1. Field of the Invention
The present invention relates to transmission gratings, and more specifically, it relates to techniques for improving the efficiency of such gratings.
2. Description of Related Art
A grating can be fabricated on one surface of a plane parallel substrate using a lithographic process. The period of groove is less than the wavelength. In the case where
λ/sinα=2p, (1)
where p is the groove period and α is the angle of the incidence, then two propagation modes of the grating are excited Almost all input energy transmits in these two modes. By selecting the fill factor and the groove depth one can design a grating with efficiency near 100% in a single mode, 31 1st order (Clausnitzer, 2005). For given α and p, the diffraction angle, β, can be derived from the grating equation,
sinα/λ+sinβ/λ=1/p, (2)
and the dispersion of the grating is then
dβ/dλ=1/p/cosβ. (3)
Therefore, as shown in Table 1, the denser the groove pattern, the better the resolution.
From Eq. (1), in order to have a high efficiency, a grating with a denser groove pattern needs a greater incidence angle, α. The diffracted beam leaves the grating region, propagates in the substrate region in an angle γ, and finally exits the substrate in angle, β, which is determined by Snell's law,
n×sin γ=sin β (4)
For numerous applications, it is desirable to reduce the spurious reflection generated at the exit surface of a grating. The present invention provides several solutions to this problem. In a general embodiment, a transmission grating is formed of a substrate having a first surface and a second surface and a grating region is fixedly connected to the first surface and includes a groove period that is less than the wavelength of a desired beam incident on the grating region, where the first surface is not parallel with the second surface. The embodiment can also include an antireflection coating on the second surface. This surface may be curved.
In another general embodiment, a transmission grating is formed of a substrate that includes a first surface and a second surface and a grating region fixedly connected to the first surface and includes a groove period that is less than the wavelength of a desired beam incident on the grating region, where the first surface is about parallel with the second surface. In this embodiment, a second substrate is fixedly connected to the second surface, where the second substrate has an entrance surface and an exit surface having at least a wedge angle relative to the entrance surface. Thus, the second substrate can be a wedge in some embodiments. In another embodiment, the second substrate can be a prism. The exit surface can include an antireflection coating. The second substrate can be attached to said first substrate by an optical bond between the second surface and the entrance surface. Alternate attachment means can be used. For example, the second substrate can be attached to the first substrate by using adhesive behveen the second surface and the entrance surface.
In still another general embodiment, a transmission grating is formed of a substrate that includes a first surface and a second surface and a grating region fixedly connected to the first surface and includes a groove period that is less than the wavelength of a desired beam incident on the grating region, where the first surface is about parallel with the second surface. In this embodiment, a second substrate is fixedly connected to the second surface, where the second substrate has an entrance surface and an exit surface that is curved. The curvature of the exit surface is configured to be about normal to a beam transmitted over a range of angels of incidence onto the grating region.
The accompanying drawings, which are incorporated into and form a part of the disclosure, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Thus, the present invention provides several embodiments that reduce the spurious reflection generated at the exit surface of a grating. In one embodiment, a transmission grating is formed of a substrate having a first surface and a second surface and a grating region is fixedly connected to the first surface and includes a groove period that is less than the wavelength of a desired beam incident on the grating region, where the first surface is not parallel with the second surface. The embodiment can also include an antireflection coating on the second surface. This surface may be curved. In another embodiment, a transmission grating is formed of a substrate that includes a first surface and a second surface and a grating region fixedly connected to the first surface and includes a groove period that is less than the wavelength of a desired beam incident on the grating region, where the first surface is about parallel with the second surface. In this embodiment, a second substrate is fixedly connected to the second surface, where the second substrate has an entrance surface and an exit surface having at least a wedge angle relative to the entrance surface. Thus, the second substrate can be a wedge in some embodiments. In another embodiment, the second substrate can be a prism. The exit surface can include an antireflection coating. The second substrate can be attached to said first substrate by an optical bond between the second surface and the entrance surface. Alternate attachment means can be used. For example, the second substrate can be attached to the first substrate by using adhesive between the second surface and the entrance surface. In still another general embodiment, a transmission grating is formed of a substrate that includes it first surface and a second surface and a grating region fixedly connected to the first surface and includes a groove period that is less than the wavelength of a desired beam incident on the grating region, where the first surface is about parallel with the second surface. In this embodiment, a second substrate is fixedly connected to the second surface, where the second substrate has an entrance surface and an exit surface that is curved. The curvature of the exit surface is configured to be about normal to a beam transmitted over a range of angels of incidence onto the grating region.
The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The embodiments disclosed were meant only to explain the principles of the invention and its practical application to thereby enable others skilled in the art to best use the invention in various embodiments and with various modifications suited to the particular use contemplated. The scope of the invention is to be defined by the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/807,246 titled “Improvement of the Efficiency of a Deep Grating,” filed Apr. 1, 2013, incorporated herein by reference. This is a continuation-in-part of U.S. patent application Ser. No. 13/150,404, filed Jun. 1, 2011, and incorporated herein by reference. U.S. patent application Ser. No. 113/150,404 is a continuation-in-part of U.S. patent application Ser. No. 11/360,959, filed Feb. 22, 2006, and incorporated herein by reference. U.S. patent application Ser. No. 13/150,404 claims the benefit of U.S. Provisional Patent Application No. 61/350,109, filed Jun. 1, 2010, incorporated herein by reference. This is a continuation in part of U.S. patent application Ser. No. 12/928,189 filed Dec. 6, 2010, and incorporated herein by reference. U.S. patent application Ser. No. 12/928,189 is a divisional of Ser. No. 12/174,628, filed Jul. 16, 2008, incorporated herein by reference, which claims priority to 60/950,142, filed Jul. 17, 2007, incorporated herein by reference. U.S. patent application Ser. No. 12/928,189 is a CIP of Ser. No. 11/485,653, incorporated herein by reference filed Jul. 11, 2006 which is a CIP of Ser. No. 11/360,959, incorporated herein by reference tiled Feb. 22, 2006.
Number | Date | Country | |
---|---|---|---|
61807246 | Apr 2013 | US | |
61350109 | Jun 2010 | US | |
60950142 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12174628 | Jul 2008 | US |
Child | 12928189 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13150404 | Jun 2011 | US |
Child | 14242712 | US | |
Parent | 11360959 | Feb 2006 | US |
Child | 13150404 | US | |
Parent | 12928189 | Dec 2010 | US |
Child | 11360959 | US | |
Parent | 11485653 | Jul 2006 | US |
Child | 12174628 | US | |
Parent | 11360959 | Feb 2006 | US |
Child | 11485653 | US |