refers to a direction within the horizontal plane.
A feature “connected” or “coupled” to or with another feature may be directly connected or coupled to or with the other feature or, instead, one or more intervening features may be present. A feature may be “directly connected” or “directly coupled” to or with another feature if intervening features are absent. A feature may be “indirectly connected” or “indirectly coupled” to or with another feature if at least one intervening feature is present. A feature “on” or “contacting” another feature may be directly on or in direct contact with the other feature or, instead, one or more intervening features may be present. A feature may be “directly on” or in “direct contact” with another feature if intervening features are absent. A feature may be “indirectly on” or in “indirect contact” with another feature if at least one intervening feature is present. Different features may “overlap” if a feature extends over, and covers a part of, another feature.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
6297168 | Shieh et al. | Oct 2001 | B1 |
6343171 | Yoshimura | Jan 2002 | B1 |
6540885 | Keil | Apr 2003 | B1 |
6611635 | Yoshimura | Aug 2003 | B1 |
6684007 | Yoshimura | Jan 2004 | B2 |
6690845 | Yoshimura | Feb 2004 | B1 |
6845184 | Yoshimura | Jan 2005 | B1 |
7109085 | Wang et al. | Sep 2006 | B2 |
7749914 | Honda et al. | Jul 2010 | B2 |
10816726 | Peng | Oct 2020 | B1 |
20020003264 | Chan et al. | Jan 2002 | A1 |
20020028045 | Yoshimura | Mar 2002 | A1 |
20020039464 | Yoshimura | Apr 2002 | A1 |
20020097962 | Yoshimura | Jul 2002 | A1 |
20070274630 | Ghiron | Nov 2007 | A1 |
20130114924 | Loh | May 2013 | A1 |
20150277036 | Jiang | Oct 2015 | A1 |
20160005775 | Ellis-Monaghan | Jan 2016 | A1 |
20160248216 | Purnawirman | Aug 2016 | A1 |
20160291265 | Kinghorn | Oct 2016 | A1 |
20200006088 | Yu | Jan 2020 | A1 |
20210157052 | Tai | May 2021 | A1 |
20210271020 | Islam | Sep 2021 | A1 |
20210313254 | Chen | Oct 2021 | A1 |
20220043208 | Hsia | Feb 2022 | A1 |
20220155539 | Pietambaram | May 2022 | A1 |
20220276452 | Freedman | Sep 2022 | A1 |
20220381985 | Hsia | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
101414590 | Apr 2009 | CN |
101432649 | May 2009 | CN |
Entry |
---|
K. Giewont et al., “300-mm Monolithic Silicon Photonics Foundry Technology,” in IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, No. 5, pp. 1-11, Sep.-Oct. 2019, Art No. 8200611. |
Y. Bian, et al., “Towards low-loss monolithic silicon and nitride photonic building blocks in state-of-the-art 300mm CMOS foundry,” in Frontiers in Optics / Laser Science, B. Lee, C. Mazzali, K. Corwin, and R. Jason Jones, eds., OSA Technical Digest (Optical Society of America, 2020), paper FW5D.2. |
Number | Date | Country | |
---|---|---|---|
20220357530 A1 | Nov 2022 | US |