The invention relates to the field of cooking and bakery production, in particular to the field of fast food.
The modern world is accelerating more and more, and people are increasingly choosing for themselves “what's faster,” including fast food. And this means: quick hunger relief, (relatively) low price, monotonous and extremely limited menu and great harm to health, despite the fact that all this is accompanied by a large amount of garbage, most of which is food product packaging. In this regard, in the modern market of culinary products, there is a need for culinary containers containing various fillings and allowing to dispense with packaging, because the culinary container itself is edible.
The edible container is not designed to fight against fast food, but to ensure its qualitative improvement/change from the inside. So, the edible container is designed to preserve the obvious advantages of “fast food” while reducing its disadvantages due to: expanding the range of the menu, offering healthier foods and dishes, avoiding packaging, disposable tableware and appliances. The main idea of an edible container is simple: to make a completely closed edible packaging for placing food in it. It looks like a wafer cup—food is eaten along with the packaging.
For example, an edible container is known to contain two identical forming modules-halves made by bending the edges towards each other with the possibility of connecting them along the entire perimeter of the outer contours of the modules-halves, while the connected edges of the modules have a wave-like profile consisting of alternately convex and concave segments having the same profile, length and height, and when two modules are connected, all the convex and concave segments of one module are completely in contact with all the concave and convex segments of another module. For the convenience and reliability of the module-half fixing, the container can be equipped with an additional clamp of two modules-halves, made in the form of a paper tightening tape covering them, tightly attached by a sticky substance deposited on the surface of one of its ends (RU 96735, A45C 11/20, A47J 47/14, published on 20 Aug. 2010). This solution was taken as a prototype for the proposed edible container.
The known edible container has a number of serious drawbacks, which did not allow using it to the fullest convenience. The known container is made of two interconnected halves, inside of which the food product itself is located. But these halves are made like trays, that is, they have a practically flat or slightly convex bottom. When squeezed by hand while eating, the bottom parts are affected by the natural pressure of the fingers. Due to the fact that the container is made of baked dough and has a brittle structure with a small wall thickness, such a container often falls apart in the hands due to the appearance of longitudinal cracks in the shell of this tray. Another disadvantage is that both trays (of module-half) of the container docked along the end surfaces of the side walls. The presence of a wave-like shape at the contact point made it possible to exclude the displacement of the halves relative to each other due to the fact that a symmetrical closed contact contour is formed. But when biting off the edge of the container, this mutual balance in the position of the halves was violated, and the halves first moved along and then to the sides along the contact surface (horizontal displacement), which leads to a change of the shape and the container would fall apart. This creates an inconvenience in use and does not allow considering such a container suitable for use in a mass and fast food system.
That is why in the known container a binding paper tape is used, which wraps the container to prevent the displacement of the halves while eating. At the same time, as the container is eaten, this tape has to be moved down, which also not only complicates the design, but also creates inconvenience for the user.
Such halves in the form of trays are made in thermal presses replicating the design of wafer molds used for baking the wafer cups. Such wafer molds for baking hollow wafer products typically contain a base heating plate with recesses repeating the external shape of the cup, which is a matrix, and a second heating plate turned in relation to the matrix, which is a punch and bears the protrusions, repeating the internal shape of the cup, wherein protrusions, when closing the plates, move into the recesses in which they are located with a gap relative to the wall of the recesses (RU 2345525, ABB 5/02, A21B 5/02, published on 10 Feb. 2009). This solution was taken as a prototype for a thermal press for the manufacture of parts of an edible container according to the invention.
When the set temperature for heating the plates has been reached, a portion of dough is put into each recess and lowers the punch until the plates come into contact with each other. The protrusions, delving into the recesses of the matrix, squeeze the dough, causing it to spread along the wall of the recess. After that the dough mass is baked and crystallized under the influence of temperature, taking the form of a thin-walled cup. As a rule, the plates are adjacent to each other with the formation of gaps in some places to ensure the release of steam and relieve high pressure in the recesses. These places are exactly at the level of the flange of the cup (gas and vapor come from the dough). But due to the fact that the edges of the cup are not pressed, these edges of each cup become uneven, chipped, although this, when used for ice cream, does not spoil the presentation, since this edge is not used for anything.
The present invention is aimed at achieving a technical result, which consists in maintaining the strength of the container by eliminating the displacement of its halves when eating the container itself and its contents.
The specified technical result for the first object is achieved by the fact that in an edible container for food products containing two halves of the same shape and design, each of which is made of baked dough and has the form of a thin-walled tray with side walls on which protrusions and hollows are made, each half is made symmetrical in plan view in the shape of the tray relative to at least one axis passing along the surface of the bottom of the tray, and both halves are interconnected with the location of the protrusions of one half in the hollows of the other half for the formation of a hollow thin-walled shell, along the edge of the side walls of each tray a support end platform is made to ensure resting of the trays against each other when they are connected, and protrusions and hollows in each tray are located along this support platform from the side of the inner wall of the tray while the protrusions are located above the level of the support platform, and the hollows are located below this level, the recesses are made on the outer surface of the tray opposite to each protrusion inside the tray extended along the height of side wall to form stiffeners on the outer surface, and each protrusion in the tray is located opposite to such the recess.
The specified technical result for the second object is achieved in that the thermal mold for baking the halves of the edible container contains the first heated plate, which is a matrix and bears at least one recess, repeating the external shape of the baked product, the second heated plate, which is a punch and bears at least one protrusion, repeating the internal shape of the product, while when closing the plates, the protrusion is located in the recess with a gap relative to the wall of the recess, when closing the plates are made with contacting each other in the area around the location of the recess made in the form of a tray open at the top, having an end platform along the edge of the side wall and protrusions located along this platform located above the level of this platform, and hollows located on the inner wall of the tray, wherein the body of the second heated plate above the cavity in the zone of formation of the protrusions of the product includes the through holes, each of which is made on the inner side of this plate with a cylindrical area that ends with tapered extension on the outer side of the plate.
The specified technical result for the third object is achieved in that the device for extracting the halves of the edible container from the mold and cleaning the gas vents of the thermal mold contains a base flat on one side on which spokes are fixed at points corresponding to the locations of the through holes on the punch of a thermal mold for introducing these spokes into these holes.
These features are related to formation of the steady combination of features sufficient for achievement of the necessary technical result.
The present invention is explained by the specific embodiment which, however, is not the only one possible, but illustrates the possibility of achievement of the necessary technical result.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
In the drawings:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
According to the present invention, the design of an edible container consists of two identical edible halves interconnected for consumption of “difficult” products: vegetable and fruit salads, cottage cheese, mashed potatoes, various side dishes, canned foods and cereals. The edible container is made as a wafer cup from baked dough.
In addition, the proposed device allows the following:
The culinary edible container is a small box that is easy to hold in one hand, i.e., a container made of edible material. The container may contain any food except liquid. The modules-halves forming the cooking container can be made from baked dough similar to the dough used in waffle production or other edible material, providing such necessary parameters as edibility, density and brittleness.
The edible container 1 for food products (
Each half 2 is made in plan in shape of the tray symmetrical with respect to at least one axis passing along the surface of the bottom of the tray. That is, if you look at the half (tray) from above, then its left part is made identical in shape to the right side. This is necessary so that when the half is flipped, it can be installed on the side of the side wall of the lower half of the tray. For an example of execution of an oblong shaped container (
Each half 2 has the form of a thin-walled tray with side walls (
To avoid displacements and ensure reliable fixation of the halves in the collection container an end support platform 5 is made along the edge of the side walls of each tray to ensure resting of the trays against each other when they are connected. The protrusions and hollows in each tray are located along this supporting platform from the side of the inner surface of the tray. The protrusions are located above the level of the support platform, and the hollows are located below this level. Moreover, each protrusion in the tray is located opposite the recess.
The protrusions (pins) and hollows alternately form a closed loop in which the number of protrusions and hollows is always the same, with at least one axis of symmetry of the module passing strictly along the boundary between the protrusion and hollow, so that on one side of the axis of symmetry there is a protrusion, and on the other hand, a hollow.
This allows connection of the halves of the same shape and design without additional manipulation of turning and orienting one half relative to the other.
When connecting, both halves sit on top of each other resting against their end support platforms (since the halves are made identical in shape to, for example, the longitudinal axis of symmetry running along the bottom of the tray). Thus, the positioning of the trays for receiving the container is performed. And since the protrusions are located above the level of these platforms, when connecting the trays, the protrusions of one tray enter the hollows inside the other tray and ensure the exclusion of lateral displacements on either side of the trays. When biting off the edge of the container, the fixation mode remains and the halves do not diverge to the sides.
Additionally, recesses 6 are made on the outer surface of the tray opposite each protrusion inside the tray extended along the height of the side wall to form stiffeners on the outer surface. The need to add these stiffeners is due to two issues. The first is that the tray (half) is a thin-walled shell made of baked dough. When baking, it is necessary to achieve uniformity of the structure of this shell and the same maturity (ripeness) of the shell over its entire surface. This is achieved only if all the walls in the dough piece are approximately equal in thickness. And in the claimed design of the tray, the wall thickness in the region of the protrusions is significantly greater than the wall thickness in the region of the hollows. When baking, all the walls will reach the baked maturity faster than those areas that are adjacent to the protrusions. These areas will be underbaked. And if waiting for baking of these areas, then the remaining walls burn out. In this regard, the implementation of the recesses on the outer surface of the tray opposite to the protrusions leads to the fact that the wall thickness is leveled and becomes approximately the same throughout the design of the tray. The second one is that all thin-walled shells, regardless of the technology or material they are used for, have increased torsion ability, which, for their embodiment from dough, leads to destruction of the tray. The stiffeners of such shells significantly increase torsion resistance.
On the outer surface of the bottom of the trays places 7 can be provided for applying information. This information can be presented in the form of an inscription or picture obtained by embossing during baking, as is done when baking wafer cups (corrugated mesh) (
Operational reliability in the use of such edible containers is based on the reliable connection of the halves (trays) with each other. This is only possible if, when baking the trays, the accuracy of the shapes of the supporting platform, protrusions and hollows is achieved. And this is possible only when these areas of the tray are in the thermal mold in a limited volume for the flow of dough. In this regard, to obtain such halves with the exact configuration of the perimeter part of the side wall, a thermal mold with new design is used (
The thermal mold for baking the halves of the edible container contains the first heated plate 8, which is a matrix and bears at least one recess 9 (there can be more than one such recesses), repeating the external shape of the baked product, the second heated plate 10, which is a punch and bears on at least one protrusion 11, repeating the internal shape of the product. In this part, the mold design follows the well-known mold designs for baking ice cream wafer cups (for example see **classifieds24.ru/biisk/oborudovanie-dlia-biznesa-dlia-pishchevoi-promyshlennosti/apparat-pech-press-3080669.html).
When the plates 8 and 10 are closed, the protrusion 11 is located in the recess 9 with a gap relative to the wall of the recess.
A feature of the new mold is that when the plates 8 and 10 are closed, they are in contact with each other in the zone around the location of the recess (area 12). When the plates are closed, they contact these areas, practically sealing the gap cavity and do not allow the dough to flow out of the gap. The cavity of the gap between the wall of the recess in the matrix and the wall of the protrusion on the punch repeats in volume the shape of the tray open at the top, the design of which is presented in the form of variants in
During baking, vapors and gases are released, creating increased pressure in the gap cavity, which must be vented. With a tight fit of plates 8 and 10, pressure relief is excluded, since the cavity of the gap 13 where the dough is located is blocked to prevent leakage of the dough. To solve this problem the through holes (gas tubes) are made in the body of the second heated plate 10 above the cavity in the zone of formation of the protrusions of the product, each of which is made on the inside of this plate 10 with a cylindrical section 14, which ends with a cone-shaped extension 15 on the outside of this plate (
Multiple gas ducts are located only in the upper part of the mold—in the punch, directly above the center of the pin cavity. The number of gas ducts determines the number of module pins: the number of studs of the module is similar to the number of gas ducts.
When baking, the dough spreads over the cavity of the gap and expends in volume, which leads to the filling of the entire cavity. Gases and vapors released from the dough “escape” through the through holes to the outside, as shown in
For making of trays (halves) in a thermal mold, both parts of the press are heated to the baking temperature of the dough. Then, liquid wafer dough is poured into the lower part of the press (into the concave matrix) and the press is closed with its curved part (punch).
During baking, the boiling wafer dough rises along the inner cavity of the waffle press, filling the entire enclosed volume, including the cavity of the pins. Gradually standing out from the boiling dough, hot water vapor rises to the upper part of the mold, where, having gathered in the pin cavities, it comes out in thin jets through gas pipes and funnel-shaped nozzles adjoining them in the outer surface of the punch. Unlike steam, the dough, which is filled with the pin cavities of the mold, cannot pass through the vent pipes; their diameter is small and the dough is too viscous and thick.
The press opens only after the final evaporation of moisture and baking of the dough module. The convex wafer obtained in the press (edible container module) is removed for final cooling and hardening.
Some part of the dough can fill part of the through hole or block it. Therefore, it is advisable to periodically clean the holes. To do this, use a device for cleaning holes in a thermal mold for baking halves of an edible container (
In addition, this device can be used to remove the module (half) from the punch, if this module sticks to the protrusions of the punch.
The design of the thermal press can be supplemented by a forced extraction device (
The forced exhaust device (
The extraction device with an electric compressor turns on only in the first seconds after pouring the liquid dough and lowering the punch. As soon as the dough fills the cavities of the protrusions, the extraction device is turned off and further baking of the container modules occurs in the normal mode. The extraction funnel may not be a permanent structural element; it will be coupled for a short period of time.
This invention is industrially applicable and may be manufactured using technologies used in the manufacture of wafer cups. Multiple testing of samples together with the wide variety of products and dishes placed inside them in practice confirmed the correct design and the very idea of an edible container. During testing, three important results were established:
The edible container is easy to manufacture, to fill with products, to assemble, simple and convenient to eat. The edible container modules can be (although not necessarily) exactly the same, as they can be produced on the same mold.
The edible container is assembled from two modules by simply turning the upper module with its subsequent application and tight connection with the lower module.
Food of an edible container resembles ice cream in a wafer cup, with a significant difference: unlike a cup, the internal volume of the edible container is initially closed from all sides.
Having thus described a preferred embodiment, it should be apparent to those skilled in the art that certain advantages of the described method and apparatus have been achieved.
It should also be appreciated that various modifications, adaptations and alternative embodiments thereof may be made within the scope and spirit of the present invention. The invention is further defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2018101310 | Jan 2018 | RU | national |
This application is a US National Phase of PCT/RU2018/050170, filed on Dec. 28, 2018, which claims priority to Russian patent application no. 2018101310, both of which are incorporated herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/RU2018/050170 | 12/28/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/RU2014/000648 | Dec 2018 | US |
Child | 16961460 | US |