Technology of flexible multilayer electronics is becoming increasingly relevant in flexible displays and touch surfaces. Many customer electronics manufacturers are applying the flexibility technology to handheld devices, laptops, wearable devices, and other consumer electronics.
The present description will be better understood from the following detailed description read in light of the accompanying drawings, wherein:
Like reference numerals are used to designate like parts in the accompanying drawings.
The detailed description provided below in connection with the appended drawings is intended as a description of the present examples and is not intended to represent the only forms in which the present example may be constructed or utilized. However, the same or equivalent functions and sequences may be accomplished by different examples.
The embodiments described below are not limited to implementations which solve any or all of the disadvantages of known devices and covers. Although the present examples are described and illustrated herein as being implemented with a few layers separated by a filling, the devices described are provided as an example and not a limitation. As those skilled in the art will appreciate, the presented embodiments are suitable for application in a variety of bendable devices comprising stacks of layers instead of individual layers shown, and these individual layers can be a schematic representation of various parts of a device, such as a display or a touch screen. These parts may comprise a plurality of layers.
In display devices, such as LCD (Liquid Crystal Display) devices, a sealing is used on the edges to prevent moisture and dust getting inside, and to prevent the optically transparent fluid used in the device from leaking out. It can be an adhesive or a protective material integrated e.g. with a protective sheet or a backplane.
An elastic sealing 13 is fixed to the first and second layers 11, 12. The elastic sealing may comprise silicone rubber, latex rubber, closed cell polyurethane foam or any other flexible membrane, acrylic and/or silicone adhesive.
The device 10 has a planar position in which it forms a plane that has a perimeter, as illustrated in more detail below in
The first and second layers 11, 12 are moveable in relation to each other in one or more horizontal directions in the embodiment of
The device 10 is bendable about at least one axis which is parallel to the plane. The axis may be, for example, an axis of a hinge around which the device can be bent. According to an embodiment, the axis can lie in the plane of the device itself. The elastic sealing 13 is fixed to the first and second layers 11, 12 at or close to the perimeter of the plane. According to an embodiment, the device is bendable at least 20 degrees, and according to an embodiment it is bendable more than 90 degrees. Where the device 10 is foldable or rollable, the bending may exceed 180 degrees.
The sealing 13 can prevent the filling 14 from escaping the device, as well as protect the edges of the device from outside moisture or dust. The sealing 13 may also position the first and second layers 11, 12 in relation to each other during assembly and reposition the first and second layers when the device returned to an original position the after bending.
The first and second layers 11, 12 may be bottom and top layers, depending on the positioning of the device 10. Alternatively, one of the layers 11, 12 may be a bottom layer, and the other one a middle layer with other layers on top of it.
In the example embodiments shown in
The device 10 may further comprise a stack of layers between the first and second layer, for example comprising a touch sensor, a protective layer, a pressure sensitive layer, and/or polarizers. The device 10 may have a thickness between 0.15 mm and 5 mm. The layers may have a thickness of approximately 0.1 mm.
The sealing 13 may be fixed to the first and second layers 11, 12 along part of the perimeter that is parallel to the axis about which the device is bendable. In other words, the sealing 13 may be selectively applied to those parts of the perimeter which face the direction of bending. For example, if the device 10 is rectangular and the bending axis is parallel to one of the sides, the sealing may be selectively fixed to the device on those sides. This can allow combining different types of sealing on different parts of the edge of the device.
When the device 10 is bent, the layers may move in relation to each other. The movement distance can depend on thickness of each layer, number of layers and bending angle. In a rolled up device the movement distance may exceed 4 mm.
The device 10 comprising an elastic sealing 13 can provide free movement of the layers regardless of the degree of bending, and at the same time prevent peeling of the corners of the device 10 when it is bent. Another effect provided by the bendable device 10 comprising an elastic sealing 13 is protection of the layers and inter-layer spaces and fillings.
The terms ‘top’ and ‘bottom’ are used for clarity and relate to the positioning on the figures only. The elastic sealing (transparent and not fully visible on this figure) is fixed to the bottom layer 22 and the top layer 21 near the perimeter of the device 20 on the same side, i.e. on the top side. The regions of adhesion are indicated by 23 and shown as dotted areas. In an embodiment, the elastic sealing is fixed only to the first and second layers 21, 22, thereby leaving room for the middle layers to move freely while having the seal applied over them. With this kind of sealing arrangement wrinkles and/or folds at the corners can be avoided or at least minimized. Those wrinkles and folds can be difficult to avoid with seals described in
Devices according to any of the above embodiments can be used in flexible electronic devices such as wearable devices wrapping around e.g. user's wrist, foldable laptop computers where the display extends over the hinge portion and e-reader display devices that can be rolled up for storage and transportation. The devices may be embedded in or attached to a housing of a bendable or foldable apparatus.
According to an aspect, a method for sealing a bendable display device is disclosed. The method comprises first providing a bendable display device having a planar position in which the device forms a plane having a perimeter. The device comprises a first layer and a second layer moveable in relation to each other in at least one direction in the plane, for example similar to the devices described above. The method is then followed by fixing an elastic sealing to the first and second layer of the device by adhering a region of the elastic sealing to a region of the first layer, and adhering a region of the elastic sealing to a region of the second layer, at or close to the perimeter of the device along at least part of the perimeter.
In an embodiment, the method further comprises evacuating air from the environment in which the device is sealed prior to fixing the elastic sealing. In an embodiment, the device comprises at least one middle layer between the first and the second layers, and the method also comprises preventing adhesion of the at least one middle layer to the elastic sealing. The method can be carried out during assembly of the device, in which case the air can be evacuated during the deposition and subsequent sealing. Alternatively, the sealing can be carried out after the manufacture.
Examples of techniques for attaching a region of the elastic sealing to regions of the first and second layers are illustrated in
According to embodiments, other techniques for fixing the elastic seal to the layers can be used. For example, the seal may be a two-sided adhesive itself, in which case a non-stick coating such as tissue paper, foam rubber sheet or printed paint can prevent adhesion in unwanted places. The two-sided adhesive may also be useful to secure the device to an outside object such as a casing or housing, using parts of the adhesive elastic sealing at the connection points.
The methods according to the embodiments above may provide the technical effect of simple and cost efficient sealing of a bendable, flexible or rollable device.
According an aspect of the invention, a bendable device with a display is disclosed. The device comprises: a first layer and a second layer, and an elastic sealing fixed to the first and second layers, wherein: the device has a planar position in which the device forms a plane having a perimeter, the first and second layers are moveable in relation to each other in one or more directions which lie in the plane, the device is bendable about at least one axis which is parallel to the plane, and the elastic sealing is fixed to the first and second layers at or close to the perimeter of the plane along at least part of the perimeter.
In an embodiment, the device further comprises at least one middle layer positioned between the first layer and the second layer, wherein the at least one middle layer is moveable in relation to the first and second layers in one or more directions which lie in the plane
In an embodiment, the elastic sealing is fixed to the first and second layers only.
In an embodiment, the second layer extends outwards in the plane in relation to the first layer, and wherein the elastic sealing is fixed to the first and second layers at or close to the perimeter of the plane on the same side of the device.
According to an embodiment, the elastic sealing is fixed to the first and second layers at or close to the perimeter of the plane on the opposite sides of the device.
In an embodiment, the first and second layers extend outwards in the plane in relation to the at least one middle layer, and wherein the elastic sealing is fixed to the sides of the first and second layers facing each other at or close to the perimeter of the plane.
In an embodiment, the device is bendable about at least one axis which lies in the plane.
In an embodiment, the elastic sealing is fixed to at least one middle layer at or close to the perimeter of the plane along at least part of the perimeter.
In an embodiment, the elastic sealing is fixed to the first and second layers along part of the perimeter that is parallel to the axis about which the device is bendable.
In an embodiment, the device is bendable more than 90 degrees.
In an embodiment, the layers are separated by a space, and the space is filled with a filling selected from the group of: fluid, grease, gel, oil and paste.
According to an aspect of the invention, a method for sealing a bendable display device is provided. The method comprises: providing a bendable display device having a planar position in which the device forms a plane having a perimeter, wherein the device comprises a first layer and a second layer moveable in relation to each other in at least one direction in the plane; fixing an elastic sealing to the first and second layer of the device by adhering a region of the elastic sealing to a region of the first layer, and adhering a region of the elastic sealing to a region of the second layer, at or close to the perimeter of the device along at least part of the perimeter.
In an embodiment, the adhering is performed by: thermal bonding, attaching with adhesive stripes, printing glue or using an adhesive elastic material in the sealing.
In an embodiment, wherein the regions of the first and second layers to which the elastic sealing is adhered are located on the same side of the device.
According to an embodiment, the method further comprises evacuating air from the environment in which the device is sealed prior to fixing the elastic sealing.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. The embodiments are not limited to those that solve any or all of the stated problems or those that have any or all of the stated benefits and advantages. It will further be understood that reference to ‘an’ item refers to one or more of those items.
Aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples without losing the effect sought.
The term ‘comprising’ is used herein to mean including the method blocks or elements identified, but that such blocks or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks or elements.
It will be understood that the above description is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments. Although various embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this specification.