EDGE TO CLOUD METAMODEL-BASED ARTIFICIAL GENERAL INTELLIGENCE

Information

  • Patent Application
  • 20230179489
  • Publication Number
    20230179489
  • Date Filed
    December 08, 2021
    3 years ago
  • Date Published
    June 08, 2023
    a year ago
Abstract
In one embodiment, a device provides information for display regarding an artificial intelligence metamodel that includes at least a symbolic layer and a sub-symbolic layer. The device receives an indication of a target node in a network to which the artificial intelligence metamodel is to be deployed. The device generates a modified version of the artificial intelligence metamodel based on resources available at the target node. The device deploys the modified version of the artificial intelligence metamodel for execution by the target node.
Description
TECHNICAL FIELD

The present disclosure relates generally to computer networks, and, more particularly, to edge to cloud metamodel-based artificial general intelligence.


BACKGROUND

Artificial intelligence continues to grow in both its capabilities as well as how it is used. Paralleling this growth is also an ever-increasing demand on the resources of the computing systems that leverage artificial intelligence. Indeed, tasks such as classification, prediction, and making inferences are often computationally-intensive and require the ingestion of a large amount of data.


Cloud-hosted artificial intelligence has the advantage of being able to scale the resources devoted to its execution, according to its needs. However, cloud-hosted solutions also suffer from placing a greater strain on the network itself, as the input data needs to be streamed to the cloud for analysis. This can place considerable strain on the network in terms of bandwidth consumption.


Moving the artificial intelligence to the network edge as part of a distributed architecture can help to alleviate this strain. However, edge devices also typically have fewer computing resources compared to the cloud. In addition, the edge devices may be heterogeneous in terms of their hardware and capabilities, meaning that a one-size-fits-all approach to moving the processing to the edge can be a challenging and cumbersome endeavor.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by referring to the following description in conjunction with the accompanying drawings in which like reference numerals indicate identically or functionally similar elements, of which:



FIGS. 1A-1B illustrate an example computer network;



FIG. 2 illustrates an example network device/node;



FIG. 3 illustrates an example hierarchy for a deep fusion reasoning engine (DFRE);



FIG. 4 illustrates an example DFRE architecture;



FIG. 5 illustrates an example of various inference types;



FIG. 6 illustrates an example architecture for multiple DFRE agents;



FIG. 7 illustrates an example DFRE metamodel;



FIG. 8 illustrates an example of using a DFRE metamodel to make inferences about a retail location;



FIG. 9 illustrates an example of a DFRE metamodel assessing image data;



FIG. 10 illustrates an example user interface allowing a user to select which concepts are to be deployed to a particular device; and



FIG. 11 illustrates an example simplified procedure for edge to cloud metamodel-based artificial general intelligence.





DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

According to one or more embodiments of the disclosure, a device provides information for display regarding an artificial intelligence metamodel that includes at least a symbolic layer and a sub-symbolic layer. The device receives an indication of a target node in a network to which the artificial intelligence metamodel is to be deployed. The device generates a modified version of the artificial intelligence metamodel based on resources available at the target node. The device deploys the modified version of the artificial intelligence metamodel for execution by the target node.


Description

A computer network is a geographically distributed collection of nodes interconnected by communication links and segments for transporting data between end nodes, such as personal computers, cellular phones, workstations, or other devices, such as sensors, etc. Many types of networks are available, with the types ranging from local area networks (LANs) to wide area networks (WANs). LANs typically connect the nodes over dedicated private communications links located in the same general physical location, such as a building or campus. WANs, on the other hand, typically connect geographically dispersed nodes over long-distance communications links, such as common carrier telephone lines, optical lightpaths, synchronous optical networks (SONET), or synchronous digital hierarchy (SDH) links, or Powerline Communications (PLC) such as IEEE 61334, IEEE P1901.2, and others. The Internet is an example of a WAN that connects disparate networks throughout the world, providing global communication between nodes on various networks. The nodes typically communicate over the network by exchanging discrete frames or packets of data according to predefined protocols, such as the Transmission Control Protocol/Internet Protocol (TCP/IP). In this context, a protocol consists of a set of rules defining how the nodes interact with each other. Computer networks may be further interconnected by an intermediate network node, such as a router, to forward data from one network to another.


Smart object networks, such as sensor networks, in particular, are a specific type of network having spatially distributed autonomous devices such as sensors, actuators, etc., that cooperatively monitor physical or environmental conditions at different locations, such as, e.g., energy/power consumption, resource consumption (e.g., water/gas/etc. for advanced metering infrastructure or “AMI” applications) temperature, pressure, vibration, sound, radiation, motion, pollutants, etc. Other types of smart objects include actuators, e.g., responsible for turning on/off an engine or perform other actions. Sensor networks, a type of smart object network, are typically shared-media networks, such as wireless or PLC networks. That is, in addition to one or more sensors, each sensor device (node) in a sensor network may generally be equipped with a radio transceiver or other communication port such as PLC, a microcontroller, and an energy source, such as a battery. Often, smart object networks are considered field area networks (FANs), neighborhood area networks (NANs), personal area networks (PANs), etc. Generally, size and cost constraints on smart object nodes (e.g., sensors) result in corresponding constraints on resources such as energy, memory, computational speed and bandwidth.



FIG. 1A is a schematic block diagram of an example computer network 100 illustratively comprising nodes/devices, such as a plurality of routers/devices interconnected by links or networks, as shown. For example, customer edge (CE) routers 110 may be interconnected with provider edge (PE) routers 120 (e.g., PE-1, PE-2, and PE-3) in order to communicate across a core network, such as an illustrative network backbone 130. For example, routers 110, 120 may be interconnected by the public Internet, a multiprotocol label switching (MPLS) virtual private network (VPN), or the like. Data packets 140 (e.g., traffic/messages) may be exchanged among the nodes/devices of the computer network 100 over links using predefined network communication protocols such as the Transmission Control Protocol/Internet Protocol (TCP/IP), User Datagram Protocol (UDP), Asynchronous Transfer Mode (ATM) protocol, Frame Relay protocol, or any other suitable protocol. Those skilled in the art will understand that any number of nodes, devices, links, etc. may be used in the computer network, and that the view shown herein is for simplicity.


In some implementations, a router or a set of routers may be connected to a private network (e.g., dedicated leased lines, an optical network, etc.) or a virtual private network (VPN), such as an MPLS VPN utilizing a Service Provider network, via one or more links exhibiting very different network and service level agreement characteristics. For the sake of illustration, a given customer site may fall under any of the following categories:


1.) Site Type A: a site connected to the network (e.g., via a private or VPN link) using a single CE router and a single link, with potentially a backup link (e.g., a 3G/4G/5G/LTE backup connection). For example, a particular CE router 110 shown in network 100 may support a given customer site, potentially also with a backup link, such as a wireless connection.


2.) Site Type B: a site connected to the network using two MPLS VPN links (e.g., from different Service Providers) using a single CE router, with potentially a backup link (e.g., a 3G/4G/5G/LTE connection). A site of type B may itself be of different types:


2a.) Site Type B1: a site connected to the network using two MPLS VPN links (e.g., from different Service Providers), with potentially a backup link (e.g., a 3G/4G/5G/LTE connection).


2b.) Site Type B2: a site connected to the network using one MPLS VPN link and is one link connected to the public Internet, with potentially a backup link (e.g., a 3G/4G/5G/LTE connection). For example, a particular customer site may be connected to network 100 via PE-3 and via a separate Internet connection, potentially also with a wireless backup link.


2c.) Site Type B3: a site connected to the network using two links connected to the public Internet, with potentially a backup link (e.g., a 3G/4G/5G/LTE connection).


Notably, MPLS VPN links are usually tied to a committed service level agreement, whereas Internet links may either have no service level agreement or a loose service level agreement (e.g., a “Gold Package” Internet service connection that guarantees a certain level of performance to a customer site).


3.) Site Type C: a site of type B (e.g., types B1, B2 or B3) but with more than one CE router (e.g., a first CE router connected to one link while a second CE router is connected to the other link), and potentially a backup link (e.g., a wireless 3G/4G/5G/LTE backup link). For example, a particular customer site may include a first CE router 110 connected to PE-2 and a second CE router 110 connected to PE-3.



FIG. 1B illustrates an example of network 100 in greater detail, according to various embodiments. As shown, network backbone 130 may provide connectivity between devices located in different geographical areas and/or different types of local networks. For example, network 100 may comprise local/branch networks 160, 162 that include devices/nodes 10-16 and devices/nodes 18-20, respectively, as well as a data center/cloud environment 150 that includes servers 152-154. Notably, local networks 160-162 and data center/cloud environment 150 may be located in different geographic locations.


Servers 152-154 may include, in various embodiments, a network management server (NMS), a dynamic host configuration protocol (DHCP) server, a constrained application protocol (CoAP) server, an outage management system (OMS), an application policy infrastructure controller (APIC), an application server, etc. As would is be appreciated, network 100 may include any number of local networks, data centers, cloud environments, devices/nodes, servers, etc.


In some embodiments, the techniques herein may be applied to other network topologies and configurations. For example, the techniques herein may be applied to peering points with high-speed links, data centers, etc.


In various embodiments, network 100 may include one or more mesh networks, such as an Internet of Things network. Loosely, the term “Internet of Things” or “IoT” refers to uniquely identifiable objects (things) and their virtual representations in a network-based architecture. In particular, the next frontier in the evolution of the Internet is the ability to connect more than just computers and communications devices, but rather the ability to connect “objects” in general, such as lights, appliances, vehicles, heating, ventilating, and air-conditioning (HVAC), windows and window shades and blinds, doors, locks, etc. The “Internet of Things” thus generally refers to the interconnection of objects (e.g., smart objects), such as sensors and actuators, over a computer network (e.g., via IP), which may be the public Internet or a private network.


Notably, shared-media mesh networks, such as wireless or PLC networks, etc., are often deployed on what are referred to as Low-Power and Lossy Networks (LLNs), which are a class of network in which both the routers and their interconnect are constrained: LLN routers typically operate with constraints, e.g., processing power, memory, and/or energy (battery), and their interconnects are characterized by, illustratively, high loss rates, low data rates, and/or instability. LLNs are comprised of anything from a few dozen to thousands or even millions of LLN routers, and support point-to-point traffic (between devices inside the LLN), point-to-multipoint traffic (from a central control point such at the root node to a subset of devices inside the LLN), and multipoint-to-point traffic (from devices inside the LLN towards a central control point). Often, an IoT network is implemented with an LLN-like architecture. For example, as shown, local network 160 may be an LLN in which CE-2 operates as a root node for is devices/nodes 10-16 in the local mesh, in some embodiments.


In contrast to traditional networks, LLNs face a number of communication challenges. First, LLNs communicate over a physical medium that is strongly affected by environmental conditions that change over time. Some examples include temporal changes in interference (e.g., other wireless networks or electrical appliances), physical obstructions (e.g., doors opening/closing, seasonal changes such as the foliage density of trees, etc.), and propagation characteristics of the physical media (e.g., temperature or humidity changes, etc.). The time scales of such temporal changes can range between milliseconds (e.g., transmissions from other transceivers) to months (e.g., seasonal changes of an outdoor environment). In addition, LLN devices typically use low-cost and low-power designs that limit the capabilities of their transceivers. In particular, LLN transceivers typically provide low throughput. Furthermore, LLN transceivers typically support limited link margin, making the effects of interference and environmental changes visible to link and network protocols. The high number of nodes in LLNs in comparison to traditional networks also makes routing, quality of service (QoS), security, network management, and traffic engineering extremely challenging, to mention a few.



FIG. 2 is a schematic block diagram of an example node/device 200 (e.g., an apparatus) that may be used with one or more embodiments described herein, e.g., as any of the computing devices shown in FIGS. 1A-1B, particularly the PE routers 120, CE routers 110, nodes/device 10-20, servers 152-154 (e.g., a network controller located in a data center, etc.), any other computing device that supports the operations of network 100 (e.g., switches, etc.), or any of the other devices referenced below. The device 200 may also be any other suitable type of device depending upon the type of network architecture in place, such as IoT nodes, etc. Device 200 comprises one or more network interfaces 210, one or more processors 220, and a memory 240 interconnected by a system bus 250, and is powered by a power supply 260.


The network interfaces 210 include the mechanical, electrical, and signaling circuitry for communicating data over physical links coupled to the network 100. The is network interfaces may be configured to transmit and/or receive data using a variety of different communication protocols. Notably, a physical network interface 210 may also be used to implement one or more virtual network interfaces, such as for virtual private network (VPN) access, known to those skilled in the art.


The memory 240 comprises a plurality of storage locations that are addressable by the processor(s) 220 and the network interfaces 210 for storing software programs and data structures associated with the embodiments described herein. The processor 220 may comprise necessary elements or logic adapted to execute the software programs and manipulate the data structures 245. An operating system 242 (e.g., the Internetworking Operating System, or IOS®, of Cisco Systems, Inc., another operating system, etc.), portions of which are typically resident in memory 240 and executed by the processor(s), functionally organizes the node by, inter alia, invoking network operations in support of software processors and/or services executing on the device. These software processors and/or services may comprise a deep fusion reasoning engine (DFRE) process 248, as described herein.


It will be apparent to those skilled in the art that other processor and memory types, including various computer-readable media, may be used to store and execute program instructions pertaining to the techniques described herein. Also, while the description illustrates various processes, it is expressly contemplated that various processes may be embodied as modules configured to operate in accordance with the techniques herein (e.g., according to the functionality of a similar process). Further, while processes may be shown and/or described separately, those skilled in the art will appreciate that processes may be routines or modules within other processes.


DFRE process 248 includes computer executable instructions that, when executed by processor(s) 220, cause device 200 to provide cognitive reasoning services to a network. In various embodiments, DFRE process 248 may utilize machine learning techniques, in whole or in part, to perform its analysis and reasoning functions. In general, machine learning is concerned with the design and the development of techniques that take as input empirical data (such as network statistics and performance is indicators) and recognize complex patterns in these data. One very common pattern among machine learning techniques is the use of an underlying model M, whose hyper-parameters are optimized for minimizing the cost function associated to M, given the input data. The learning process then operates by adjusting the hyper-parameters such that the number of misclassified points is minimal. After this optimization phase (or learning phase), the model M can be used very easily to classify new data points. Often, M is a statistical model, and the minimization of the cost function is equivalent to the maximization of the likelihood function, given the input data.


In various embodiments, DFRE process 248 may employ one or more supervised, unsupervised, or self-supervised machine learning models. Generally, supervised learning entails the use of a training large set of data, as noted above, that is used to train the model to apply labels to the input data. For example, in the case of video recognition and analysis, the training data may include sample video data that depicts a certain object and is labeled as such. On the other end of the spectrum are unsupervised techniques that do not require a training set of labels. Notably, while a supervised learning model may look for previously seen patterns that have been labeled as such, an unsupervised model may instead look to whether there are sudden changes in the behavior. Self-supervised is a representation learning approach that eliminates the pre-requisite requiring humans to label data. Self-supervised learning systems extract and use the naturally available relevant context and embedded metadata as supervisory signals. Self-supervised learning models take a middle ground approach: it is different from unsupervised learning as systems do not learn the inherent structure of data, and it is different from supervised learning as systems learn entirely without using explicitly-provided labels.


Example machine learning techniques that DFRE process 248 can employ may include, but are not limited to, nearest neighbor (NN) techniques (e.g., k-NN models, replicator NN models, etc.), statistical techniques (e.g., Bayesian networks, etc.), clustering techniques (e.g., k-means, mean-shift, etc.), neural networks (e.g., reservoir networks, artificial neural networks, etc.), support vector machines (SVMs), logistic or other regression, Markov models or chains, principal component analysis (PCA) (e.g., for is linear models), multi-layer perceptron (MLP) artificial neural networks (ANNs) (e.g., for non-linear models), replicating reservoir networks (e.g., for non-linear models, typically for time series), random forest classification, or the like. Accordingly, DFRE process 248 may employ deep learning, in some embodiments. Generally, deep learning is a subset of machine learning that employs ANNs with multiple layers, with a given layer extracting features or transforming the outputs of the prior layer.


The performance of a machine learning model can be evaluated in a number of ways based on the number of true positives, false positives, true negatives, and/or false negatives of the model. For example, the false positives of the model may refer to the number of times the model incorrectly identified an object or condition within a video feed. Conversely, the false negatives of the model may refer to the number of times the model failed to identify an object or condition within a video feed. True negatives and positives may refer to the number of times the model correctly determined that the object or condition was absent in the video or was present in the video, respectively. Related to these measurements are the concepts of recall and precision. Generally, recall refers to the ratio of true positives to the sum of true positives and false negatives, which quantifies the sensitivity of the model. Similarly, precision refers to the ratio of true positives the sum of true and false positives.


According to various embodiments, FIG. 3 illustrates an example hierarchy 300 for a deep fusion reasoning engine (DFRE). For example, DFRE process 248 shown in FIG. 2 may execute a DFRE for any number of purposes. In particular, DFRE process 248 may be configured to analyze sensor data in an IoT deployment (e.g., video data, etc.), to analyze networking data for purposes of network assurance, control, enforcing security policies and detecting threats, facilitating collaboration, or, as described in greater detail below, to aid in the development of a collaborative knowledge generation and learning system for visual programming.


In general, a reasoning engine, also known as a ‘semantic reasoner,’ reasoner,' or ‘rules engine,’ is a specialized form of machine learning software that uses asserted facts or axioms to infer consequences, logically. Typically, a reasoning engine is a form of is inference engine that applies inference rules defined via an ontology language. As introduced herein, a DFRE is an enhanced form of reasoning engine that further leverages the power of sub-symbolic machine learning techniques, such as neural networks (e.g., deep learning), allowing the system to operate across the full spectrum of sub-symbolic data all the way to the symbolic level.


At the lowest layer of hierarchy 300 is sub-symbolic layer 302 that processes the sensor data 312 collected from the network. For example, sensor data 312 may include video feed/stream data from any number of cameras located throughout a location. In some embodiments, sensor data 312 may comprise multimodal sensor data from any number of different types of sensors located throughout the location. At the core of sub-symbolic layer 302 may be one or more DNNs 308 or other machine learning-based model that processes the collected sensor data 312. In other words, sub-symbolic layer 302 may perform sensor fusion on sensor data 312 to identify hidden relationships between the data.


At the opposing end of hierarchy 300 may be symbolic layer 306 that may leverage symbolic learning. In general, symbolic learning includes a set of symbolic grammar rules specifying the representation language of the system, a set of symbolic inference rules specifying the reasoning competence of the system, and a semantic theory containing the definitions of “meaning.” This approach differs from other learning approaches that try to establish generalizations from facts as it is about reasoning and extracting knowledge from knowledge. It combines knowledge representations and reasoning to acquire and ground knowledge from observations in a non-axiomatic way. In other words, in sharp contrast to the sub-symbolic learning performed in layer 302, the symbolic learning and generalized intelligence performed at symbolic layer 306 requires a variety of reasoning and learning paradigms that more closely follows how humans learn and are able to explain why a particular conclusion was reached.


Symbolic learning models what are referred to as “concepts,” which comprise a set of properties. Typically, these properties include an “intent” and an “extent,” is whereby the intent offers a symbolic way of identifying the extent of the concept. For example, consider the intent that represents motorcycles. The intent for this concept may be defined by properties such as “having two wheels” and “motorized,” which can be used to identify the extent of the concept (e.g., whether a particular vehicle is a motorcycle).


Linking sub-symbolic layer 302 and symbolic layer 306 may be conceptual layer 304 that leverages conceptual spaces. In general, conceptual spaces are a proposed framework for knowledge representation by a cognitive system on the conceptual level that provides a natural way of representing similarities. Conceptual spaces enable the interaction between different type of data representations as an intermediate level between sub-symbolic and symbolic representations.


More formally, a conceptual space is a geometrical structure which is defined by a set of quality dimensions to allow for the measurement of semantic distances between instances of concepts and for the assignment of quality values to their quality dimensions, which correspond to the properties of the concepts. Thus, a point in a conceptual space S may be represented by an n-dimensional conceptual vector v=<d1, . . . , di, . . . , dn> where di represents the quality value for the ith quality dimension. For example, consider the concept of taste. A conceptual space for taste may include the following dimensions: sweet, sour, bitter, and salty, each of which may be its own dimension in the conceptual space. The taste of a given food can then be represented as a vector of these qualities in a given space (e.g., ice cream may fall farther along the sweet dimension than that of peanut butter, peanut butter may fall farther along the salty dimension than that of ice cream, etc.). By representing concepts within a geometric conceptual space, similarities can be compared in geometric terms, based on the Manhattan distance between domains or the Euclidean distance within a domain in the space. In addition, similar objects can be grouped into meaningful conceptual space regions through the application of clustering techniques, which extract concepts from data (e.g., observations).


Said differently, a conceptual space is a framework for representing information that models human-like reasoning to compose concepts using other existing concepts. is Note that these representations are not competing with symbolic or associationistic representations. Rather, the three kinds can be seen as three levels of representations of cognition with different scales of resolution and complementary. Namely, a conceptual space is built up from geometrical representations based on a number of quality dimensions that complements the symbolic and deep learning models of symbolic layer 306 and sub-symbolic layer 302, representing an operational bridge between them. Each quality dimension may also include any number of attributes, which present other features of objects in a metric subspace based on their measured quality values. Here, similarity between concepts is just a matter of metric distance between them in the conceptual space in which they are embedded.


In other words, a conceptual space is a geometrical representation which allows the discovery of regions that are physically or functionally linked to each other and to abstract symbols used in symbolic layer 306, allowing for the discovery of correlations shared by the conceptual domains during concepts formation. For example, an alert prioritization module may use connectivity to directly acquire and evaluate alerts as evidence. Possible enhancements may include using volume of alerts and novelty of adjacent (spatially/temporally) alerts, to tune level of alertness.


In general, the conceptual space at conceptual layer 304 allows for the discovery of regions that are naturally linked to abstract symbols used in symbolic layer 306. The overall model is bi-directional as it is planned for predictions and action prescriptions depending on the data causing the activation in sub-symbolic layer 302.


Layer hierarchy 300 shown is particularly appealing when matched with the attention mechanism provided by a cognitive system that operates under the assumption of limited resources and time-constraints. For practical applications, the reasoning logic in symbolic layer 306 may be non-axiomatic and constructed around the assumption of insufficient knowledge and resources (AIKR). It may be implemented, for example, with a Non-Axiomatic Reasoning System (open-NARS) 310. However, other reasoning engines can also be used, such as Auto-catalytic Endogenous Reflective Architecture (AERA), OpenCog, and the like, in symbolic layer 306, in further embodiments. Even Prolog may be suitable, in some cases, to implement a reasoning engine in symbolic layer 306. In turn, an output 314 coming from symbolic layer 306 may be provided to a user interface (UI) for review. For example, output 314 may comprise a video feed/stream augmented with inferences or conclusions made by the DFRE, such as the locations of unstocked or under-stocked shelves, etc.


By way of example of symbolic reasoning, consider the ancient Greek syllogism: (1.) All men are mortal, (2.) Socrates is a man, and (3.) therefore, Socrates is mortal. Depending on the formal language used for the symbolic reasoner, these statements can be represented as symbols of a term logic. For example, the first statement can be represented as “man→[mortal]” and the second statement can be represented as “{Socrates}→man.” Thus, the relationship between terms can be used by the reasoner to make inferences and arrive at a conclusion (e.g., “Socrates is mortal”). Non-axiomatic reasoning systems (NARS) generally differ from more traditional axiomatic reasoners in that the former applies a truth value to each statement, based on the amount of evidence available and observations retrieved, while the latter relies on axioms that are treated as a baseline of truth from which inferences and conclusions can be made.


In other words, a DFRE generally refers to a cognitive engine capable of taking sub-symbolic data as input (e.g., raw or processed sensor data regarding a monitored system), recognizing symbolic concepts from that data, and applying symbolic reasoning to the concepts, to draw conclusions about the monitored system.


According to various embodiments, FIG. 4 illustrates an example DFRE architecture 400. As shown, architecture 400 may be implemented across any number of devices or fully on a particular device, as desired. At the core of architecture 400 may be DFRE middleware 402 that offers a collection of services, each of which may have its own interface. In general, DFRE middleware 402 may leverage a library for interfacing, configuring, and orchestrating each service of DFRE middleware 402.


In various embodiments, DFRE middleware 402 may also provide services to support semantic reasoning, such as by an AIKR reasoner. For example, as shown, DFRE middleware 402 may include a NARS agent that performs semantic reasoning for structural learning. In other embodiments, OpenCog or another suitable AIKR semantic reasoner could be used.


One or more DFRE agents 404 may interface with DFRE middleware 402 to orchestrate the various services available from DFRE middleware 402. In addition, DFRE agent 404 may feed and interact with the AIKR reasoner so as to populate and leverage a DFRE knowledge graph with knowledge.


More specifically, in various embodiments, DFRE middleware 402 may obtain sub-symbolic data 408. In turn, DFRE middleware 402 may leverage various ontologies, programs, rules, and/or structured text 410 to translate sub-symbolic data 408 into symbolic data 412 for consumption by DFRE agent 404. This allows DFRE agent 404 to apply symbolic reasoning to symbolic data 412, to populate and update a DFRE knowledge base (KB) 416 with knowledge 414 regarding the problem space (e.g., the network under observation, etc.). In addition, DFRE agent 404 can leverage the stored knowledge 414 in DFRE KB 416 to make assessments/inferences.


For example, DFRE agent 404 may perform semantic graph decomposition on DFRE KB 416 (e.g., a knowledge graph), so as to compute a graph from the knowledge graph of KB 416 that addresses a particular problem. DFRE agent 404 may also perform post-processing on DFRE KB 416, such as performing graph cleanup, applying deterministic rules and logic to the graph, and the like. DFRE agent 404 may further employ a definition of done, to check goals and collect answers using DFRE KB 416.


In general, DFRE KB 416 may comprise any or all of the following:

    • Data
    • Ontologies
    • Evolutionary steps of reasoning
    • Knowledge (e.g., in the form of a knowledge graph)


The Knowledge graph also allows different reasoners to:

    • Have their internal subgraphs
    • Share or coalesce knowledge
    • Work cooperatively


In other words, DFRE KB 416 acts as a dynamic and generic memory structure. In some embodiments, DFRE KB 416 may also allow different reasoners to share or coalesce knowledge, have their own internal sub-graphs, and/or work collaboratively in a distributed manner. For example, a first DFRE agent 404 may perform reasoning on a first sub-graph, a second DFRE agent 404 may perform reasoning on a second sub-graph, etc., to evaluate the health of the network and/or find solutions to any detected problems. To communicate with DFRE agent 404, DFRE KB 416 may include a bidirectional Narsese interface or other interface using another suitable grammar.


In various embodiments, DFRE KB 416 can be visualized on a user interface. For example, Cytoscape, which has its building blocks in bioinformatics and genomics, can be used to implement graph analytics and visualizations.


Said differently, DFRE architecture 400 may include any or all of the following the following components:

    • DFRE middleware 402 that comprises:
      • Structural learning component
      • JSON, textual data, ML/DL pipelines, and/or other containerized services (e.g., using Docker)
      • Hierarchical goal support
    • DFRE Knowledge Base (KB) 416 that supports:
      • Bidirectional Narseseese interface
      • Semantic graph decomposition algorithms
      • Graph analytics
      • Visualization services
    • DFRE Agent 404
      • DFRE Control System


More specifically, in some embodiments, DFRE middleware 402 may include any or all of the following:

    • Subsymbolic services:
      • Data services to collect sub-symbolic data for consumption
    • Reasoner(s) for structural learning
    • NARS
    • OpenCog
    • Optimized hierarchical goal execution
      • Probabilistic programming
      • Causal inference engines
    • Visualization Services (e.g., Cytoscape, etc.)


DFRE middleware 402 may also allow the addition of new services needed by different problem domains.


During execution, DFRE agent 404 may, thus, perform any or all of the following:

    • Orchestration of services
    • Focus of attention
      • Semantic graph decomposition
        • Addresses combinatorial issues via an automated divide and conquer approach that works even in non-separable problems because the overall knowledge graph 416 may allow for overlap.
    • Feeding and interacting with the AIKR reasoner via bidirectional translation layer to the DFRE knowledge graph.
      • Call middleware services
    • Post processing of the graph
      • Graph clean-up
      • Apply deterministic rules and logic to the graph
    • Definition of Done (DoD)
      • Check goals and collect answers



FIG. 5 illustrates an example 500 showing the different forms of structural learning that the DFRE framework can employ. More specifically, the inference rules in example 500 relate premises S→M and M→P, leading to a conclusion S→P. Using these rules, the structural learning herein can be implemented using an ontology with respect to an Assumption of Insufficient Knowledge and Resources (AIKR) reasoning engine, as noted previously. This allows the system to rely on finite processing capacity in real time and be prepared for unexpected tasks. More specifically, as shown, the DFRE may support any or all of the following:

    • Syllogistic Logic
      • Logical quantifiers
    • Various Reasoning Types
      • Deduction Induction
      • Abduction
      • Induction
      • Revision
    • Different Types of Inference
    • Local inference
    • Backward inference


To address combinatorial explosion, the DFRE knowledge graph may be partitioned such that each partition is processed by one or more DFRE agents 404, as shown in architecture 600 in FIG. 6, in some embodiments. More specifically, any number of DFRE agents 404 (e.g., a first DFRE agent 404a through an Nth DFRE agent 404n) may be executed by devices connected via a network 602 or by the same device. In some embodiments, DFRE agents 404a-404n may be deployed to different platforms (e.g., platforms 604a-604n) and/or utilize different learning approaches. For instance, DFRE agent 404a may leverage neural networks 606, DFRE agent 404b may leverage Bayesian learning 608, DFRE agent 404c may leverage statistical learning, and DFRE agent 404n may leverage decision tree learning 612.


As would be appreciated, graph decomposition can be based on any or all of the following:

    • Spatial relations—for instance, this could include the vertical industry of a customer, physical location (country) of a network, scale of a network deployment, or the like.
    • Descriptive properties, such as severity, service impact, next step, etc.
    • Graph-based components (isolated subgraphs, minimum spanning trees, all shortest paths, strongly connected components . . . )


      Any new knowledge and related reasoning steps can also be input back to the knowledge graph, in various embodiments.


In further embodiments, the DFRE framework may also support various user interface functions, so as to provide visualizations, actions, etc. to the user. To do so, the is framework may leverage Cytoscape, web services, or any other suitable mechanism.


At the core of the techniques herein is an artificial intelligence metamodel 700 for knowledge representation at different levels of abstraction, as shown in FIG. 7, according to various embodiments. In various embodiments, the DFRE knowledge graph groups information into four different levels, which are labeled L0, L1, L2, and L* and represent different levels of abstraction, with L0 being closest to raw data coming in from various sensors and external systems and L2 representing the highest levels of abstraction typically obtained via mathematical means such as statistical learning and reasoning. L* can be viewed as the layer where high-level goals and motivations are stored. The overall structure of this knowledge is also based on anti-symmetric and symmetric relations.


One key advantage of the DFRE knowledge graph is that human level domain expertise, ontologies, and goals are entered at the L2 level. This leads, by definition, to an unprecedented ability to generalize at the L2 level thus minimizing the manual effort required to ingest domain expertise.


More formally:

    • L* represents the overall status of the abstraction. In case of a problem, it triggers problem solving in lower layers via a DFRE agent 702.
    • L2.1-L2. ∞=Higher level representations of the world in which most of concepts and relations are collapsed into simpler representations. The higher-level representations are domain-specific representations of lower levels.
    • L1=has descriptive, teleological and structural information about L0.
    • L0=Object level is the symbolic representation of the physical world.


In various embodiments, L2 may comprise both expertise and experience stored in long-term memory, as well as a focus of attention (FOA) in short-term memory. In other words, when a problem is triggered at L*, a DFRE agent 702 that operates on L2-L0 may control the FOA so as to focus on different things, in some embodiments.


is As would be appreciated, there may be hundreds of thousands or even millions of data points that need to be extracted at L0. The DFRE's FOA is based on the abstraction and the DFRE knowledge graph (KG) may be used to keep combinatorial explosion under control.


Said differently, metamodel 700 may generally take the form of a knowledge graph in which semantic knowledge is stored regarding a particular system, such as a computer network and its constituent networking devices. By representing the relationships between such real-world entities (e.g., router A, router B, etc.), as well as their more abstract concepts (e.g., a networking router), DFRE agent 702 can make evaluations regarding the particular system at different levels of extraction. Indeed, metamodel 700 may differ from a more traditional knowledge graph through the inclusion of any or all of the following, in various embodiments:

    • A formal mechanism to represent different levels of abstraction, and for moving up and down the abstraction hierarchy (e.g., ranging from extension to intension).
    • Additional structure that leverages distinctions/anti-symmetric relations, as the backbone of the knowledge structures.
    • Similarity/symmetric relation-based relations.


As noted above, a DFRE metamodel represents an evolution in artificial intelligence that links sub-symbolic processing (e.g., using deep learning) with symbolic reasoning at a higher layer, letting the system not only recognize extremely complex patterns in the data, but also to learn and make inferences about these patterns over time. Hosting the DFRE metamodel entirely in the cloud has the advantage of being able to scale the resources devoted to its execution, according to its needs. However, cloud-hosted solutions also suffer from placing a greater strain on the network itself, as the input data needs to be streamed to the cloud for analysis. This can place considerable strain on the network in terms of bandwidth consumption.


Moving the DFRE metamodel to the network edge as part of a distributed architecture can help to alleviate this strain. However, edge devices also typically have fewer computing resources compared to the cloud. In addition, the edge devices may be heterogeneous in terms of their hardware and capabilities, meaning that a one-size-fits-all approach to moving the processing to the edge can be a challenging and cumbersome endeavor.


Edge to Cloud Metamodel-Based Artificial General Intelligence

The techniques herein allow for the deployment of a symbolic/sub-symbolic metamodel in a distributed manner by tailoring the metamodel to a target environment. This can be done, for instance, to satisfy certain KPIs, such as by pruning the metamodel, accordingly. In other aspects, some processing can also be converted from symbolic to sub-symbolic, to make better use of available hardware.


Illustratively, the techniques described herein may be performed by hardware, software, and/or firmware, such as in accordance with the DFRE process 248, which may include computer executable instructions executed by the processor 220 (or independent processor of interfaces 210), to perform functions relating to the techniques described herein.


Specifically, according to various embodiments, a device provides information for display regarding an artificial intelligence metamodel that includes at least a symbolic layer and a sub-symbolic layer. The device receives an indication of a target node in a network to which the artificial intelligence metamodel is to be deployed. The device generates a modified version of the artificial intelligence metamodel based on resources available at the target node. The device deploys the modified version of the artificial intelligence metamodel for execution by the target node.


Operationally, the techniques herein allow for a user to selectively deploy DFRE-based learning to heterogeneous devices for execution, while taking into account the is resources available on those devices. In some aspects, the techniques herein allow a user to specify which concepts and their relationships in the knowledge graph are important for a target compute node/device. This allows the DFRE metamodel to be trimmed down. In further instances, certain tasks can be ported from one metamodel layer to another, taking into account the resources available at the target node. For instance, some processing can even be converted from symbolic to sub-symbolic on demand, to take advantage of any hardware accelerators on the target node.


To illustrate the teachings herein, FIG. 8 shows an example of using a DFRE metamodel to make inferences about a retail location, according to various embodiments. As shown, one potential use case for a DFRE metamodel would be to analyze an image 800 from a video feed within a retail location, to make inferences about the location. For instance, assume that image 800 depicts a number of dairy products in the dairy aisle of a supermarket.


Through its analysis of the video feed, the DFRE metamodel is capable of identifying various conditions present, making inferences about those conditions, and providing alerts or suggestions to a user interface for review. For instance, the system may present indicia 802a-802c as annotations to image 800 that alert the user as to the various conditions present in the area: indicia 802a indicating that a certain product is out of stock on the shelf, indicia 802b indicating that another product has low on-shelf available, and indicia 802c may indicate that there is an assortment of products on a shelf, when a particular type of product is expected. The inferences underlying such indicia may be made by first subdividing image 800 and making assessments on those subdivisions. For instance, analysis of rectangle 804 may be examined, to detect missing products, from which an inference can be made that they are out of stock.



FIG. 9 illustrates an example 900 of a DFRE metamodel assessing image data, according to various embodiments. As shown, the DFRE metamodel may operate by performing various operations, to support reasoning at the symbolic level. To this end, is the system may first capture raw image data 902 (e.g., image 800, etc.), which corresponds to Lo in the DFRE metamodel framework. In turn, the system may rectify raw image data 902, to form rectified data 904. The purpose of this operation is to adjust raw image data 902, to better support line detection.


Next, the system may apply unsupervised clustering and line detection 906 to the rectified data 904. Such operations may include, for instance, performing a probabilistic Hough transformation of the rectified data 904, to form bounding boxes 908 for the images. These bounding boxes 908 essentially form a two dimensional (2D) ‘world’ of rectangles 910. Ultimately, the goal of these operations is to provide the DFRE knowledge graph with the best possible symbolic representation of the sub-symbolic world of rectangles 910. As a result, the semantic services of the system are able to convert the 2D world of rectangles 910 into symbolic data and construct a knowledge graph 912. This constitutes the Li level of abstraction in the DFRE metamodel.


Here, the DFRE metamodel may operate to dynamically identify the features of the location. For instance, in the retail example in FIG. 8, the system may identify shelves, products, and unknowns. While L2 of the metamodel identifies only these concepts, and their possible relationships, the reasoning engine creates their L1 intensions as an evidence-based truth system in which there is no absolute knowledge. This is useful in the retail scenario because noise in the Lo data causes both overlapping regions and conflicting premises at L1. This noise results from not only the projection of the 3D world input data into a 2D framework, but also the unsupervised algorithms used by L1 services. The system has only four rules for L2 level reasoning:

    • If a rectangle contains another rectangle that is not floating, the outer rectangle can be a shelf while the inner one can be a product.
    • If a rectangle is aligned with a shelf, it can be a shelf too.
    • If a rectangle is aligned with a product horizontally, it can be a product too.
    • If a floating rectangle is stacked on a product, it can be a product too.


Note that applying levels of abstraction gives the DFRE Framework the power to perform reasoning based on the expert knowledge in L2 level mostly independent of L1 is level knowledge. In other words, the system does not need to be trained for different input and is unsupervised in that sense. The system has a meta-learning objective which continuously attempts to improve its knowledge representation. In addition, the metamodel may employ a focus of attention (FoA) mechanism that helps to create overlapping covers of knowledge graphs for the reasoner. For instance, when the FoA utilizes the reasoner on a region, the system may recognize a rectangle as a shelf. When that same rectangle is analyzed under another cover, it may be classified as a product. The result with the higher frequency and confidence then wins.


According to various embodiments, the teachings herein propose a distributed approach in which a DFRE metamodel may be distributed to a particular node/device in a manner that also takes into account the capabilities and resources of that node. In some embodiments, the metamodels of the system are also validated by ensuring that the distributed metamodels are able to meet certain key performance indicators. As the metamodels all contain the same seed knowledge, they can be pruned or extended in a compatible manner. It is also possible to train the system on a single large server and then distribute dynamically by partitioning the metamodel based on the distributed compute environment topology, in a further embodiment. In another embodiment, metamodel training can be performed in a distributed manner and then consolidated/aggregated into a single server or topology, as desired.



FIG. 10 illustrates an example user interface 1000 allowing a user to select which concepts are to be deployed to a particular device, according to various embodiments. As shown, user interface 1000 may include various inputs 1008 that allow a user to interact with the system, such as to specify the parameters used to deploy a DFRE metamodel to a target node. For instance, user interface 1000 may include a button or other input 1008b that allows the user to select a target node/device to which the metamodel is to be deployed. Once a node is selected, the user may interact with input 1008c, to review details about that node, such as its type, location in the network, capabilities, other functions, resource usage, or the like.


In various embodiments, a key functionality of user interface 1000 is to display information regarding the DFRE metamodel to a user, prior to its deployment to a target node. For instance, as shown, user interface 1000 may display information 1006 from the knowledge graph of the metamodel, such as its various concepts 1002 (e.g., concepts 1002a-1002e) and their relationships (e.g., relationships 1004a-1004f). In one embodiment, the system may also indicate the importance of the various concepts 1002 and their relationships 1004. In other embodiments, user interface 1000 may allow the user to specify their importance.


In further embodiments, user interface 1000 may allow the user to edit the concepts 1002 and their relationships 1004, so as to tailor the concepts and relationships to the target node to which the metamodel is to be deployed. For instance, assume that the metamodel is trained across an entire retail location and includes concepts related to cash registers, people waiting in line, shopping carts, and the like. However, in the particular deployment case, the metamodel will only be used to assess shelving, as in the example in FIG. 8. In such a case, the concepts of ‘cash register,’ person queue,' etc. may not have any real importance and can be selected for pruning from the knowledge graph. Once the user is satisfied with their selections, they may opt to either accept or reject them via inputs 1008a and, in turn, select input 1008d to generate and deploy the metamodel to the target node.


In response to selection of input 1008d, the system may generate a version of the metamodel in accordance with the inputs of the user via user interface 1000 and/or taking into account the resources available at the target node. In this manner, the abstraction hierarchy of the metamodel is thus transferred to a distributed compute environment with credible and explainable inductive biases and the output of the system is a version of the metamodel that is partitioned to the specific compute environment of the target node.


This neuro-symbolic knowledge transfer mechanism can also be used to dynamically optimize symbolic and sub-symbolic processing for speed, accuracy, power saving, cost reduction, or the like.


In one embodiment, another potential mechanism that the system may use to is deploy the metamodel is to convert processing from the symbolic to the sub-symbolic on demand (e.g., to take advantage of any hardware accelerators of the target node). For instance, say that 90% of the processing time of the metamodel is spent analyzing a specific problem in the symbolic space. In such a case, it may be possible to shift from CPU processing to GPU processing by creating a deep learning model tailored to the specific problem for use in the generated version of the metamodel deployed to the node.


In a further embodiment, the system may also receive feedback from the node after deployment regarding its performance metrics. This allows the system to function in a closed-loop manner. For instance, if the key performance indicators (KPIs) from the target node are not satisfactory, the system may repartition and redeploy the metamodel, in an effort to improve performance.



FIG. 11 illustrates an example simplified procedure (e.g., a method) for edge to cloud metamodel-based artificial general intelligence, in accordance with one or more embodiments described herein. For example, a non-generic, specifically configured device (e.g., device 200) may perform procedure 1100 by executing stored instructions (e.g., DFRE process 248). The procedure 1100 may start at step 1105, and continues to step 1110, where, as described in greater detail above, the device may provide information for display regarding an artificial intelligence metamodel that includes at least a symbolic layer and a sub-symbolic layer. In some embodiments, the sub-symbolic layer of the artificial intelligence metamodel includes one or more machine learning models. In one embodiment, the information includes a representation of a knowledge graph at the symbolic layer of the artificial intelligence metamodel. Such a metamodel may be formed locally by the device or in a collaborative manner. For instance, the device may form the artificial intelligence metamodel by consolidating metamodels from a plurality of nodes in the network. Each of those metamodels may also use a seed knowledge base that is common across the metamodels from the plurality of nodes in the network.


At step 1115, as detailed above, the device may receive an indication of a target is node in a network to which the artificial intelligence metamodel is to be deployed. In some embodiments, the device may also receive, after providing the information for display, a selection of one or more concepts in the knowledge graph to be pruned.


At step 1120, the device may generate a modified version of the artificial intelligence metamodel based on resources available at the target node, as described in greater detail above. In some embodiments, the device may do so by converting a semantic reasoning task at the symbolic layer of the artificial intelligence metamodel into a machine learning model at its sub-symbolic layer. If the device also receives a selection of one or more concepts in the knowledge graph to be pruned, it may also prune those concepts from the knowledge graph when generating the modified version of the artificial intelligence metamodel. In further embodiments, the device may generate the modified version in part to satisfy one or more key performance indicators when executed by the target node.


At step 1125, as detailed above, the device may deploy the modified version of the artificial intelligence metamodel for execution by the target node. In one embodiment, the modified version of the artificial intelligence metamodel is configured to use a semantic reasoning engine to make inferences based on sensor data. Procedure 1100 then ends at step 1130.


It should be noted that while certain steps within procedure 1100 may be optional as described above, the steps shown in FIG. 11 are merely examples for illustration, and certain other steps may be included or excluded as desired. Further, while a particular order of the steps is shown, this ordering is merely illustrative, and any suitable arrangement of the steps may be utilized without departing from the scope of the embodiments herein.


While there have been shown and described illustrative embodiments that provide for edge to cloud metamodel-based artificial general intelligence, it is to be understood that various other adaptations and modifications may be made within the spirit and scope of the embodiments herein. For example, while certain embodiments are described herein with respect to specific types of sensor systems, the techniques can be extended is without undue experimentation to other use cases, as well.


The foregoing description has been directed to specific embodiments. It will be apparent, however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. For instance, it is expressly contemplated that the components and/or elements described herein can be implemented as software being stored on a tangible (non-transitory) computer-readable medium (e.g., disks/CDs/RAM/EEPROM/etc.) having program instructions executing on a computer, hardware, firmware, or a combination thereof. Accordingly, this description is to be taken only by way of example and not to otherwise limit the scope of the embodiments herein. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the embodiments herein.

Claims
  • 1. A method comprising: providing, by a device, information for display regarding an artificial intelligence metamodel that includes at least a symbolic layer and a sub-symbolic layer;receiving, at the device, an indication of a target node in a network to which the artificial intelligence metamodel is to be deployed;generating, by the device, a modified version of the artificial intelligence metamodel based on resources available at the target node; anddeploying, by the device, the modified version of the artificial intelligence metamodel for execution by the target node.
  • 2. The method as in claim 1, wherein the sub-symbolic layer of the artificial intelligence metamodel includes one or more machine learning models.
  • 3. The method as in claim 1, wherein the modified version of the artificial intelligence metamodel is configured to use a semantic reasoning engine to make inferences based on sensor data.
  • 4. The method as in claim 1, wherein the information includes a representation of a knowledge graph at the symbolic layer of the artificial intelligence metamodel.
  • 5. The method as in claim 4, further comprising: receiving, at the device and after providing the information for display, a selection of one or more concepts in the knowledge graph to be pruned, wherein those one or more concepts are pruned from the knowledge graph of the artificial intelligence metamodel when the device generates the modified version of the artificial intelligence metamodel.
  • 6. The method as in claim 1, wherein generating the modified version of the artificial intelligence metamodel based on resources available at the target node comprises: converting a semantic reasoning task at the symbolic layer of the artificial intelligence metamodel into a machine learning model at its sub-symbolic layer.
  • 7. The method as in claim 1, wherein the device generates the modified version of the artificial intelligence metamodel to satisfy one or more key performance indicators when executed by the target node.
  • 8. The method as in claim 1, further comprising: forming, by the device, the artificial intelligence metamodel by consolidating metamodels from a plurality of nodes in the network.
  • 9. The method as in claim 8, wherein each of the metamodels from the plurality of nodes in the network use a seed knowledge base that is common across the metamodels from the plurality of nodes in the network.
  • 10. The method as in claim 1, further comprising: receiving, at the device and from the target node, performance feedback regarding the modified version of the artificial intelligence metamodel.
  • 11. An apparatus, comprising: a network interface to communicate with a computer network;a processor coupled to the network interface and configured to execute one or more processes; anda memory configured to store a process that is executed by the processor, the process when executed configured to: provide information for display regarding an artificial intelligence metamodel that includes at least a symbolic layer and a sub-symbolic layer;receive an indication of a target node in a network to which the artificial intelligence metamodel is to be deployed;generate a modified version of the artificial intelligence metamodel based on resources available at the target node; anddeploy the modified version of the artificial intelligence metamodel for execution by the target node.
  • 12. The apparatus as in claim 11, wherein the sub-symbolic layer of the artificial intelligence metamodel includes one or more machine learning models.
  • 13. The apparatus as in claim 11, wherein the modified version of the artificial intelligence metamodel is configured to use a semantic reasoning engine to make inferences based on sensor data.
  • 14. The apparatus as in claim 11, wherein the information includes a representation of a knowledge graph at the symbolic layer of the artificial intelligence metamodel.
  • 15. The apparatus as in claim 14, wherein the process when executed is further configured to: receive, after providing the information for display, a selection of one or more concepts in the knowledge graph to be pruned, wherein those one or more concepts are pruned from the knowledge graph of the artificial intelligence metamodel when the apparatus generates the modified version of the artificial intelligence metamodel.
  • 16. The apparatus as in claim 11, wherein the apparatus generates the modified version of the artificial intelligence metamodel based on resources available at the target node by: converting a semantic reasoning task at the symbolic layer of the artificial intelligence metamodel into a machine learning model at its sub-symbolic layer.
  • 17. The apparatus as in claim 11, wherein the apparatus generates the modified version of the artificial intelligence metamodel to satisfy one or more key performance indicators when executed by the target node.
  • 18. The apparatus as in claim 11, wherein the process when executed is further configured to: form the artificial intelligence metamodel by consolidating metamodels from a plurality of nodes in the network.
  • 19. The apparatus as in claim 18, wherein each of the metamodels from the plurality of nodes in the network use a seed knowledge base that is common across the metamodels from the plurality of nodes in the network.
  • 20. A tangible, non-transitory, computer-readable medium storing program instructions that cause a device to execute a process comprising: providing, by the device, information for display regarding an artificial intelligence metamodel that includes at least a symbolic layer and a sub-symbolic layer;receiving, at the device, an indication of a target node in a network to which the artificial intelligence metamodel is to be deployed;generating, by the device, a modified version of the artificial intelligence metamodel based on resources available at the target node; anddeploying, by the device, the modified version of the artificial intelligence metamodel for execution by the target node.