This disclosure relates to improving the efficiency of miniature loudspeakers.
U.S. Pat. No. 9,913,042, incorporated here by reference, describes a miniature electroacoustic transducer, i.e., a loudspeaker. The loudspeaker described in the '043 patent, shown in
U.S. patent application Ser. No. 15/222,539, also incorporated here by reference, describes a way to fabricate a piston top and suspension for the transducer of the '043 patent using micro-electrical mechanical systems (MEMS) processes. In particular, the '539 application describes coating a silicon wafer 20, shown in
In general, in one aspect, a solid piston having a closed shape is attached to a solid support surrounding the piston and corresponding in shape to the shape of the piston by a layer of compliant material adhered to a top surface of the piston and a top surface of the support. The layer of compliant material includes an open central area exposing the top surface of the piston through the open area.
Implementations may include one or more of the following, in any combination. The exposed portion of the piston may include at least 50% of the surface area of the top surface of the piston. The piston may be a circular disc and the support may be a circular ring. The piston may be an elliptical plate, and the support may be an elliptical ring. The piston may be a shape that is longer in one dimension than another. The piston may also include support structures extending from a bottom surface of the piston, away from the compliant material layer. The support structures may not form a closed shape. The piston and support may include silicon. The compliant layer may include liquid silicone rubber (LSR).
In general, in one aspect, a layer of compliant material is adhered to a solid substrate. A portion of the substrate is removed to leave a piston, which has a closed shape, and a support surrounding the piston, detached from the piston, and corresponding in shape to the shape of the piston, the piston and support being attached to each other by the complaint material layer. A portion of the compliant material layer covering a central area of the piston is removed, exposing a portion of the top surface of the piston through the opening created by removing the compliant material.
Implementations may include one or more of the following, in any combination. The exposed portion of the piston may include at least 50% of the surface area of the top surface of the piston. Removing the portion of the silicon substrate causes the piston to be a circular disc and the support to be a circular ring. Removing the portion of the silicon substrate causes the piston to be an elliptical plate, and the support to be an elliptical ring. Removing the portion of the silicon substrate causes the piston to be a shape that is longer in one direction than in another. Removing the portion of the silicon substrate may cause the piston to also include a support structure extending from a bottom surface of the piston, away from the compliant material layer. The solid substrate may include silicon. The compliant layer may include liquid silicone rubber (LSR).
In general, in one aspect, an assembly for an electroacoustic transducer includes a piston, which is an elliptical plate of silicon having a flat top surface and serving as the diaphragm, an elliptical support ring of silicon surrounding the piston and separated from the piston by a gap, and a layer of compliant material adhered to a top surface of the support ring and to the top surface of the piston, suspending the piston in the gap.
Implementations may include one or more of the following, in any combination. An elliptical bobbin may be adhered to a perimeter of the piston, extending from the piston in a direction away from the layer of compliant material, with an elliptical voice coil would around the bobbin. The piston may also include a support structure extending from a bottom surface of the piston, away from the compliant material layer, at the perimeter of the piston. A circular bobbin may be adhered to a bottom surface of the piston opposite the top surface, extending from the piston in a direction away from the layer of compliant material, with a circular voice coil wound around the bobbin. The piston may also include a support structure extending from a bottom surface of the piston, away from the compliant material layer, on a circular path corresponding to the shape of the bobbin. The layer of compliant material may not extend over the entire top surface of the piston.
In general, in one aspect, an electroacoustic transducer includes a piston, which includes an elliptical plate of silicon having a flat top surface and serving as the diaphragm, an elliptical support ring of silicon surrounding the piston and separated from the piston by a gap, and coupled to a housing, a layer of compliant material adhered to a top surface of the support ring and to the top surface of the piston, suspending the piston in the gap, an elliptical bobbin adhered to a perimeter of the piston, and extending from the piston in a direction away from the layer of compliant material, an elliptical voice coil would around the bobbin, and an elliptical magnetic assembly positioned inside the bobbin and coupled to the housing. The layer of compliant material may not extend over the entire top surface of the piston.
In general, in one aspect, an electroacoustic transducer includes a piston, which includes an elliptical plate of silicon having a flat top surface and serving as the diaphragm, an elliptical support ring of silicon surrounding the piston and separated from the piston by a gap, and coupled to a housing, a layer of compliant material adhered to a top surface of the support ring and to the top surface of the piston, suspending the piston in the gap, a cylindrical bobbin adhered to a perimeter of the piston, and extending from the piston in a direction away from the layer of compliant material, a cylindrical voice coil would around the bobbin, and a cylindrical magnetic assembly positioned inside the bobbin and coupled to the housing. The layer of compliant material may not extend over the entire top surface of the piston.
Advantages include improving the efficiency of the loudspeaker while maintaining the ability to fit inside a human ear canal.
All examples and features mentioned above can be combined in any technically possible way. Other features and advantages will be apparent from the description and the claims.
This application describes several modifications to the loudspeaker described in the U.S. Pat. No. 9,913,043 and the Ser. No. 15/222,539 application to improve the efficiency of the loudspeaker, that is, the amount of sound energy that can be output for a given amount of electrical energy input. Generally speaking, the efficiency of a loudspeaker can be improved by increasing its sound-radiating surface area and overall motor volume, and decreasing the mass of the moving components (i.e., the piston, bobbin, and coil, and part or all of the suspension layer). When dealing with the miniature loudspeaker described above, the ways in which such modifications may be accomplished are not necessarily the same as what might be practical in a conventional loudspeaker.
In some examples, the miniature loudspeaker is used as the driver of an in-ear headphone. In particular, the 4 mm diameter makes the loudspeaker small enough to fit inside a human ear canal, unlike the 10 mm or larger dynamic speakers usually used in earphone applications (other in-canal applications use balanced armature transducers, an entirely different electro-acoustic transducer design). A typical human ear canal is not circular in cross-section, but is generally a slightly asymmetrical oval, or kidney bean shape.
The effective moving mass of the MEMS-fabricated piston and suspension can also be reduced. As mentioned in the '539 application, support structures can be omitted from the back side of the silicon plate that forms the piston top. The outer stiffening rib can be removed entirely, as shown in
The effective moving mass can be further reduced by removing the LSR layer from the central region of the piston top, as shown in
A number of implementations have been described. Nevertheless, it will be understood that additional modifications may be made without departing from the scope of the inventive concepts described herein, and, accordingly, other embodiments are within the scope of the following claims.