The present disclosure relates generally to the field of submerged combustion melters and apparatus, and methods of use, and more specifically to submerged combustion melters, and methods of operating same, particularly for melting glass-forming materials, mineral wool and stone wool forming materials, and other non-metallic inorganic materials.
A submerged combustion melter (SCM) may be employed to melt glass batch and/or waste glass materials to produce molten glass, or may melt mineral wool feedstock (basalt rock, sometimes referred to as lava rock) to make mineral or rock wool, by passing oxygen, oxygen-enriched mixtures, or air along with a liquid, gaseous and/or particulate fuel (some of which may be in one or more of the feedstock materials), directly into a molten pool of glass or other material, usually through burners submerged in a turbulent melt pool. The introduction of high flow rates of products of combustion of the oxidant and fuel into the molten material, and the expansion of the gases during submerged combustion (SC), cause rapid melting of the feedstock and much turbulence and foaming. Conventional melters operate primarily by combusting fuel and oxidant above the molten pool of melt, and are very laminar in flow characteristics compared to SCMs.
In known SCMs, exhaust exits through one or more exhaust ports in the ceiling and/or sidewalls, then is mixed with dissolution air to cool the exhaust gases and convey them to an abatement system such as a baghouse. Improvements were made to this system as described in assignee's previous U.S. Pat. No. 8,707,740, including in some embodiments the provision of a liquid-cooled transition section connecting the exhaust passage with an air-cooled exhaust section, which then connects to the exhaust stack.
However, additional issues have been identified and innovations made to further improve exhaust gas discharge from a submerged combustion melter. A particular problem has been discovered that as SC burners operate, large balloons or envelopes (note—suggest using “balloons” or “envelopes” rather than “bubbles” as there may be confusion of this with foam bubbles) containing combustion products “pop” after they rise, causing pressure pulses in the SCM and ejected molten masses (“blobs”) traveling upwards. The pressure pulses vary the pressure and exhaust flow rate and can enhance particulate feed carryover (“carryover” is a term of art, meaning some of the particulate feed is entrained into the exhaust without being melted). In addition, despite the provision of the liquid-cooled transition section as described in the '740 patent, it has been discovered through testing that some of the ejected molten masses can still actually exit the melter and solidify as small solid particles (shot), and in severe cases may cause blockage of SCM exhaust ports and/or negatively affect product homogeneity.
It would be advantageous to take advantage of the aggressive mixing and turbulence in the SCM while minimizing these disadvantages in order to improve the quality (mainly determined by product homogeneity in composition and temperature) and the quantity of melt from an SCM.
In accordance with the present disclosure, innovations have been made to further improve exhaust gas discharge from a submerged combustion melter, maximize mixing of particulate feed materials into molten mass within a SCM while minimizing or eliminating carryover of particulate feed materials in SCM exhaust, and minimize or eliminate solidified shot particles from exiting the melter through the exhaust structure. “Particulate feed materials” may include glass batch or other particulate matter (organic or inorganic), fed separately or in combination (mixed, semi-mixed, or agglomerated). SCMs and methods wherein the height of a liquid-cooled exhaust discharge stack above a splash region or splash zone within the SCM is increased are described, some SCM embodiments and methods including strategic placement and sizing of the SCM exhaust gas discharge opening(s), and designs to promote draining of molten material back into the molten mass, while producing molten glass and other non-metallic inorganic materials, such as rock wool and mineral wool.
One aspect of this disclosure is a submerged combustion manufacturing method comprising:
melting materials in a submerged combustion melter (SCM) equipped with one or more submerged combustion (SC) burners, the SCM having a length (L) and a width (W), a centerline (C), a midpoint (M), a sidewall structure having a north side (N) and a south side (S), the sidewall structure connecting a ceiling and a floor of the SCM, the melter comprising an exhaust passage through the roof, through the sidewall structure, or both;
combusting a fuel in the one or more SC burners, the SC burners discharging combustion products under a level of the material being melted in the melter and creating turbulent conditions in substantially all of the material as well as ejected portions of melted material; and
exhausting exhaust material from the melter through an exhaust structure fluidly connecting the exhaust passage with an exhaust stack, the exhaust structure comprising (or consisting essentially of, or consisting of) a liquid-cooled exhaust structure, the liquid-cooled exhaust structure defining a liquid-cooled exhaust chamber having a first interior surface, the liquid-cooled exhaust structure configured to prevent the ejected material portions of melted material from being propelled out of the exhaust structure as solidified material, and maintain any molten materials contacting the first interior surface molten so that it flows back down the first interior surface back into the melter. It is expressly understood that embodiments including only a liquid-cooled exhaust structure fluidly connecting the SCM exhaust passage or passages with the conventional exhaust stack are described herein. (By “conventional exhaust stack” is meant the ducting routing exhaust to a baghouse or other environmental compliance units, such as an electrostatic precipitator or cyclone separator).
Certain embodiments may comprise, or consist essentially of, the steps of the first aspect, and in addition may include exhausting the exhaust material from the liquid-cooled exhaust structure to a gas-cooled exhaust structure fluidly connecting the liquid-cooled exhaust structure and the exhaust stack, the gas-cooled exhaust structure defining a gas-cooled exhaust chamber having a second interior surface, the gas-cooled exhaust structure consisting of a metal layer forming the second interior surface, the metal layer having one or more gas-cooled external surfaces, the gas-cooled exhaust structure devoid of refractory or other lining. Certain embodiments may comprise, or consist essentially of, or consist of the steps of the first aspect, and in addition include wherein the exhaust passage is substantially centrally located between a feed end and an exit end of the melter, and the exhausting of the exhaust material through the exhaust structure comprises exhausting the exhaust material substantially centrally between the feed end and the exit end of the melter.
Another aspect of the disclosure is submerged combustion manufacturing systems for carrying out such methods. Other method and system embodiments, such as detailed herein, are considered aspects of this disclosure. Methods and systems of the disclosure will become more apparent upon review of the brief description of the drawings, the detailed description of the disclosure, and the claims that follow.
The manner in which the objectives of the disclosure and other desirable characteristics can be obtained is explained in the following description and attached drawings in which:
It is to be noted, however, that the appended drawings are schematic in nature, may not be to scale, and illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
In the following description, numerous details are set forth to provide an understanding of the disclosed systems, apparatus, and methods. However, it will be understood by those skilled in the art that the systems, apparatus, and methods covered by the claims may be practiced without these details and that numerous variations or modifications from the specifically described embodiments may be possible and are deemed within the claims. For example, wherever the term “comprising” is used, embodiments and/or components where “consisting essentially of” and “consisting of” are also explicitly disclosed herein and are part of this disclosure. An example of “consisting essentially of” may be with respect to the total feed to an SCM: a feed consisting essentially of particulate feedstock means there may be a minor portion of feed that is not particulate feedstock, such as rock used to make rock wool. An example of “consisting of” may be a feedstock made up of only particulate feedstock, or only inorganic particulate feedstock. Another example of “consisting essentially of” may be with respect to particulate feedstock that consists essentially of inorganic feedstock, meaning that a minor portion, perhaps up to 10, or up to 5, or up to 4, or up to 3, or up to 2, or up to 1 wt. percent may be organic. Example of methods and systems using the transition phrase “consisting of” include those where only a liquid-cooled exhaust system is used, with no gas-cooled exhaust structure, or vice versa. Another example of methods and systems where “consisting of” is used may be with respect to absence of refractory linings in either the liquid-cooled exhaust structure, the gas-cooled exhaust structure, or both. Another example of methods and systems where “consisting of” is used may be with respect to the exhaust structure consisting of a liquid-cooled exhaust structure, and complete absence of a gas-cooled exhaust structure. The term “comprising” and derivatives thereof is not intended to exclude the presence of any additional component, step or procedure, whether or not the same is disclosed herein. In order to avoid any doubt, all compositions, systems, and methods claimed herein through use of the term “comprising” may include any additional component, step, or procedure unless stated to the contrary. In contrast, the term, “consisting essentially of” excludes from the scope of any succeeding recitation any other component, step or procedure, excepting those that are not essential to operability. The term “consisting of” excludes any component, step or procedure not specifically delineated or listed. The term “or”, unless stated otherwise, refers to the listed members individually as well as in any combination.
All references to the Periodic Table of the Elements herein shall refer to the Periodic Table of the Elements, published and copyrighted by CRC Press, Inc., 2003. Also, any references to a Group or Groups shall be to the Group or Groups reflected in this Periodic Table of the Elements using the IUPAC system for numbering groups. Unless stated to the contrary, implicit from the context, or customary in the art, all parts and percentages are based on weight and all test methods are current as of the filing date hereof. The acronym “ASTM” means ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, Pa., 19428-2959 USA.
All numbers disclosed herein are approximate values, regardless whether the word “about” or “approximate” is used in connection therewith. They may vary by 1%, 2%, 5%, and sometimes, 10 to 20%. Whenever a numerical range with a lower limit, RL and an upper limit, RU, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=RL+k*(RU−RL), wherein k is a variable ranging from 1% to 100% with a 1% increment, i.e., k is 1%, 2%, 3%, 4%, 5%, . . . , 50%, 51%, 52%, . . . , 95%, 96%, 97%, 98%, 99%, or 100%. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed.
All U.S. published patent applications and U.S. patents referenced herein are hereby explicitly incorporated herein by reference. In the event definitions of terms in the referenced patents and applications conflict with how those terms are defined in the present application, the definitions for those terms that are provided in the present application shall be deemed controlling. All percentages herein are based on weight unless otherwise specified.
As explained briefly in the Background, additional issues have been identified and innovations made to further improve exhaust gas discharge from a submerged combustion melter. A particular problem has been discovered that as SC burners operate, large balloons or envelopes containing combustion products “pop” after they rise, causing pressure pulses in the SCM and ejected molten masses traveling upwards. The pressure pulses vary the pressure and exhaust flow rate and can enhance particulate feed carryover. In addition, despite the provision of the liquid-cooled transition section as described in the '740 patent, it has been discovered through testing that some of the ejected molten masses can still actually exit the melter and solidify as small solid particles (shot), and in severe cases may cause blockage of SCM exhaust ports and/or negatively affect product homogeneity.
Various modifications to previously known SCMs and methods of operating same have been discovered that achieve the desired goal of increased residence time of the material being melted in the SCM, which is critical to achieving good quality product, while reducing ejection of solidified materials out of the exhaust structure. In particular, the SCMs and methods described herein take advantage of the aggressive mixing and turbulence in the SCM while minimizing the disadvantages associated with splashing in order to improve the quality (mainly determined by product homogeneity in composition and temperature) and the quantity of melt from an SCM.
The present disclosure is devoted to improvements to SCM exhaust structures, in particular extending the liquid-cooled portion from a mere transition to a major portion of the exhaust structure, or indeed the entire exhaust structure in some embodiments, except for the ducting leading to the environmental compliance equipment as mentioned herein. Other improvements relate to the position of the exhaust passages in the SCM ceiling or sidewall structure, or both. In previous designs, as described in the '740 patent, we cooled the first 1 ft. section with water then the next 6 ft. with air due to weight issues with the water cooling and existing steel work. In accordance with the present disclosure, the preferred “next generation” design is to just liquid-cool about 8 to about 12 ft. in height before transitioning to the hood for air inspiration and metal stack leading to the environmental compliance equipment. All individual values and subranges from about 8 up to about 12 ft. are included herein and disclosed herein; for example, the liquid-cooled exhaust section height may range from a lower limit of 6.0, 6.5, 7.5, 7.8, 8, 8.5, 9, 10, or 11 ft. to an upper limit of 9, 9.5, 9.7, 10.5, 10.8, 11, 11.2, 11.5, 11.7, 12, 12.3, 12.5, 13, or 14 ft. For example, from about 7.5 to about 11.5 ft., or from about 9 to about 11 ft., or from about 9.5 to about 10.5 ft. In embodiments where there is no burner directly under the exhaust passage, a shorter length liquid-cooled exhaust section may be employed, for example from about 6 to about 10 ft., or from about 7.5 to about 9.5 ft., or from about 8 to about 9 ft. The shorter liquid-cooled height will be sufficient for higher viscosity molten materials, but for lower viscosity molten compositions (for example certain molten glass compositions) perhaps a higher liquid-cooled section may be employed, especially if the SC burners are being aggressively fired.
The larger the throughput of the SCM the larger the exhaust passage cross-section to maintain the exhaust gas velocity below the 25 ft./min. threshold. Depending on the size of the SCM the exhaust passage and liquid-cooled exhaust section would be sized based on the exhaust gas velocity, assuming the exhaust is all gas and disregarding molten and solid bodies that may be in the actual exhaust. The exhaust gas velocity is calculated by dividing the volumetric flow rate of the exhaust by the cross-sectional area of the exhaust passage. The volumetric flow rate of the exhaust gas may be estimated via simulation before the SCM and system are constructed, based on the throughput of material being melted, firing rate of burners, heating value and flow rate of fuel, and other parameters familiar to engineers working in the SCM art. After construction of the system, volumetric flow rate may be measured by one or more flow meters placed in the liquid-cooled exhaust section. All individual values and subranges of exhaust velocity though exhaust passages from about 25 ft./min. down to about 2.5 ft./min are included herein and disclosed herein; for example, the exhaust velocity may range from a upper limit of 27, 26, 25.5, 25, 25.7, 24.8, 24, 23.5, 22.9, 20, or 15 ft. to lower limit of 1, 1.5, 2.5, 3, 3.5, 4.0, 4.5, 5.2, 5.5, 6.7, 12, 12.3, 12.5, 15, or 21 ft./min. For example, from about 6.7 to about 27 ft./min., or from about 9 to about 23 ft./min., or from about 9.5 to about 15 ft./min.
Whether an SCM is small or large (throughput), it was surprising that the height of the liquid-cooled exhaust section should be fairly constant as it is the height the SC burners “spit” glass blobs (or other material being melted) upward that is critical. For example, an SCM firing 2 SC burners with an SCM throughput of 150 lb/hr., an SCM firing 6 SC burners with an SCM throughput of 20 tons/day, and a “production-size” SCM firing 8 SC burners in a 45 ton/day unit, the height of the liquid-cooled exhaust section was similar, only the cross-sectional area of the exhaust passages changed (increased).
Various terms are used throughout this disclosure. The terms “roof” and “ceiling” are used interchangeably. The terms “process” and method” are considered interchangeable. “Submerged” as used herein when referencing the SC burners means that combustion gases emanate from combustion burners or combustion burner panels under the level of the molten glass in a turbulent molten melt region as defined herein; the burners or burner panels may be floor-mounted, wall-mounted, roof-mounted, or in melter embodiments comprising more than one submerged combustion burner, any combination thereof (for example, two floor mounted burner panels and one wall mounted burner panel). Burner panels (such as described in assignee's U.S. patent application Ser. No. 14/838,148, filed Aug. 27, 2015) may form part of an SCM floor and/or wall structure. In certain embodiments one or more burner panels described herein may form the entire floor. A “burner panel” is simply a panel equipped to emit fuel and oxidant, or in some embodiments only one of these (for example a burner panel may only emit fuel, while another burner panel emits only oxidant, and vice versa). “SC” as used herein means “submerged combustion” unless otherwise specifically noted, and “SCM” means submerged combustion melter unless otherwise specifically noted. The term “submerged” when referencing particulate feed material inlet ports or distal ends of feed conduits has similar meaning, except that they are submerged in the splash region rather than the turbulent molten melt region.
The term “hydraulic diameter” means DH=4A/P, where A is the cross-sectional area, and P is the wetted perimeter of the cross-section. Hydraulic diameter is mainly used for calculations involving turbulent flow, and for calculating Reynolds number, Re=ρuL/μ, where L=DH, μ=viscosity, ρ=density, and u=velocity. Secondary flows (for example, eddies) can be observed in non-circular conduits as a result of turbulent shear stress in the fluid flowing through the conduit experiencing turbulent flow. Hydraulic diameter is also used in calculation of heat transfer in internal flow problems. For a circle conduit, DH equals the diameter of the circle. For a square conduit having a side length of a, the DH equals a. For a fully filled conduit whose cross section is a regular polygon, the hydraulic diameter is equivalent to the diameter of a circle inscribed within the wetted perimeter. “Turbulent conditions” means having a Re>4000, or greater than 5000, or greater than 10,000, or greater than 20,000 or higher. The phrase “turbulent conditions in substantially all of the material being melted” means that the SC burners and the SCM are configured so that there are some regions near the wall and floor of the SCM where the material being melted will be in transient or laminar flow as measured by Re, but the majority (perhaps greater than 51%, or greater than 55%, or greater than 6%, or greater than 65%, or greater than 70%, or greater than 75%, or greater than 80% of the material being melted will be experiencing turbulent flow. Transient flow is defined as 2300<Re<4000, and laminar flow is defined as Re<2300. The phrase “ejected portions of melted material” means portions of the material being melted (or completely molten material) that actually separate from the splash zone and travel generally upward toward the SCM ceiling, or toward the SCM walls above the splash zone, and even up into the exhaust structure, then either solidify or drip back down into the melt, or fall back into the melt after an arcuate path upward, reaching a maximum, then falling back into the melt, as in projectile motion.
As used herein the phrase “combustion gases” as used herein means substantially gaseous mixtures comprised primarily of combustion products, such as oxides of carbon (such as carbon monoxide, carbon dioxide), oxides of nitrogen, oxides of sulfur, and water, as well as partially combusted fuel, non-combusted fuel, and any excess oxidant. Combustion products may include liquids and solids, for example soot and unburned liquid fuels. “Exhaust”, “melter exhaust”, and “melter flue gas” are equivalent terms and refer to a combination of combustion gases and effluent from the feedstock being melted, such as adsorbed water, water of hydration, CO2 liberated from CaCO3, and the like. Therefore exhaust may comprise oxygen or other oxidants, nitrogen, combustion products (including but not limited to, carbon dioxide, carbon monoxide, NOx, SOx, H2S, and water), uncombusted fuel, reaction products of melt-forming ingredients (for example, but not limited to, basalt, sand (primarily SiO2), clay, limestone (primarily CaCO3), burnt dolomitic lime, borax and boric acid, and the like.
As used herein, unless indicated to the contrary, “feedstock” includes, but is not limited to: glass batch; cullet; and pieces of porous, semi-porous, or solid rock or other non-metallic inorganic material, or organic material, or mixture of organic and inorganic material. “Particulate feedstock” as used herein means any feedstock having a weight average particle size (APS) that is small, where small is less than 1 mm APS. Other size feedstock(s) may simultaneously be fed to the SCMs of this disclosure, for example feedstocks having particle size ranging from about 1 mm to about 10 cm, or from about 1 cm to about 10 cm, or from about 2 to about 5 cm, or from about 1 to about 2 cm. The only upper limit on feedstock weight average particle size for these larger APS feedstocks is the internal diameter of feedstock supply structure components, such as described in assignee's U.S. published patent application 2014/0007622, filed Jul. 3, 2012, while the lower size limit is determined by angle of flow, flow rate of feedstock, and in those embodiments where heat is exchanged directly or indirectly from melter exhaust to the feedstock, flow rate of melter exhaust.
“Oxidant” as used herein includes air, gases having the same molar concentration of oxygen as air (for example “synthetic air”), oxygen-enriched air (air having oxygen concentration greater than 21 mole percent), and “pure” oxygen grades, such as industrial grade oxygen, food grade oxygen, and cryogenic oxygen. Oxygen-enriched air may have 50 mole percent or more oxygen, and in certain embodiments may be 90 mole percent or more oxygen.
The term “fuel”, according to this disclosure, means a combustible composition comprising a major portion of, for example, methane, natural gas, liquefied natural gas, propane, hydrogen, steam-reformed natural gas, atomized hydrocarbon oil, combustible powders and other flowable solids (for example coal powders, carbon black, soot, and the like), and the like. Fuels useful in the disclosure may comprise minor amounts of non-fuels therein, including oxidants, for purposes such as premixing the fuel with the oxidant, or atomizing liquid or particulate fuels. As used herein the term “fuel” includes gaseous fuels, liquid fuels, flowable solids, such as powdered carbon or particulate material, waste materials, slurries, and mixtures or other combinations thereof. Certain methods within the disclosure include methods wherein the fuel may be a substantially gaseous fuel selected from the group consisting of methane, natural gas, liquefied natural gas, propane, carbon monoxide, hydrogen, steam-reformed natural gas, atomized oil or mixtures thereof, and the oxidant may be an oxygen stream comprising at least 90 mole percent oxygen.
The sources of oxidant and fuel may be one or more conduits, pipelines, storage facilities, cylinders, or, in embodiments where the oxidant is air, ambient air. Oxygen-enriched oxidants may be supplied from a pipeline, cylinder, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit such as a vacuum swing adsorption unit.
“INCONEL®” as used herein means one or more of a family of austenitic nickel-chromium super alloys known under the trade designation INCONEL®, available from Special Metals Corporation, New Hartford, N.Y., U.S.A. The composition and some physical properties of austenitic nickel-chromium super alloy known under the trade designation INCONEL® alloy 600 are summarized in Tables 1 and 2 (from Publication Number SMC-027 Copyright © Special Metals Corporation, 2008 (Sep. 8)).
Certain submerged combustion manufacturing systems may comprise a submerged combustion melter (SCM) equipped with one or more submerged combustion (SC) burners, the SCM having a length (L) and a width (W), a centerline (C), a midpoint (M), a sidewall structure having a north side (N) and a south side (S), the sidewall structure connecting a ceiling and a floor of the SCM, and one or more exhaust passages through the ceiling or through the sidewall, or both, the exhaust passages having an aggregate hydraulic diameter; the one or more submerged combustion burners configured to discharge combustion products under a level of material being melted in the melter and create turbulent conditions in substantially all of the material being melted as well as ejected portions of melted material; and an exhaust structure fluidly connecting the exhaust passage with an exhaust stack, the exhaust structure comprising (or consisting essentially of, or consisting of): a liquid-cooled exhaust structure fluidly connected to the exhaust passage, the liquid-cooled exhaust structure defining a liquid-cooled exhaust chamber having a first interior surface, the fluid-cooled exhaust chamber having a cross-sectional area greater than that of the exhaust stack but less than the melter, the exhaust passage and liquid-cooled exhaust structure configured to maintain temperature and pressure of the exhaust, and exhaust velocity through the exhaust passage and the exhaust structure, at values sufficient to prevent the ejected material portions of melted material from being propelled out of the exhaust structure as solidified material, and maintain any molten materials contacting the first interior surface molten so that it flows back down the first interior surface back into the melter.
Certain systems may comprise a gas-cooled exhaust structure fluidly connecting the liquid-cooled exhaust structure and the exhaust stack, the gas-cooled exhaust structure defining a gas-cooled exhaust chamber having a second interior surface, the gas-cooled exhaust structure consisting of a metal layer forming the second interior surface, the metal layer having one or more gas-cooled external surfaces, the gas-cooled exhaust structure devoid of refractory or other lining. Certain systems may comprise the gas-cooled exhaust chamber having a cross-sectional area substantially equal to the cross-sectional area of the liquid-cooled exhaust chamber. Certain systems may comprise a feed inlet in a feed end of the wall structure, a molten product outlet in an exit end of the wall structure, wherein the exhaust passage through the ceiling is positioned substantially centrally between the feed and exit ends. Certain systems may comprise the exhaust passage and the liquid-cooled exhaust chamber having a cross-sectional area configured to produce exhaust velocity of 25 ft./min. or less through the exhaust passage and liquid-cooled exhaust chamber. Certain systems may comprise the submerged combustion burners configured to discharge combustion products primarily non-laterally under the level of material being melted in the melter. Certain systems may comprise the submerged combustion burners are configured to discharge combustion products primarily vertically under the level of material being melted in the melter. Certain systems may comprise the wall structure comprising a feed end wall, an exit end wall, and two sidewalls, with each sidewall connected to both the feed end wall and the exit end wall. Certain systems may comprise the liquid-cooled exhaust structure constructed of metal having service temperature higher than temperature of the exhaust materials. Certain systems may comprise the gas-cooled exhaust structure constructed of metal having service temperature higher than temperature of the exhaust materials. Certain systems may comprise the metal layer being one or more austenitic nickel-chromium super alloys, and the air-cooled surfaces are steel. Certain systems may comprise the liquid-cooled exhaust structure is configured for cooling using a liquid selected from the group consisting of water, organic liquids, inorganic liquids, and combinations thereof. Certain systems may comprise an air inspirator fluidly connecting the liquid-cooled exhaust barrier and the exhaust stack. Certain systems may comprise the air inspirator selected from the group consisting of one or more adjustable panels, and one or more adjustable hoods. Certain systems may comprise the exhaust structure having a cross-sectional shape selected from the group consisting of rectangular, round, oval, trapezoidal, triangular, U-shaped, quadrangular, hexagonal, octagonal, and parabolic.
Certain submerged combustion manufacturing methods may comprise melting materials in a submerged combustion melter (SCM) equipped with one or more submerged combustion (SC) burners, the SCM having a length (L) and a width (W), a centerline (C), a midpoint (M), a sidewall structure having a north side (N) and a south side (S), the sidewall structure connecting a ceiling and a floor of the SCM, the melter comprising an exhaust passage through the ceiling, or the sidewall structure, or both; combusting a fuel in the one or more SC burners, the SC burners discharging combustion products under a level of the material being melted in the melter and creating turbulent conditions in substantially all of the material as well as ejected portions of melted material; and exhausting exhaust material from the melter through an exhaust structure fluidly connecting the exhaust passage with an exhaust stack, the exhaust structure comprising (or consisting essentially of, or consisting of) a liquid-cooled exhaust structure, the liquid-cooled exhaust structure defining a liquid-cooled exhaust chamber having a first interior surface, the liquid-cooled exhaust structure configured to prevent the ejected material portions of melted material from being propelled out of the exhaust structure as solidified material, and maintain any molten materials contacting the first interior surface molten so that it flows back down the first interior surface back into the melter.
Certain methods may comprise exhausting the exhaust material from the liquid-cooled exhaust structure to a gas-cooled exhaust structure fluidly connecting the liquid-cooled exhaust structure and the exhaust stack, the gas-cooled exhaust structure defining a gas-cooled exhaust chamber having a second interior surface, the gas-cooled exhaust structure consisting of a metal layer forming the second interior surface, the metal layer having one or more gas-cooled external surfaces, the gas-cooled exhaust structure devoid of refractory or other lining. Certain methods may comprise wherein the melting, combusting, and exhausting are performed, and the exhaust passage and the liquid-cooled exhaust chamber configured to produce exhaust velocity of 25 ft./min. or less through the exhaust passage and liquid-cooled exhaust chamber. Certain methods may comprise wherein the exhaust passage is substantially centrally located between a feed end and an exit end of the melter, and the exhausting of the exhaust material through the exhaust structure comprises exhausting the exhaust material substantially centrally between the feed end and the exit end of the melter. Certain methods may comprise inspiring air into the exhaust material through an air inspirator fluidly connecting the liquid-cooled exhaust structure and the exhaust stack. Certain methods may comprise adjusting the air inspirator to allow more or less air to enter the exhaust stack. Certain methods may comprise feeding small (less than 1 mm APS) particle size batch material to the SCM into at least one feed inlet port. Certain methods may comprise feeding large particle size feedstock (at least 10 cm APS) into the SCM through one or more auxiliary inlet ports.
Referring now to the drawing figures,
Important to certain methods of the present disclosure are the definitions exemplified schematically in
An exhaust structure in embodiment 200 is defined by a water-cooled exhaust structure 230 and an air-cooled exhaust structure 240. Water-cooled exhaust structure 230 has a double-trapezoid cross-sectional shape similar to the exhaust opening defined by 218, 220, 222, and 224, although this is not necessary, as other rectilinear two-dimensional shapes (for example triangular, square, rectangle, and the like) or curvilinear two-dimensional shapes (circular, elliptical, arcuate, and the like), or combinations thereof (for example, a hemisphere intersecting a rectangle) may be envisioned. Water-cooled exhaust structure 230 includes a water inlet conduit 250 and a water exit conduit 260 (there may be more than one of each), and is a double-walled structure such as illustrated schematically in the cross-section of
Referring again to
Important features of embodiment 300 include the provision of an angle “α” of the initial portions of the liquid-cooled exhaust structures 326A and 326B that fluidly connect these structures with their respective exhaust openings 315A and 315B. This “exhaust angle” a is configured to assist the liquid-cooled exhaust structure in preventing the ejected material portions of melted material from being propelled out of the exhaust structure as solidified material, and maintain any molten materials contacting the first interior surface molten so that it flows back down the first interior surface back into the melter, and may range from about 20 degrees to about 80 degrees (the angle may be the same or different for 315A and 315B). All individual values and subranges of exhaust angle from about 20 degrees up to about 80 degrees are included herein and disclosed herein; for example, the exhaust angle may range from a lower limit of 17, 20, 25.5, 26, 27, 34.8, 44, 53.5, 62.9, 65, or 70 degrees to an upper limit of 85, 81.5, 72.5, 63.5, 54, 45, 40, 35, 32, 30, 27, or 25 degrees. For example, from about 17 to about 77 degrees, or from about 39 to about 73 degrees, or from about 49.5 to about 65 degrees.
Also illustrated schematically in
Certain embodiments make take advantage of the teachings of assignee's copending U.S. application Ser. No. ______, filed ______, which describes a relationship between the height of particulate feedstock inlet ports measured from the SCM floor and the height of the SCM ceiling as measured from the SCM floor, and the maximum height of the splash region and the minimum height of the splash region. In certain embodiments the ratio of the height of particulate feedstock inlet ports/the height of the SCM ceiling may be an important parameter, and may range from about 0.33 to about 0.67. All ranges, sub-ranges, and point values from about 0.33 to about 0.67 are explicitly disclosed herein.
In operation, flow of feedstock (including particulate feedstock) into the SCM may be continuous, semi-continuous, semi-batch, or batch. For example, in certain embodiments feedstock could flow into a feedstock heat exchange substructure until the feedstock heat exchange substructure is partially full or completely full of feedstock, then the pre-heated feedstock may be dumped into the SCM. One way of accomplishing that may be by use of a grating at the bottom of a feedstock heat exchange substructure having openings slightly smaller than the feedstock particle size. Such an arrangement is disclosed in assignee's copending U.S. patent application Ser. No. 14/844,198, filed Sep. 3, 2015, incorporated by reference herein.
The initial raw material feedstock may include any material suitable for forming molten inorganic materials. In certain embodiments where the feedstock is pre-heated by melter exhaust, some non-particulate feedstock may have a weight average particle size such that most if not all of the feedstock is not fluidized when traversing through the heat exchange structure or exhaust conduit serving as the heat exchange structure. Such materials may include glass precursors or other non-metallic inorganic materials, such as, for example, limestone, glass cullet, feldspar, basalt or other rock wool or mineral wool forming material, scrap glass (including glass fiber in various forms), scrap rock or mineral wool, and mixtures thereof. Typical examples of basalt that are compositionally stable and available in large quantities are reported in U.S. Patent Publication 20120104306, namely an ore having a larger amount of SiO2 (A, for high-temperature applications) and an ore having a smaller amount of SiO2 (B, for intermediate-temperature applications), both of which have approximately the same amount of Al2O3. Although ore A can be spun into fiber, the resultant basalt fiber has heat-resistance problem at temperature ranges exceeding 750° C. Ore B, on the other hand, is associated with higher energy cost for mass production of fiber. The basalt rock material feedstock for use on the systems and methods of the present disclosure may be selected from: (1) high-temperature ore (A) having substantially the same amount of Al2O3 and a larger amount of SiO2; (2) intermediate-temperature ore (B) having substantially the same amount of Al2O3 and a smaller amount of SiO2: and (3) a mixture of the high-temperature basalt rock ore (A) and the intermediate-temperature basalt rock ore (B).
Basalt rock (basalt ore) is an igneous rock. According to U.S. Patent Publication 20120104306, major examples of the constituent mineral include: (1) plagioclase: Na(AlSi3O8)—Ca(Al2SiO8); (2) pyroxene: (Ca, Mg, Fe2+, Fe3+, Al, Ti)2[(Si, AI)2O6]; and (3) olivine: (Fe, Mg)2SiO4. Ukrainian products are inexpensive and good-quality.
Tables 3 and 4 (from U.S. Patent Publication 20120104306) show examples of element ratios (wt. %) and the oxide-equivalent composition ratios (wt. %) determined by ICP analysis (using an inductively-coupled plasma spectrometer ICPV-8100 by Shimadzu Corporation) performed on a high-temperature basalt ore (for high-temperature applications), an intermediate-temperature basalt ore (for intermediate-temperature applications), and a glass consisting of 85% high-temperature ore and 15% intermediate-temperature ore.
In embodiments wherein glass batch is used as sole or as a supplemental feedstock, one glass composition for producing glass fibers is “E-glass,” which typically includes 52-56% SiO2, 12-16% Al2O3, 0-0.8% Fe2O3, 16-25% CaO, 0-6% MgO, 0-10% B2O3, 0-2% Na2O+K2O, 0-1.5% TiO2 and 0-1% F2. Other glass batch compositions may be used, such as those described in assignee's published U.S. application 20080276652.
As noted herein, submerged combustion burners and burner panels may produce violent or aggressive turbulence of the molten inorganic material in the SCM and may result in sloshing or splashing of molten material, pulsing of combustion burners, popping of large bubbles above submerged burners, ejection of molten material from the melt against the walls and ceiling of melter, and the like. Frequently, one or more of these phenomena may result in undesirably short life of temperature sensors and other components used to monitor a submerged combustion melter's operation, making monitoring difficult, and use of signals from these sensors for melter control all but impossible for more than a limited time period. Processes and systems of the present disclosure may include indirect measurement of melt temperature in the melter itself, as disclosed in assignee's U.S. Pat. No. 9,096,453, using one or more thermocouples for monitoring and/or control of the melter, for example using a controller. A signal may be transmitted by wire or wirelessly from a thermocouple to a controller, which may control the melter by adjusting any number of parameters, for example feed rate of a feedstock feeder may be adjusted through a signal, and one or more of fuel and/or oxidant conduits may be adjusted via a signal, it being understood that suitable transmitters and actuators, such as valves and the like, are not illustrated for clarity.
Melter apparatus in accordance with the present disclosure may also comprise one or more wall-mounted submerged combustion burners, and/or one or more roof-mounted non-submerged burners (not illustrated). Roof-mounted burners may be useful to pre-heat the melting zone of the SCM, and serve as ignition sources for one or more submerged combustion burners and/or burner panels. Roof-mounted burners may be oxy-fuel burners, but as they are only used in certain situations, are more likely to be air/fuel burners. Most often they would be shut-off after pre-heating the melter and/or after starting one or more submerged combustion burners. In certain embodiments, one or more roof-mounted burners could be used supplementally with a baffle (for example, when the baffle requires service) to form a temporary curtain to prevent particulate carryover. In certain embodiments, all submerged combustion burners and burner panels may be oxy/fuel burners or oxy-fuel burner panels (where “oxy” means oxygen, or oxygen-enriched air, as described earlier), but this is not necessarily so in all embodiments; some or all of the submerged combustion burners or burner panels may be air/fuel burners. Furthermore, heating may be supplemented by electrical (Joule) heating in certain embodiments, in certain melter zones.
Certain SCM embodiments may comprise burner panels as described in assignee's U.S. patent Ser. No. 14/838,148, filed Aug. 27, 2015, comprising a burner panel body and one or more sets of concentric conduits for flow of oxidant and fuel. Certain burner panels disclosed therein include those wherein the outer conduit of at least some of the sets of concentric conduits are oxidant conduits, and the at least one inner conduit is one or more fuel conduits. Certain burner panel embodiments may comprise non-fluid cooled or fluid-cooled protective members comprising one or more noble metals. Certain burner panel embodiments may comprise non-fluid cooled or fluid-cooled protective members consisting essentially of one or more noble metals. Certain burner panel embodiments may comprise non-fluid cooled or fluid-cooled protective members consisting of one or more noble metals. Certain burner panel embodiments may comprise those wherein the lower fluid-cooled portion and the upper non-fluid cooled portion are positioned in layers, with the lower fluid-cooled portion supporting the sets of conduits and the associated protective members. Certain burner panel embodiments may comprise those wherein the non-fluid cooled protective member is a shaped annular disk having a through passage, the through passage of the shaped annular disk having an internal diameter substantially equal to but not larger than an internal diameter of the outer conduit. Certain burner panel embodiments may comprise those wherein an internal surface of the through passage of the shaped annular disk and a portion of a top surface of the shaped annular disk are not submerged by the fluid-cooled or non-fluid-cooled portions of the panel body. Certain combustion burner panels may comprise a panel body having a first major surface defined by a lower fluid-cooled portion of the panel body, and a second major surface defined by an upper non-fluid cooled portion of the panel body, the panel body having at least one through passage extending from the first to the second major surface, the through passage diameter being greater in the lower fluid-cooled portion than in the upper non-fluid cooled portion, the panel body supporting at least one set of substantially concentric at least one inner conduit and an outer conduit, each conduit comprising proximal and distal ends, the at least one inner conduit forming a primary passage and the outer conduit forming a secondary passage between the outer conduit and the at least one inner conduit; and a fluid-cooled protective member associated with each set and having connections for coolant fluid supply and return, each fluid-cooled protective member positioned adjacent at least a portion of the circumference of the outer conduit between the proximal and distal ends thereof at approximately a position of the fluid-cooled portion of the panel body. Certain burner panel embodiments may comprise those wherein each fluid-cooled protective member is a fluid-cooled collar having an internal diameter about the same as an external diameter of the outer conduit, the fluid-cooled collar having an external diameter larger than the internal diameter. Certain burner panel embodiments may comprise a mounting sleeve. In certain burner panel embodiments the mounting sleeve having a diameter at least sufficient to accommodate the external diameter of the fluid-cooled collar. In certain embodiments, the burner panel may include only one or more fuel conduits, or only one or more oxidant conduits. These embodiments may be paired with other panels supplying fuel or oxidant (as the case might be), the pair resulting in combustion of the fuel from one panel with the oxidant from the other panel. In certain embodiments the burner panel may comprise a pre-disposed layer or layers of glass, ceramic, refractory, and/or refractory metal or other protective material as a protective skull over the non-fluid cooled body portion or layer. The layer or layers of protective material may or may not be the same as the material to be melted in the SCM.
There are innumerable options, variations within options, and sub-variations of options for the SCM operator to select from when operating an SCM and profiling the SC burners. After all, the SCM is essentially a continuous or semi-batch chemical reactor with simultaneous heat and mass transfer. For example, to name just a few, an operator may choose (option 1) to operate all SC burners equally, that is, using the same fuel and oxidant, and of the total combustion flow rate (TCFR) from the SC burners, each SC burner is operated to produce the same fraction of the TCFR. Another option (option 2) would be to operate as option 1, but with different oxidant in one or more burners. Option 3 may be to operate with same oxidant in all burners, but with different fuel in one or more SC burners. As one can readily see, the number of options is quite large, and selecting the operation of the SC burners in such a chemical reactor with simultaneous heat and mass transfer can be an overwhelming task. Even if the “same” fuel and “same” oxidant are used for each SC burner (an ideal assumption that is never true in practice, since fuel and oxidant compositions change with time), the variations are endless, and can be an overwhelming task to sort through. The task of operating an SCM is even more daunting when particulate feed materials are fed to the SCM from above the turbulent, violent melt. In certain embodiments herein, SC burners that are directly underneath an exhaust opening in an SCM having ceiling exhaust openings may be reduced in firing rate, or completely shut off, in order to minimize ejection of molten material form the melt. Such operation should also reduce the tendency to eject solidified pellets out of the melter stack when aggressively firing the SC burners. The reduction in firing rate of SC burners directly under the exhaust openings may be 5 percent, or 6, 7, 8, 8.5, 9, 9.3, 10, 11, 15, 25, 35, 55, or 75 percent, or 100 percent if shut off. For example, in embodiment 200 (
Suitable materials for glass-contact refractory, which may be present in SCMs, burners, and burner panels useful herein, include AZS (alumina-zirconia-silica), α/β alumina, zirconium oxide, chromium oxide, chrome corundum, so-called “dense chrome”, and the like. One “dense chrome” material is available from Saint Gobain under the trade name SEFPRO, such as C1215 and C1221. Other useable “dense chrome” materials are available from the North American Refractories Co., Cleveland, Ohio (U.S.A.) under the trade designations SERV 50 and SERV 95. Other suitable materials for components that require resistance to high temperatures are fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The choice of a particular material may be dictated by the geometry of the apparatus, the type of material being produced, operating temperature, burner body panel geometry, and type of glass or other product being produced.
The term “fluid-cooled” means use of any coolant fluid (heat transfer fluid) to transfer heat away from the equipment in question, other than ambient air that resides naturally on the outside of the equipment. For example, portions of or the entire panels of sidewall structure, floor, and ceiling of the SCM, liquid-cooled and gas-cooled exhaust structures, portions or all of heat transfer substructures used to preheat feedstock (for example nearest the melter), portions of feedstock supply conduits, and portions of SC burners, and the like may require fluid cooling. Heat transfer fluids may be any gaseous, liquid, slurry, or some combination of gaseous, liquid, and slurry compositions that functions or is capable of being modified to function as a heat transfer fluid. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for example, air treated to remove moisture), inorganic gases, such as nitrogen, argon, and helium, organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids and slurries may be selected from liquids and slurries that may be organic, inorganic, or some combination thereof, for example, water, salt solutions, glycol solutions, oils and the like. Heat transfer liquids and slurries may comprise small amounts of various gases such as oxygen and nitrogen present in air bubbles. Heat transfer gases may comprise small amounts of various liquids such as condensed water droplets. Other possible heat transfer fluids include steam (if cooler than the expected glass melt temperature), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions comprising both gas and liquid phases, such as the higher chlorofluorocarbons. Certain SCMs and method embodiments of this disclosure may include fluid-cooled panels such as disclosed in assignee's U.S. Pat. No. 8,769,992.
Certain systems and processes of the present disclosure may utilize measurement and control schemes such as described in Applicant's U.S. Pat. No. 9,096,453, and/or feed batch densification systems and methods as described in assignee's co-pending U.S. patent application Ser. No. 13/540,704, filed Jul. 3, 2012. Certain SCMs and processes of the present disclosure may utilize devices for delivery of treating compositions such as disclosed in assignee's U.S. Pat. No. 8,973,405.
Certain SCM and method embodiments of this disclosure may be controlled by one or more controllers. For example, combustion (flame) temperature may be controlled by monitoring one or more parameters selected from velocity of the fuel, velocity of the primary oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters burners or burner panels, temperature of the primary oxidant as it enters burners or burner panels, temperature of the effluent (exhaust) at melter exhaust exit, pressure of the primary oxidant entering burners or burner panels, humidity of the oxidant, burner or burner panel geometry, combustion ratio, and combinations thereof. Certain SCMs and processes of this disclosure may also measure and/or monitor feed rate of batch or other feedstock materials, such as rock wool or mineral wool feedstock, glass batch, cullet, mat or wound roving and treatment compositions, mass of feed, and use these measurements for control purposes. Flow diverter positions may be adjusted or controlled to increase heat transfer in heat transfer substructures and exhaust conduits.
Various conduits, such as feedstock supply conduits, exhaust conduits, heat-transfer fluid supply and return conduits, oxidant and fuel conduits of burners or burner panels of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include carbon steels, stainless steels, for example, but not limited to, 306 and 316 steel, as well as titanium alloys, aluminum alloys, and the like. High-strength materials like C-110 and C-125 metallurgies that are NACE qualified may be employed for burner body components. (As used herein, “NACE” refers to the corrosion prevention organization operating under the name NACE International, Houston, Tex.) Use of high strength steel and other high strength materials may significantly reduce the conduit wall thickness required, reducing weight of the conduits and/or space required for conduits. In certain locations, precious metals and/or noble metals (or alloys) may be used for portions or all of these conduits. Noble metals and/or other exotic corrosion and/or fatigue-resistant materials such as platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), iridium (Ir), and gold (Au); alloys of two or more noble metals; and alloys of one or more noble metals with a base metal may be employed. In certain embodiments a protective layer or layers or components may comprise an 80 wt. percent platinum/20 wt. percent rhodium alloy attached to a base metal using brazing, welding or soldering of certain regions, as further explained in assignee's U.S. patent application Ser. No. 14/778,206, filed Sep. 18, 2015.
The choice of a particular material is dictated among other parameters by the chemistry, pressure, and temperature of fuel and oxidant used and type of melt to be produced with certain feedstocks. The skilled artisan, having knowledge of the particular application, pressures, temperatures, and available materials, will be able design the most cost effective, safe, and operable heat transfer substructures, feedstock and exhaust conduits, burners, burner panels, and melters for each particular application without undue experimentation.
The total quantities of fuel and oxidant used by SC burners or SC burner panels may be such that the flow of oxygen may range from about 0.9 to about 1.2 of the theoretical stoichiometric flow of oxygen necessary to obtain the complete combustion of the fuel flow. Another expression of this statement is that the combustion ratio may range from about 0.9 to about 1.2. The amount of heat needed to be produced by combustion of fuel in the melter (and/or Joule heating) will depend upon the efficiency of any preheating of the feedstock in a feedstock heat exchange substructure, if present. The larger the amount of heat transferred to the feedstock, the lower the heat energy required in the melter from the fuel and/or Joule elements. When operating “lean”, the combustion ratio is above about 1.0, or above about 1.5, or above about 2.0, or above about 2.5. When operating “rich”, the combustion ratio is below about 1.0, or below about 0.9, or below about 0.8, or below about 0.7, or below about 0.6, or below about 0.5, or below about 0.2.
In SCMs, the velocity of the fuel in the various SC burners and/or SC burner panels depends largely on the burner/burner panel geometry used, but generally is at least about 15 meters/second (m/s). The upper limit of fuel velocity depends primarily on the desired penetration of flame and/or combustion products into the melt and the geometry of the burner panel; if the fuel velocity is too low, the flame temperature may be too low, providing inadequate temperature in the melter, which is not desired, and if the fuel flow is too high, flame and/or combustion products might impinge on a melter wall or roof, or cause carryover of melt into the exhaust, or be wasted, which is also not desired. Baffles may be provided extending from the roof, and/or in the melter exhaust conduit, such as in the heat exchange substructure, in order to safeguard against this. Similarly, oxidant velocity should be monitored so that flame and/or combustion products do not impinge on an SCM wall or roof, or cause carryover of melt into the exhaust, or be wasted. Oxidant velocities depend on fuel flow rate and fuel velocity, but in general should not exceed about 200 ft./sec at 400 scfh flow rate.
Certain system and method embodiments may be combined with systems and methods from assignee's co-pending U.S. patent application Ser. No. 14/854,271, filed Sep. 15, 2015, for example operating the arrangement of SC burners such that a progressively higher percentage of a total combustion flow from the SC burners occurs from SC burners at progressively downstream positions; or melting using an arrangement of two or more SC burners comprises melting with a matrix of at least two rows and at least two columns of SC burners wherein a row spans a majority of the width (W) and a column spans a majority of the length (L) of the SCM, and wherein the operating is selected from the group consisting of:
Certain method embodiments may include wherein the melting using an arrangement of two or more SC burners comprises melting with a matrix of at least two rows and at least two columns of SC burners wherein a row spans a majority of the width (W) and a column spans a majority of the length (L) of the SCM, and wherein the operating comprises
Certain method embodiments may include wherein the melting using an arrangement of two or more SC burners comprises melting with a matrix of at least two rows and at least two columns of SC burners wherein a row spans a majority of the width (W) and a column spans a majority of the length (L) of the SCM, and wherein the operating comprises
Certain method embodiments may further comprise measuring concentration of a tracer compound or element in melt exiting the SCM to verify an increase in residence time of melt in the SCM compared to residence time of the melt when all SC burners are firing equally. In certain methods, the tracer compound or element may be selected from the group consisting of ZnO (zinc oxide), SrCO3 (strontium carbonate), BaCO3 (barium carbonate), and Li2CO3 (lithium carbonate), and mixtures and combinations thereof.
Certain method embodiments may include maximizing mixing and melting in an SCM, the method comprising (or consisting essentially of, or consisting of):
Certain method embodiments may include wherein the melting using an arrangement of two or more SC burners comprises melting with a matrix of at least two rows and at least two columns of SC burners wherein a row spans a majority of the width (W) and a column spans a majority of the length (L) of the SCM, and wherein the operating the arrangement of SC burners comprises operating the SC burners such that SC burners nearer the feed end of the SCM have a flow rate r7, SC burners near the melt exit end have a flow rate r8, and SC burners near an intersection of L and M have a flow rate r9, wherein:
r
7
>r
9
r
8
>r
9, and
r
8
≧r
7.
Certain method embodiments may include wherein the matrix is a 3 row×3 column matrix, and SC burners on the N and S sides have flow rate greater than the center SC burners.
Certain method embodiments may include maximizing mixing and temperature increase in an SCM, the method comprising (or consisting essentially of, or consisting of):
Certain method embodiments may include wherein the melting using an arrangement of two or more SC burners comprises melting with a matrix of at least two rows and at least two columns of SC burners wherein a row spans a majority of the width (W) and a column spans a majority of the length (L) of the SCM.
Certain method embodiments may include wherein the matrix is a 3 row by 3 column matrix and the first zone is at a midpoint (M) of the SCM length (L), and the second zone is downstream of the midpoint (M) of the SCM length (L).
Certain method embodiments may include wherein the matrix is a 3 row by 3 column matrix and the first zone is at a midpoint (M) of the SCM length (L), and the second zone is upstream of the midpoint (M) of the SCM length (L).
Certain method embodiments may include wherein the first (lean) zone is near the feed inlet, and the second (fuel rich) zone is immediately downstream the first zone, and including feeding small (less than 1 mm APS) particle size batch material to the SCM in the feed inlet.
Certain method embodiments may include maximizing mixing without substantially increasing temperature in an SCM, the method comprising (or consisting essentially of, or consisting of):
Certain method embodiments may include wherein the lean zone is between the feed end of the SCM and the midpoint (M). Certain method embodiments may include wherein the lean zone is nearer the melter feed end than any other melting zone. Certain method embodiments may include wherein the lean zone is between the midpoint (M) and the melter exit end. Certain method embodiments may include wherein one or more SC burners is operated in pulsing mode. Certain method embodiments may include feeding large particle size feedstock (at least 10 cm APS) to the SCM inlet end.
Embodiments disclosed herein include:
A: A submerged combustion manufacturing system comprising:
a submerged combustion melter (SCM) equipped with one or more submerged combustion (SC) burners, the SCM having a length (L) and a width (ON), a centerline (C), a midpoint (M), a sidewall structure having a north side (N) and a south side (S), the sidewall structure connecting a ceiling and a floor of the SCM, and one or more exhaust passages through the ceiling, the exhaust passages having an aggregate hydraulic diameter;
the one or more submerged combustion burners configured to discharge combustion products under a level of material being melted in the melter and create turbulent conditions in substantially all of the material being melted as well as ejected portions of melted material; and
an exhaust structure fluidly connecting the exhaust passage with an exhaust stack, the exhaust structure comprising (or consisting essentially of, or consisting of):
B: A submerged combustion manufacturing system comprising:
a submerged combustion melter (SCM) equipped with one or more submerged combustion (SC) burners, the SCM having a length (L) and a width (ON), a centerline (C), a midpoint (M), a sidewall structure having a north side (N) and a south side (S), the sidewall structure connecting a ceiling and a floor of the SCM, and one or more exhaust passages through the sidewall structure, the exhaust passages having an aggregate hydraulic diameter;
the one or more submerged combustion burners configured to discharge combustion products under a level of material being melted in the melter and create turbulent conditions in substantially all of the material being melted as well as ejected portions of melted material; and
an exhaust structure fluidly connecting the exhaust passage with an exhaust stack, the exhaust structure comprising (or consisting essentially of, or consisting of):
C: A submerged combustion manufacturing method comprising:
D: A submerged combustion manufacturing method comprising:
Each of the embodiments A, B, C, and D may have one or more of the following additional elements in any combination: Element 1: the system and method may further comprise a gas-cooled exhaust structure fluidly connecting the liquid-cooled exhaust structure and the exhaust stack, the gas-cooled exhaust structure defining a gas-cooled exhaust chamber having a second interior surface, the gas-cooled exhaust structure consisting of a metal layer forming the second interior surface, the metal layer having one or more gas-cooled external surfaces, the gas-cooled exhaust structure devoid of refractory or other lining. Element 2: systems and methods wherein the gas-cooled exhaust chamber has a cross-sectional area substantially equal to the cross-sectional area of the liquid-cooled exhaust chamber. Element 3: systems and methods comprising a feed inlet in a feed end of the wall structure, a molten product outlet in an exit end of the wall structure, wherein the exhaust passage through the ceiling is positioned substantially centrally between the feed and exit ends. Element 4: systems and methods wherein the exhaust passage and the liquid-cooled exhaust chamber have a cross-sectional area configured to produce exhaust velocity of 25 ft./min. or less through the exhaust passage and liquid-cooled exhaust chamber. Element 5: systems and methods wherein the submerged combustion burners are configured to discharge combustion products primarily non-laterally under the level of material being melted in the melter. Element 6: systems and methods wherein the submerged combustion burners are configured to discharge combustion products primarily vertically under the level of material being melted in the melter. Element 7: systems and methods wherein the wall structure comprises a feed end wall, an exit end wall, and two side walls, with each side wall connected to both the feed end wall and the exit end wall. Element 8: systems and methods wherein the liquid-cooled exhaust structure is constructed of metal having service temperature higher than temperature of the exhaust materials. Element 9: systems and methods wherein the gas-cooled exhaust structure is constructed of metal having service temperature higher than temperature of the exhaust materials. Element 10: systems and methods wherein the metal layer is one or more austenitic nickel-chromium super alloys, and the air-cooled surfaces are steel. Element 11: systems and methods wherein the liquid-cooled exhaust structure is configured for cooling using a liquid selected from the group consisting of water, organic liquids, inorganic liquids, and combinations thereof. Element 12: systems and methods comprising an air inspirator fluidly connecting the liquid-cooled exhaust barrier and the exhaust stack. Element 13: systems and methods wherein the air inspirator is selected from the group consisting of one or more adjustable panels, and one or more adjustable hoods. Element 14: systems and methods wherein the exhaust structure has a cross-sectional shape selected from the group consisting of rectangular, round, oval, trapezoidal, triangular, U-shaped, quadrangular, hexagonal, octagonal, and parabolic. Element 15: systems and methods wherein the exhaust passage is substantially centrally located between a feed end and an exit end of the melter, and the exhausting of the exhaust material through the exhaust structure comprises exhausting the exhaust material substantially centrally between the feed end and the exit end of the melter. Element 16: systems and methods comprising inspiring air into the exhaust material through an air inspirator fluidly connecting the liquid-cooled exhaust structure and the exhaust stack. Element 17: systems and methods comprising adjusting the air inspirator to allow more or less air to enter the exhaust stack. Element 18: systems and methods comprising feeding small (less than 1 mm APS) particle size batch material to the SCM into at least one feed inlet port. Element 19: systems and methods comprising feeding large particle size feedstock (at least 10 cm APS) into the SCM through one or more auxiliary inlet ports.
Although only a few exemplary embodiments of this disclosure have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this disclosure, and these modification are considered further Elements in accordance with the previous paragraph that may be combined with all other embodiments. For example, the heat transfer structures and methods described herein may be counter-current, cross-current, or co-current, or combination thereof in any particular embodiment (for example, a first liquid-cooled section where liquid heat transfer fluid flows generally counter-current to melter exhaust, followed by a second liquid-cooled section where a second (or the same) liquid heat transfer fluid flows generally co-current to melter exhaust; or for example, a liquid-cooled section that is counter-current, followed by a gas-cooled section that is co-current). One, two, or more than two different liquid heat transfer fluids may be used in a liquid-cooled section (for example water in a first section, and an ethylene glycol mixture in a second section). One, two, or more than two different gas heat transfer fluids may be used in a gas-cooled section (for example water in a first section, and an ethylene glycol/water mixture in a second section). Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, no clauses are intended to be in the means-plus-function format allowed by 35 U.S.C. §112, Section F, unless “means for” is explicitly recited together with an associated function. “Means for” clauses are intended to cover the structures, materials, and/or acts described herein as performing the recited function and not only structural equivalents, but also equivalent structures.