Efficient and stable absorbing boundary condition in finite-difference calculations

Information

  • Patent Grant
  • 10317546
  • Patent Number
    10,317,546
  • Date Filed
    Tuesday, December 15, 2015
    9 years ago
  • Date Issued
    Tuesday, June 11, 2019
    5 years ago
Abstract
Method for generating an effective, efficient, and stable absorbing boundary condition in finite-difference calculations, such as model-simulation of predicted seismic data. The top surface and optionally the bottom surface of the computational domain or grid are treated with one or more layers of PML (51), preferably 1D PML, assuming an orthorhombic medium in the PML implementation (52). The side surfaces are handled with one or more ABC layers (53). Further advantages may be realized by tapering earth model symmetry axis on the top and bottom of the model toward the vertical (54). The invention provides a beneficial compromise between reducing artifacts in the image or physical property model and computational efficiency and stability.
Description
FIELD OF THE INVENTION

This disclosure relates generally to the field of geophysical prospecting for hydrocarbons and, more particularly, to seismic data processing and imaging. Specifically, the disclosure relates to the technical fields of seismic simulation, reverse time depth migration, and full waveform inversion.


BACKGROUND

Boundary Conditions


Much of seismic prospecting is based on computer processing seismic data to migrate the data to form a true image of the subsurface or to infer a physical property model of the subsurface through data inversion. Migration and inversion cannot be performed analytically, and therefore must be performed using numerical methods on a computer. The most efficient migration method is reverse time migration (RTM). Both RTM and inversion require model simulation of predicted/measured seismic data, where the model is a model of subsurface velocity or other physical property affecting propagation of seismic waves. In numerical simulation of seismic data (sometimes referred to herein simply as data), large computational domains must be truncated to fit into the computer's memory. Artificial boundaries are introduced by this process. The reflections from an artificial, non-physical boundary may possibly bring artifacts into the image. Correct and suitable implementations of the boundaries are among the major problems of the numerical simulations. There are several different methodologies to deal with the problem, which include: 1) Non-reflecting boundary conditions (which will not be discussed further in this document); 2) Absorbing Boundary Conditions (“ABC”), see for example Kosloff et al. (1986); and 3) perfectly matched layers (“PML”) by Berenger (1994).


Absorbing Boundary Conditions and the Perfectly Matched Layers


Absorbing Boundary Conditions were introduced by Kosloff et al. (1986). The term “ABC” as used herein shall be understood to refer to the boundary conditions according to the Kosloff (1986) reference. This is an unconditionally stable method with relatively good absorption properties. The drawback of the method is coherent reflections from the fixed surfaces, like an air/water interface, which could build an artifact in the image. To improve absorption, one might need to increase the number of absorbing layers (referred to as padding), which in turn will negatively affect computational efficiency. Moreover, very low frequency reflections will still be a problem because absorption is a function of the number of wavelengths in the absorbing zone.


The perfectly matched layers (“PML”) absorbing boundary condition by Berenger (1994) is another commonly used way to approximate the radiation boundary condition for the sides and bottom of an earth model where the earth model is assumed to have infinite extent but the computational model has finite extent. Up to the discretization error, waves will not reflect from external boundaries of the computational model that are designated to have the radiation boundary condition. In media where the method is stable (see below), PML will give perfect results.


In the standard form of PML as described by Marcinkovich and Olsen (2003), every derivative normal to an exterior boundary has a wave field dissipation operator applied. Several issues arise with standard PML (sometimes referred to as 1D PML) operators. For general anisotropy, if the group velocity and the phase velocity have different signs for the direction normal to the boundary, PML becomes unstable and energy can be amplified rather than attenuated at the boundary (Bechache et al., 2001, and Loh et al., 2009, and Oskooi and Johnson, 2011). Stable and efficient PML implementation is still an active area of research. There are many methods suggested to address the stability issue—multiaxial-PML (M-PML) by Dmitriev et al., 2011, convolutional-PML (CPML) with complex shift by Zhang et al., 2010, and more recent developments—coordinates stretching in the PML region by Duru et. al., 2014. Note that all these methods have high cost and possibly degrade the effectiveness of the absorption. Moreover, the fundamental problem of the stability for these methods is not fully resolved.


In its general meaning, the term absorbing boundary conditions embraces both PML boundary conditions and ABC boundary conditions. To avoid terminology confusion herein, the term ABC will refer only to the Kosloff-type absorbing boundary conditions.


To summarize some drawbacks of existing methods for handling boundary conditions for computational domains used in model simulation of seismic data:

    • 1. ABC—stable, but not effective in absorption.
    • 2. Standard PML—almost perfect absorption, but stability is compromised for some anisotropic materials.
    • 3. M-PML—high cost, and there is compromise between quality and stability; difficult to find optimal damping. Absorption is not very effective.
    • 4. Coordinate stretching in the PML region—high cost, with a compromise between quality and stability; difficult to find optimal damping.
    • 5. Complex shift—see item 2 above; the fundamental problem of stability is not fully resolved.


      What is needed is a method that provides a better compromise between absorption, stability, and cost. The present invention satisfies this need.


SUMMARY

The present invention is an unconditionally stable method for minimizing non-physical seismic wave reflections at computational grid boundaries during simulation of seismic waveforms, suitable for programming into automated migration and inversion computations. It is computationally efficient and effective, and applicable to both 2D and 3D, and for typical earth models of interest for RTM and FWI for hydrocarbon prospecting. It is advantageous for both imaging and modeling.


The present inventive method uses ABC boundaries, which are always stable, for the side boundaries of the computational domain. ABC methods do not mitigate low-frequency reflections from the external boundary as effectively as PML methods. This is not a problem on side external boundaries because reflections from side boundaries do not sum coherently for RTM and FWI computations. However, these low-frequency reflections are a problem from top and bottom external boundaries because those reflections do tend to sum coherently and therefore can be misrepresented as geology in RTM and FWI computations.


PML methods can be unstable for boundary zones with high-contrast shear interfaces or for medium anisotropy where group and phase velocities could be oriented in opposite directions relative to the boundary. Stability for PML methods may be ensured in the present invention by choosing only media parameters in the boundary zone with orthorhombic or higher symmetry that have a symmetry axis normal to the external boundary. This choice is realistic for typical geology that exists at the top and bottom boundaries of an earth model for RTM and FWI. If the top or bottom boundary does not match this condition, and a radiation condition boundary condition is desired, a practical solution is to taper the tilt of the symmetry axis over a boundary zone until that tilt is normal to the external boundary and meets the requirement for a stable PML boundary condition.


The present invention's combination of zero-symmetry-axis-tilt-angle PML on top and bottom, with ABC on side boundaries, is very practical, fits common earth models, and is easy to implement.


In one embodiment, the invention is a method for exploring for hydrocarbons in a subsurface region, comprising:


(a) simulating a seismic waveform, using a computer and a model of velocity or other physical property in the subsurface region, wherein computations are performed on a finite computational grid representing a subsurface region, said finite computational grid using absorbing condition boundary conditions to minimize non-physical wave reflections at grid boundaries, said absorbing condition boundary conditions being PML boundary conditions for top surface of the finite computational grid, and ABC boundary conditions for side surfaces of the finite computational grid; and


(b) using the simulated waveform in performing full waveform inversion or reverse time migration of seismic data, and using an updated model of velocity or other physical property from the inversion or a subsurface image from the migration to assess hydrocarbon potential of the subsurface region.





BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the present invention are better understood by referring to the following detailed description and the attached drawings, in which:



FIG. 1 shows a high saturation image comparison of the present invention's approach to making non-reflecting boundaries (top/bottom PML and sides ABC), shown in the left panel, compared to all ABC (middle), and the difference between the two (right);



FIG. 2 shows the same comparison as in FIG. 1, but with low (normal) saturation images;



FIG. 3 shows that PML on the bottom of the model helps to get rid of low frequency artifact from the ABC side reflections after tapering the dip on the top and bottom of the model toward the vertical direction;



FIG. 4 shows the relative performance of PML and ABC boundaries for acoustic media (upper left), elastic media with no tilt (upper right), elastic media with tilt tapered (lower left), and elastic media with tilt without tapering (lower right); and



FIG. 5 is a flow chart showing basic steps in one embodiment of the present inventive method.





The invention will be described in connection with example embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.


DETAILED DESCRIPTION

The present inventive method is an unconditionally stable method for introducing boundary conditions that provide effective boundary absorption.


The method begins with some simplifying assumptions that make the invention more robust and efficient. These assumptions are based on insight, gained from experience. Some of the complexities of physical problems can be dropped for all marine surveys and the majority surveys on land with only minor effect on the technical problem being addressed. One such instance of insight is the observation that the top surface boundary very seldom needs to deal with anisotropic earth models with a tilted axis of symmetry. Often the top boundary for marine acquisition is a water/air interface and both of those media are well-represented by isotropic acoustic physics and do not require any consideration of anisotropy in the earth model. Likewise the bottom boundary of the earth model is rarely illuminated by a full range of illumination angles and therefore the earth model zone adjacent to the bottom boundary may not require an accurate understanding of seismic anisotropy as a function of symmetry axis tilt angle for simulations that match recorded seismic data. For both the top and bottom boundary zones of the earth model, physics limited to isotropy, or anisotropy with a vertical symmetry axis for either transverse isotropy or orthotropy, is usually sufficient.


PML boundary conditions are more efficient at emulating radiation condition boundary conditions than ABC boundary conditions. Efficient and stable PML boundary conditions are easily constructed for media with isotropic, transversely isotropic or orthorhombic physics where any anisotropy characterization is restricted to have a vertical axis of symmetry. In contrast, stability and efficiency are much more complicated to achieve for PML implementations for anisotropic media with a tilted axis of symmetry or for general seismic anisotropy. The top boundary condition takes on particular importance because seismic sources are usually placed near the surface of the earth and reflect with large amplitudes from improperly constructed radiation boundary conditions. Reflections from the top and bottom boundaries are particularly important for simulators used in RTM and FWI applications because poorly mitigated reflections from the top and bottom boundaries tend to sum constructively to create artifacts in RTM images or FWI gradients. Reflections from poorly mitigated side boundaries are less of an issue because they tend to not sum constructively into an image to add radiation-boundary-related artifacts that might be misinterpreted as geology.


Thus, the top surface of the simulated domain may be assumed to be an orthorhombic (or Vertically Transversally Isotropic—“VTI”) medium, or anisotropic medium, which covers a large portion of the data that are typically acquired. Seismic sources are usually placed near the top surface. Therefore, a boundary condition has a bigger impact there. For the bottom surface there are no reliable tools (except possibly well data) to restrain tilt at great depth. Given this lack of knowledge about what happens at the bottom surface, zero tilt is as good as any other assumption. So, without loss of generality, zero tilt may be assumed at both the top and bottom surfaces of the computational domain. These two findings (i.e., that the probability of encountering general anisotropy at the top or bottom surface may be considered negligible) provide the opportunity to use standard PML without a tilted axis of symmetry for media assuming orthorhombic or higher symmetry (rather than complex PML with its ‘tilted’ physics assumption) on top and bottom surfaces, and standard PML is both absolutely stable and very effective in reducing reflection.


The side surfaces could have complex media which could lead to stability problems in any PML implementation. It was also recognized that small reflections from the sides are inconsistent (incoherent) from shot to shot, and are mostly directed downwards and are strongly absorbed by the bottom surface PML. These findings suggest use of unconditionally stable Kosloff's ABC on the side surfaces. In the shorthand notation that will be used in places in the remainder of this document, this choice of boundary conditions, i.e. PML for the top and bottom surfaces and ABC for the sides, may be referred to as z—PML and x,y—ABC.


Such combination (hybrid) of these two techniques gives an efficient and stable absorbing boundary condition in finite-difference calculations. Basic steps for one preferred embodiment of the present inventive method may be summarized as follows, with reference to the flow chart of FIG. 5.


Step 51: Apply one-dimensional (preferably convolutional) PML for top/bottom boundaries.


Step 52: An orthorhombic medium with a vertical axis of symmetry is assumed for the PML implementation in the top/bottom boundary to guarantee computational efficiency, stability, and effectiveness.


Step 53: Use Kosloff's Absorbing Boundary Condition (ABC) on the side/bottom boundaries and corners.


Step 54: Perform tapering to the top/bottom to smooth anisotropy symmetry axis tilt orientation to the vertical if needed. Tapering smoothly rotates the dip (axis of inclination) to zero.


Step 55: Either PML or ABC may be applied to the bottom boundary if desired.


Following next is a detailed mathematical formulation of the invention.


Definition of PML Derivative Operator in One Direction (i.e., 1D PML)


For a single derivative in the z direction using PML, the following definition holds. In the frequency domain, the spatial derivative of the target wave field is computed first and then the result is scaled by the inverse to a gamma function. This operation damps the spatial derivative.















z


=


1

γ
z












z








where






γ
z

=



ⅈω
+

μ
2


ⅈω

=

1
+


μ
z

ⅈω








There is no unique way to choose damping parameter μz. One possible choice is to use CPML-style gamma operators following the paper by Komatitsch and Martin (2007). In the time domain, the gamma operator becomes a temporal convolution operator, denoted by {circumflex over (γ)}z. The inverse to the time-domain gamma convolutional operator will be denoted by 1/{circumflex over (γ)}z. The formulae that follow will imply temporal convolution whenever the time-domain gamma or time-domain inverse gamma operators are shown. These are temporal Fourier transforms of the corresponding functions defined in the frequency domain.


The present inventive method will be demonstrated first on a constant-density isotropic acoustic wave equation case. Next an example VTI pseudo-acoustic case will be given. After that, the orthorhombic and elastic extensions will then be obvious. Solution of the isotropic equation in the interior region of the computational domain may summarized by following equations:

















t




(



p





p
dot




)


=


(



0


1






v
2



(




2




x
2



+



2




y
2



+



2




z
2




)




0



)



(



p





p
dot




)



,




where







p
dot

=




p



t


.






Equations of system with z—PML are obtained by replacing








2




z
2







in the equations above by











z
~










z
~



.






In the time domain, this relationship is used.












z
~









z
~




=


1


γ
^

z












z




1


γ
^

z












z








Then the z—PML constant-density isotropic acoustic equations may be summarized as follows:
















t




(



p





p
dot




)


=


(



0


1






v
2



(




2




x
2



+



2




y
2



+


1


γ
^

z







z




1


γ
^

z







z




)




0



)



(



p





p
dot




)







The variable p represents pressure. The variables x, y, and z are spatial coordinates. The variable v represents the medium velocity.


After slight modification, this is equivalent to the following form:
















t




(



p







γ
^

z



p
dot





)


=












t




(



p





p
dot




)


+

(



0






μ
z



p
dot





)


=


(



0


1






v
2



(




γ
^

z



(




2




x
2



+



2




y
2




)


+





z




1


γ
^

z







z




)




0



)



(



p





p
dot




)








This reduces to the next system of equations that enable more a more computationally efficient implementation.
















t




(



p





p
dot




)


=


(



0


1






v
2



(




γ
^

z



(




2




x
2



+



2




y
2




)


+





z




1


γ
^

z







z




)





-

μ
z





)



(



p





p
dot




)






Kosloff's ABC boundary conditions in (x, y, z) coordinates may be written in the following compact form:
















t




(



p





p
dot




)


=


(




-

μ
xyz




1






v
2



(




2




x
2



+



2




y
2



+



2



z



)





-

μ
xyz





)



(



p





p
dot




)






ABC boundary conditions which absorb only in the (x, y) directions takes following form:
















t




(



p





p
dot




)


=


(




-

μ
xy




1






v
2



(




2




x
2



+



2




y
2



+



2



z



)





-

μ
xy





)



(



p





p
dot




)






Combining of z—PML and (x, y)—ABC, and after some reformulations, yields
















t




(



p





p
dot




)


=


(




-

μ
xy




1






v
2



(




γ
^

z



(




2




x
2



+



2




y
2




)


+





z




1


γ
^

z







z




)






-

μ
xy


-

μ
z





)



(



p





p
dot




)







In the slightly more general constant-density VTI case, combined equations of z—PML and (x, y)—ABC can be written using wave equation terms involving horizontal spatial derivatives denoted by p and terms involving vertical spatial derivatives denoted by q as
















t




(



p




q





p
dot






q
dot




)


=


(




-

μ
xy




0


1


0




0



-

μ
xy




0


1







C
11

ρ





γ
^

z



(




2




x
2



+



2




y

2









)








C
13

ρ











z




1


γ
^

z












z







-

μ
xy


-

μ
z




0







C
13

ρ





γ
^

z



(




2




x
2



+



2




y

2









)








C
33

ρ











z




1


γ
^

z












z





0




-

μ
xy


-

μ
z





)



(



p




q





p
dot






q
dot




)







where

















t



p

=

p
dot


,




and
















t



q

=


q
dot

.






The Voigt stiffness coefficients are denoted by C11, C13 and C33, and the density is denoted by ρ.


It may be noted that the functions μz for z—PML and μx,y might be chosen differently. The more general orthorhombic case might be implemented similarly.


Test Examples

A test exercise was carried out using synthetic seismic data to compare the present inventive method (z—PML, (x,y)—ABC) with a conventional approach of using ABC on all boundary surfaces. For the comparison studies, 12 boundary layers were used for the PML and 24 boundary layers were used for the ABC. For the FIGS. 1-3, the following model was used: A homogeneous VTI medium (no reflecting interfaces), with a source placed in the top/middle of the model. Thus, all reflections shown in these data displays are nonphysical artifacts except for the diamond-shaped wave front of the pseudo-shear wave. In FIGS. 1-3, the image generated using the present inventive method is shown on the left, the image using all ABC is shown in the middle, and the difference is shown on the right. FIGS. 1-3 show data that were computer-simulated, using the aforementioned assumed velocity model. The direct wave that is being simulated 11 appears prominently and identically in both the left and middle panels of FIGS. 1 and 2. FIGS. 1 and 2 are the same display, shown at different saturations; i.e. the contrast is turned up higher (by a factor of 100) in FIG. 1 than in the normal display of FIG. 2. It may be noted that the present inventive method (left) eliminates the reflections 13 from the top, even at the high saturation of FIG. 1. The side reflections 12 are naturally the same in both the left and middle displays since both use the same ABC boundary conditions. The difference display (right) is artifact that is present when using all ABC, but is removed when using the boundary conditions of the present invention. The horizontal and vertical axes on the drawings indicate subsurface position in meters.


In FIG. 1, a source is placed near the center of the top boundary in a medium with no internal reflecting boundaries. A snapshot of waves propagating in the medium is shown. In the left picture, the top and bottom external boundaries are implemented with PML while the side external boundaries are implemented via ABC where low-frequency reflections 12 from the ABC side boundaries are visible. The reflection from the top boundary has such low amplitude that it is not visible. All external boundaries for the same medium are implemented via ABC in the middle picture, where low-frequency reflections 12 are visible from the side boundaries, and now there is a visible reflection 13 from the top boundary. One may also observe a double-bounce event that reflects first from the top boundary and then from a side boundary. The difference between the left and middle wave fields is shown on the right. These are high saturation images so the differences appear to be very large.


In FIG. 1, the images are highly saturated. Any reflections from the top/bottom surfaces could add up and produce an image artifact. Therefore, perfect absorption from the top/bottom surfaces is always important. As stated above, FIG. 1 demonstrates that reflection from the top when using PML on the top (present invention—left) is invisible even in the highly saturated plot. The ABC sides have stronger reflections, but this is acceptable because they are not coherent with each other and would be stacked in a final image. (The drawings show pre-stack data.) The side reflections will end up in the different places for different shots, which is why they will cancel when the shots are stacked (summed).



FIG. 2 shows the same information as in FIG. 1, but in a normal display, i.e. at lower saturation. The top reflections 13 are not apparent in the middle panel at normal saturation. However, they are not incoherent like the side reflections, and could add up when the data are stacked and produce an image artifact.



FIG. 3 is a snapshot of the simulation and a much later propagation time than for FIGS. 1 and 2. It is after the direct wave 11 has passed through the bottom boundary of the computational domain. Ideally, it should pass through this boundary with no reflections, but in this high saturation display, small external boundary reflection events can be seen. Low-pass frequency filtering has been done, giving a low-frequency, later in time, view of the same simulation as FIGS. 1 and 2. FIG. 3 shows that the ABC radiation conditions mitigate the boundary reflections poorly for low-frequency events. The PML boundary conditions do a much better job of mitigating the reflection of low-frequency energy from the external boundary. For RTM and FWI applications, the wave fields that propagate primarily in the horizontal directions do not impact imaging and inversion results. On the other hand, waves that reflect from the bottom boundary and propagate upwards towards the receiver locations do have a detrimental impact on RTM and FWI applications. FIG. 3 demonstrates another advantage of the present invention. After tapering the dip on the top and bottom of the model to the vertical direction, low frequency reflections from the sides of the model will be absorbed by the bottom PML layer and consequently not contribute to the image artifact.



FIG. 4 is included to show the relative performance of PML boundary conditions and ABC boundary conditions. This is done for four different velocity models: acoustic media (upper left), elastic media with no tilt (upper right), elastic media with tilt tapered (lower left), and elastic media with tilt without tapering (lower right). In every case, the top and bottom boundary conditions are PML and the side boundaries are ABC. The source location for the computer simulation is shown at the center of each panel. Because the source is symmetric, comparison of the top/bottom reflections to the side reflections indicates the relative performance of PML and ABC boundary conditions. The simulation algorithm used treats derivatives to the second-order in the finite difference approximation. The numbers such as ˜0 or 10-2 indicate the amplitude of the reflection artifacts from the top surface, the bottom surface, or a side surface, depending on where the number is located, with all amplitudes scaled or normalized such that the maximum amplitude of the desired simulated wave (not shown) is unity. It may be noted that for an elastic medium with a tilted anisotropy axis of symmetry, tapering the tilt reduces the top surface reflection artifact by a factor of 10. In the upper two panels of FIG. 4, it can be seen that the side reflections appear at the same height, and therefore will not cancel on stacking. In the lower two panels, the side reflections appear at different heights, and will cancel with stacking.


The foregoing description is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined by the appended claims.


REFERENCES



  • 1. Bechache, Eliane, Sandrine Fauqueux, and Patrick Joly, 2001, “Stability of Perfectly Matched Layers, Group Velocities and Anisotropic Waves”, INRIA Rocquencourt, ISSN 0249-6399, ISRN INRIA/RR-4304-FR+ENG.

  • 2. Berenger, J., “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114, 185-200 (1994); doi:10.1006/jcph.1994.1159.

  • 3. Komatitsch, D., and Martin, R., 2007, “An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation”, Geophysics, 72(5), SM155-SM167

  • 4. Loh, P. R., A. F. Oskooi, M. Ibanescu, M. Skorobogatiy, and S. G. Johnson, “Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures,” Phys. Rev. E, vol. 79, p. 065601(R), 2009.

  • 5. Marcinkovich, C., K. Olsen, “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” Journal of Geophysical Research Solid Earth 108, 2276-2291 (2003).

  • 6. Oskooi, Ardavan, and Steven G. Johnson, “Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media”, Journal of Computational Physics 230 (2011) 2369-2377.B

  • 7. Kenneth Duru, Gunnila Kreiss, “A well-posed and discretely stable perfectly matched layer for elastic wave equations in second order formulations”, Commun. Comput. Phys. Vol. 11, NO. 5, pp. 1643-1672 (2012).

  • 8. Kosloff, R., Kosloff, D., “Absorbing boundaries for wave propagation problems”, Journal of Computational Physics, Vol. 63, pp. 363-376 (1986).

  • 9. Dmitriev M. N., Lisitsa V. V. “Application of M-PML reflectionless boundary conditions to the Numerical Simulation of Wave propagation in anisotropic media. Part 1: Reflectivity” Numerical analysis and Applications, 2011, vol 4, pp. 271-280.

  • 10. Wei Zhang and Yang Shen, “Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling”, Geophysics, Vol. 75, pp. S141-154 (2010).


    All references are incorporated herein in all jurisdictions that allow it.


Claims
  • 1. A method for exploring for hydrocarbons in a subsurface region, comprising: simulating a seismic waveform, using a computer and a model of subsurface velocity or other physical property affecting propagation of seismic waves in the subsurface region, wherein computations are performed on a finite computational grid representing a subsurface region, said finite computational grid using absorbing condition boundary conditions to minimize non-physical wave reflections at grid boundaries, said absorbing condition boundary conditions being PML boundary conditions for top surface of the finite computational grid, and ABC boundary conditions for side surfaces of the finite computational grid;using the simulated waveform in performing full waveform inversion or reverse time migration of seismic data;displaying (i) an inferred physical property model from the inversion or (ii) a subsurface image from the migration; andusing the (i) inferred physical property model or (ii) the subsurface image to prospect for hydrocarbons in the subsurface region.
  • 2. The method of claim 1, wherein the PML boundary conditions are 1D PML.
  • 3. The method of claim 2, wherein said model of subsurface velocity or other physical property affecting propagation of seismic waves is anisotropic with an axis of symmetry tilted from vertical, and further comprising padding the finite computational grid at the top or bottom surface, or both, to taper the axis of symmetry at said top or bottom surfaces toward vertical.
  • 4. The method of claim 1, wherein a plurality of absorbing layers is used on the top and bottom surfaces or the side surfaces or both.
  • 5. The method of claim 1, further comprising applying ABC or PML boundary conditions to a bottom surface of the finite computational grid.
  • 6. The method of claim 1, wherein an orthorhombic subsurface medium is assumed for PML implementation at the top surface and, if PML is used at a bottom surface of the finite computational grid, an orthorhombic medium is assumed there as well.
  • 7. The method of claim 1, further comprising jointly using z—PML and x,y—ABC boundary conditions at corners of the finite computational grid.
  • 8. The method of claim 1, wherein said model of subsurface velocity or other physical property affecting propagation of seismic waves is assumed to be isotropic in a zone at the top surface, or at a bottom surface of the finite computational grid, or both.
  • 9. The method of claim 1, wherein said model of subsurface velocity or other physical property affecting propagation of seismic waves is anisotropic with transversely isotropic or orthorhombic symmetry in a zone at the top surface, or at a bottom surface of the finite computational grid, or both.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 62/115,938 filed Feb. 13, 2015 entitled EFFICIENT AND STABLE ABSORBING BOUNDARY CONDITION IN FINITE-DIFFERENCE CALCULATIONS, the entirety of which is incorporated by reference herein.

US Referenced Citations (217)
Number Name Date Kind
3812457 Weller May 1974 A
3864667 Bahjat Feb 1975 A
4159463 Silverman Jun 1979 A
4168485 Payton et al. Sep 1979 A
4545039 Savit Oct 1985 A
4562650 Nagasawa et al. Jan 1986 A
4575830 Ingram et al. Mar 1986 A
4594662 Devaney Jun 1986 A
4636957 Vannier et al. Jan 1987 A
4675851 Savit et al. Jun 1987 A
4686654 Savit Aug 1987 A
4707812 Martinez Nov 1987 A
4715020 Landrum, Jr. Dec 1987 A
4766574 Whitmore et al. Aug 1988 A
4780856 Becquey Oct 1988 A
4823326 Ward Apr 1989 A
4924390 Parsons et al. May 1990 A
4953657 Edington Sep 1990 A
4969129 Currie Nov 1990 A
4982374 Edington et al. Jan 1991 A
5260911 Mason et al. Nov 1993 A
5469062 Meyer, Jr. Nov 1995 A
5583825 Carrazzone et al. Dec 1996 A
5677893 de Hoop et al. Oct 1997 A
5715213 Allen Feb 1998 A
5717655 Beasley Feb 1998 A
5719821 Sallas et al. Feb 1998 A
5721710 Sallas et al. Feb 1998 A
5790473 Allen Aug 1998 A
5798982 He et al. Aug 1998 A
5822269 Allen Oct 1998 A
5838634 Jones et al. Nov 1998 A
5852588 de Hoop et al. Dec 1998 A
5878372 Tabarovsky et al. Mar 1999 A
5920838 Norris et al. Jul 1999 A
5924049 Beasley et al. Jul 1999 A
5999488 Smith Dec 1999 A
5999489 Lazaratos Dec 1999 A
6014342 Lazaratos Jan 2000 A
6021094 Ober et al. Feb 2000 A
6028818 Jeffryes Feb 2000 A
6058073 VerWest May 2000 A
6125330 Robertson et al. Sep 2000 A
6219621 Hornbostel Apr 2001 B1
6225803 Chen May 2001 B1
6311133 Lailly et al. Oct 2001 B1
6317695 Zhou et al. Nov 2001 B1
6327537 Ikelle Dec 2001 B1
6374201 Grizon et al. Apr 2002 B1
6381543 Guerillot et al. Apr 2002 B1
6388947 Washbourne et al. May 2002 B1
6480790 Calvert et al. Nov 2002 B1
6522973 Tonellot et al. Feb 2003 B1
6545944 de Kok Apr 2003 B2
6549854 Malinvemo et al. Apr 2003 B1
6574564 Lailly et al. Jun 2003 B2
6593746 Stolarczyk Jul 2003 B2
6662147 Fournier et al. Dec 2003 B1
6665615 Van Riel et al. Dec 2003 B2
6687619 Moerig et al. Feb 2004 B2
6687659 Shen Feb 2004 B1
6704245 Becquey Mar 2004 B2
6714867 Meunier Mar 2004 B2
6735527 Levin May 2004 B1
6754590 Moldoveanu Jun 2004 B1
6766256 Jeffryes Jul 2004 B2
6826486 Malinverno Nov 2004 B1
6836448 Robertsson et al. Dec 2004 B2
6842701 Moerig et al. Jan 2005 B2
6859734 Bednar Feb 2005 B2
6865487 Charron Mar 2005 B2
6865488 Moerig et al. Mar 2005 B2
6876928 Van Riel et al. Apr 2005 B2
6882938 Vaage et al. Apr 2005 B2
6882958 Schmidt et al. Apr 2005 B2
6901333 Van Riel et al. May 2005 B2
6903999 Curtis et al. Jun 2005 B2
6905916 Bartsch et al. Jun 2005 B2
6906981 Vauge Jun 2005 B2
6927698 Stolarczyk Aug 2005 B2
6944546 Xiao et al. Sep 2005 B2
6947843 Fisher et al. Sep 2005 B2
6970397 Castagna et al. Nov 2005 B2
6977866 Huffman et al. Dec 2005 B2
6999880 Lee Feb 2006 B2
7046581 Calvert May 2006 B2
7050356 Jeffryes May 2006 B2
7069149 Goff et al. Jun 2006 B2
7027927 Routh et al. Jul 2006 B2
7072767 Routh et al. Jul 2006 B2
7092823 Lailly et al. Aug 2006 B2
7110900 Adler et al. Sep 2006 B2
7184367 Yin Feb 2007 B2
7230879 Herkenoff et al. Jun 2007 B2
7271747 Baraniuk et al. Sep 2007 B2
7330799 Lefebvre et al. Feb 2008 B2
7337069 Masson et al. Feb 2008 B2
7373251 Hamman et al. May 2008 B2
7373252 Sherrill et al. May 2008 B2
7376046 Jeffryes May 2008 B2
7376539 Lecomte May 2008 B2
7400978 Langlais et al. Jul 2008 B2
7436734 Krohn Oct 2008 B2
7480206 Hill Jan 2009 B2
7584056 Koren Sep 2009 B2
7599798 Beasley et al. Oct 2009 B2
7602670 Jeffryes Oct 2009 B2
7616523 Tabti et al. Nov 2009 B1
7620534 Pita et al. Nov 2009 B2
7620536 Chow Nov 2009 B2
7646924 Donoho Jan 2010 B2
7672194 Jeffryes Mar 2010 B2
7672824 Dutta et al. Mar 2010 B2
7675815 Saenger et al. Mar 2010 B2
7679990 Herkenhoff et al. Mar 2010 B2
7684281 Vaage et al. Mar 2010 B2
7710821 Robertsson et al. May 2010 B2
7715985 Van Manen et al. May 2010 B2
7715986 Nemeth et al. May 2010 B2
7725266 Sirgue et al. May 2010 B2
7791980 Robertsson et al. Sep 2010 B2
7835072 Izumi Nov 2010 B2
7840625 Candes et al. Nov 2010 B2
7940601 Ghosh May 2011 B2
8121823 Krebs et al. Feb 2012 B2
8248886 Neelamani et al. Aug 2012 B2
8428925 Krebs et al. Apr 2013 B2
8437998 Routh et al. May 2013 B2
8547794 Gulati et al. Oct 2013 B2
8688381 Routh et al. Apr 2014 B2
8781748 Laddoch et al. Jul 2014 B2
20020099504 Cross et al. Jul 2002 A1
20020120429 Ortoleva Aug 2002 A1
20020183980 Guillaume Dec 2002 A1
20040199330 Routh et al. Oct 2004 A1
20040225438 Okoniewski et al. Nov 2004 A1
20060235666 Assa et al. Oct 2006 A1
20070036030 Baumel et al. Feb 2007 A1
20070038691 Candes et al. Feb 2007 A1
20070274155 Ikelle Nov 2007 A1
20080175101 Saenger et al. Jul 2008 A1
20080306692 Singer et al. Dec 2008 A1
20090006054 Song Jan 2009 A1
20090067041 Krauklis et al. Mar 2009 A1
20090070042 Birchwood et al. Mar 2009 A1
20090083006 Mackie Mar 2009 A1
20090164186 Haase et al. Jun 2009 A1
20090164756 Dokken et al. Jun 2009 A1
20090187391 Wendt et al. Jul 2009 A1
20090248308 Luling Oct 2009 A1
20090254320 Lovatini et al. Oct 2009 A1
20090259406 Khadhraoui et al. Oct 2009 A1
20100008184 Hegna et al. Jan 2010 A1
20100018718 Krebs et al. Jan 2010 A1
20100039894 Abma et al. Feb 2010 A1
20100054082 McGarry et al. Mar 2010 A1
20100088035 Etgen et al. Apr 2010 A1
20100103772 Eick et al. Apr 2010 A1
20100118651 Liu et al. May 2010 A1
20100142316 Keers et al. Jun 2010 A1
20100161233 Saenger et al. Jun 2010 A1
20100161234 Saenger et al. Jun 2010 A1
20100185422 Hoversten Jul 2010 A1
20100208554 Chiu et al. Aug 2010 A1
20100212902 Baumstein et al. Aug 2010 A1
20100246324 Dragoset, Jr. et al. Sep 2010 A1
20100265797 Robertsson et al. Oct 2010 A1
20100270026 Lazaratos et al. Oct 2010 A1
20100286919 Lee et al. Nov 2010 A1
20100299070 Abma Nov 2010 A1
20110000678 Krebs et al. Jan 2011 A1
20110040926 Donderici et al. Feb 2011 A1
20110051553 Scott et al. Mar 2011 A1
20110090760 Rickett et al. Apr 2011 A1
20110131020 Meng Jun 2011 A1
20110134722 Virgilio et al. Jun 2011 A1
20110182141 Zhamikov et al. Jul 2011 A1
20110182144 Gray Jul 2011 A1
20110191032 Moore Aug 2011 A1
20110194379 Lee et al. Aug 2011 A1
20110222370 Downton et al. Sep 2011 A1
20110227577 Zhang et al. Sep 2011 A1
20110235464 Brittan et al. Sep 2011 A1
20110238390 Krebs et al. Sep 2011 A1
20110246140 Abubakar et al. Oct 2011 A1
20110267921 Mortel et al. Nov 2011 A1
20110267923 Shin Nov 2011 A1
20110276320 Krebs et al. Nov 2011 A1
20110288831 Tan et al. Nov 2011 A1
20110299361 Shin Dec 2011 A1
20110320180 Al-Saleh Dec 2011 A1
20120010862 Costen Jan 2012 A1
20120014215 Saenger et al. Jan 2012 A1
20120014216 Saenger et al. Jan 2012 A1
20120051176 Liu Mar 2012 A1
20120073824 Routh Mar 2012 A1
20120073825 Routh Mar 2012 A1
20120082344 Donoho Apr 2012 A1
20120143506 Routh et al. Jun 2012 A1
20120215506 Rickett et al. Aug 2012 A1
20120218859 Soubaras Aug 2012 A1
20120275264 Kostov et al. Nov 2012 A1
20120275267 Neelamani et al. Nov 2012 A1
20120290214 Huo et al. Nov 2012 A1
20120314538 Washbourne et al. Dec 2012 A1
20120316790 Washbourne et al. Dec 2012 A1
20120316844 Shah et al. Dec 2012 A1
20130060539 Baumstein Mar 2013 A1
20130081752 Kurimura et al. Apr 2013 A1
20130238246 Krebs et al. Sep 2013 A1
20130279290 Poole Oct 2013 A1
20130282292 Wang et al. Oct 2013 A1
20130311149 Tang Nov 2013 A1
20130311151 Plessix Nov 2013 A1
20140350861 Wang et al. Nov 2014 A1
20140358504 Baumstein et al. Dec 2014 A1
20140372043 Hu et al. Dec 2014 A1
Foreign Referenced Citations (21)
Number Date Country
2 796 631 Nov 2011 CA
1 094 338 Apr 2001 EP
1 746 443 Jan 2007 EP
2 390 712 Jan 2004 GB
2 391 665 Feb 2004 GB
WO 2006037815 Apr 2006 WO
WO 2007046711 Apr 2007 WO
WO 2008042081 Apr 2008 WO
WO 2008123920 Oct 2008 WO
WO 2009067041 May 2009 WO
WO 2009117174 Sep 2009 WO
WO 2010085822 Jul 2010 WO
WO 2011040926 Apr 2011 WO
WO 2011091216 Jul 2011 WO
WO 2011093945 Aug 2011 WO
WO 2012024025 Feb 2012 WO
WO 2012041834 Apr 2012 WO
WO 2012083234 Jun 2012 WO
WO 2012134621 Oct 2012 WO
WO 2012170201 Dec 2012 WO
WO 2013081752 Jun 2013 WO
Non-Patent Literature Citations (13)
Entry
U.S. Appl. No. 14/329,431, filed Jul. 11, 2014, Krohn et al.
U.S. Appl. No. 14/330,767, filed Jul. 14, 2014, Tang et al.
Bechache, E. et al., “Stability of Perfectly Matched Layers, Group Velocities and Anisotropic Waves,” Research Report, RR-4304, ISSN 0249-6399, 40 pgs. (May 2006).
Berenger, J-P., “A Perfectly Matched Layer for the Asorption of Electromagnetic Waves,” J. of Computational Physics 114, pp. 185-200 (1994).
Dmitriev, M.N. et al., “Application of M-PML Reflectionless Boundary Conditions to the Numerical Simulation of Wave Propagation in Anisotropic Media, Part I: Reflectivity,” Numerical Analysis and Applications 1(4), pp. 271-280 (2011).
Duru, K. et al., “Well-Posed and Discretely Stable Perfectly Matched Layers for Elastic Wave Equations in Second Order Formulation,” Commun. Comput. Phys. 11(5), pp. 1643-1672 (2012).
Komatitsch, D. et al., “An Unsplit Convultional Perfectly Matched Layer Improved at Grazing Incidence for the Seismic Wave Equation,” Geophysics 72(5), pp. SM155-SM166 (Sep.-Oct. 2007).
Kosloff, R. et al., “Absorbing Boundaries for Wave Propagation Problems,” J. of Computational Physics 63, pp. 363-376 (1986).
Loh, P-R., “Fundamental Relation between Phase and Group Velocity, and Application to the Failure of Perfectly Matched Layers in Backward-Wve Structures,” Physical Review E79, 4 pgs. (2009).
Marcinkovich, C. et al., “On the Implementation of Perfectly Matched Layers in a Three-Dimensional Fourth-Order Velocity-Stress Finite Difference Scheme,” J. of Geophysical Research 108(B5), pp. ESE18-1-ESE18-16 (2003).
Oskooi, A. et al., “Distinguishing Correct from Incorrect PML Proposals and a Corrected Unplit PML for Anisotropic, Dispersive Media,” J. of Computational Physics 230, pp. 2369-2377 (2011).
Zhang, D. et al., “Least-Squares Reverse Time Migration of Multiples,” Geophysics 79(1), pp. S11-S21 (Jan.-Feb. 2014).
Dong, L., et al., (2005), “An Eigenvalue Decomposition Method to Construct Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations”, Nanjing Institute of Geophysical Prospecting and Institute of Physics Publishing, Journal of Geophysics and Engineering, vol. 2, pp. 192-198.
Related Publications (1)
Number Date Country
20160238723 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
62115938 Feb 2015 US