The disclosed embodiments relate generally to memory systems, and in particular, to improving the performance and efficiency of tiered data structures.
The speed of many computer operations is frequently constrained by the speed and efficiency with which data can be stored and retrieved from data structures associated with the device. Many conventional data structures take a long time to store and retrieve data. However, tiered data structures can be used to dramatically improve the speed and efficiency of data storage. Some tiered data structures enable data searches, data insertions, data deletions and sequential data access to be performed in logarithmic time. However, further improvements to tiered data structures can further increase the speed and efficiency with which data can be stored and retrieved, thereby improving the performance of computers relying on such tiered data structures.
Various implementations of systems, methods and devices within the scope of the appended claims each have several aspects, no single one of which is solely responsible for the attributes described herein. Without limiting the scope of the appended claims, after considering this disclosure, and particularly after considering the section entitled “Detailed Description” one will understand how the aspects of various implementations are used to improve the performance and efficiency of tiered data structures.
So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various implementations, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate the more pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
The various implementations described herein include systems, methods and/or devices used to improve the performance and efficiency of tiered data structures. One or more of the various implementations described herein include systems, methods and/or devices for efficient cache utilization in a tiered data structure. One or more of the various implementations described herein include systems, methods and/or devices for performing conditional updates for reducing frequency of data modification operations (e.g., in a tiered data structure). One or more of the various implementations described herein include systems, methods and/or devices for compaction of information in a tiered data structure.
Numerous details are described herein in order to provide a thorough understanding of the example implementations illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known methods, components, and circuits have not been described in exhaustive detail so as not to unnecessarily obscure more pertinent aspects of the implementations described herein.
As described in more detail below, a computer system detects a request to access a first data object stored in a tiered data structure that includes internal nodes and leaf nodes. In response to detecting the request, the computer system determines whether the first data object is stored in a cache that includes a plurality of data objects from the tiered data structure that are stored separately from their corresponding leaf node in the cache. When the first data object is stored in the cache, the computer system returns the first data object from the cache and when the first data object is not stored in the cache, the computer system traverses the tiered data structure to a leaf node that includes the first data object and returns the first data object from the leaf node for the first data object in the tiered data structure.
In some embodiments, returning the first data object from the cache to the requestor includes locating the first data object in the cache using a hash table to map a unique key of the first data object that is included with the request to a portion of the cache that includes the first data object. In some embodiments, returning the first data object from the cache to the requestor includes locating the first data object in the cache without reference to the tiered data structure.
In some embodiments, two or more of the leaf nodes each include multiple data objects, each of the data objects including unique key information and a corresponding value.
In some embodiments, the cache is stored in high-speed memory, and the tiered data structure is stored in persistent memory (e.g., NAND flash memory or other non-volatile memory) that has a slower average read and/or write speed than the high-speed memory. In some embodiments, the persistent memory comprises one or more three-dimensional (3D) memory devices and circuitry associated with operation of memory elements in the one or more 3D memory devices. In some embodiments, the circuitry and one or more memory elements in a respective 3D memory device, of the one or more 3D memory devices, are on the same substrate (e.g., a silicon substrate).
In some embodiments, in accordance with a determination that the first data object is not stored in the cache, after returning the first data object from the leaf node for the first data object, the computer system stores the first data object in the cache.
In some embodiments, in conjunction with storing the first data object in the cache, in accordance with a determination that cache eviction criteria have been met, the computer system evicts one or more other data objects from the cache.
In some embodiments, in conjunction with traversing the tiered data structure to the leaf node for the first data object, the computer system caches internal nodes that are traversed between a root node and the leaf node for the first data object. In some embodiments, traversing the tiered data structure to the leaf node for the first data object includes retrieving one or more nodes that were previously cached during previous traversals of the tiered data structure. In some embodiments, the cache is populated with data objects retrieved by traversing the tiered data structure in response to prior requests to access data objects from the tiered data structure.
In some embodiments, a method performed by the computer system includes detecting an insert request to insert a second data object into the tiered data structure, and in response to detecting the insert request, (A) traversing the tiered data structure to a leaf node for the second data object and inserting the second data object into the leaf node for the second data object, and (B) in accordance with a determination that the second data object was successfully inserted into the tiered data structure, storing the second data object in the cache separately from the leaf node for the second data object.
In some embodiments, a method performed by the computer system includes detecting an update request to update a third data object in the tiered data structure, and in response to detecting the update request, (A) traversing the tiered data structure to a leaf node for the third data object and updating the third data object in the leaf node for the third data object, and (B) in accordance with a determination that the third data object was successfully updated in the tiered data structure, storing the updated third object in the cache separately from the leaf node for the third data object.
In some embodiments, a method performed by the computer system includes detecting a delete request to delete a fourth data object in the tiered data structure, and in response to detecting the delete request, (A) traversing the tiered data structure to a leaf node for the fourth data object and deleting the fourth data object from the leaf node for the fourth data object, and (B) in accordance with a determination that the fourth data object was successfully deleted in the tiered data structure and is stored in the cache, deleting the fourth object from the cache.
In some embodiments, the cache has a predefined size, and at a respective point in time, the cache is populated with recently accessed data objects for a plurality of leaf nodes; and the predefined size of the cache is smaller than the aggregate size of the plurality of leaf nodes. For example, in some circumstances, the respective point in time is a point in time after one or more data objects have been evicted from the cache.
In some embodiments, the cache has a data object portion for storing data objects separately from their corresponding leaf nodes and a node portion for storing leaf nodes and internal nodes of the tiered data structure. In some of these embodiments, a method performed by the computer system includes, in conjunction with returning the first data object from the leaf node for the first data object in the tiered data structure to the requestor, caching the first data object in the data object portion of the cache, and caching the leaf node for the first data object in the node portion of the cache. Furthermore, the method includes, after caching the first data object and the leaf node for the first data object, accessing a different data object in a different leaf node of the tiered data structure, and in conjunction with accessing the different data object, caching the different data object in the data object portion of the cache while maintaining the first data object in the data object portion of the cache, and caching the different leaf node in the node portion of the cache and evicting the leaf node for the first data object from the node portion of the cache.
In some embodiments, tiered data structure 104 is stored in non-volatile memory such as NAND-type flash memory or NOR-type flash memory, magnetic hard disk drives or other persistent storage medium that maintains its state when power is removed. In some embodiments, cache 106 is stored in RAM or other random access memory that is not persistent and does not maintain its state when power is removed. In some embodiments, tiered data structure 104 is divided across a plurality of storage devices. Computer system 102 responds to requests from internal requestors 108 (e.g., other computer systems or components of data storage system 101 that need access to data stored in tiered data structure 104) and/or external requestors 110 by storing, retrieving, and modifying data in tiered data structure 104 and cache 106, as described in greater detail below with reference to
Each of the above identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 206 may store a subset of the modules and data structures identified above. Furthermore, memory 206 may store additional modules and data structures not described above. In some embodiments, the programs, modules, and data structures stored in memory 206, or the computer readable storage medium of memory 206, provide instructions for implementing respective operations in the methods described below with reference to
Although
Navigating the tiered data structure typically, but optionally, relies on the assumption that keys are always sorted in a predefined order (e.g., monotonically ascending), so that a node that is associated with data having keys between a first value and a second value is associated with all data in the tiered data structure that has keys between the first value and the second value. In some embodiments, each leaf node has a maximum size and when the leaf node exceeds the maximum size, the leaf node is split into two leaf nodes. In some embodiments, each leaf node has a minimum size and when a leaf node is below the minimum size, the leaf node is combined with one or more other leaf nodes. In some embodiments, each non-leaf node (e.g., root node or internal node) has a maximum number of child nodes, and when a splitting a leaf node results in a non-leaf node having more than the maximum number of child nodes, the non-leaf node is split to accommodate the extra child nodes. In some embodiments, each non-leaf node (e.g., root node or internal node) has a minimum number of child nodes, and when a combining two or more leaf nodes results in a non-leaf node having less than the minimum number of child nodes, the non-leaf node is combined with one or more other non-leaf nodes to accommodate the reduced number of child nodes. The tiered data structure may additionally conform to some or all of the rules associated with B-Trees, B+Trees, B*Trees or other tiered data structures.
In
In
In
While the preceding examples have been shown with a small number of data objects and nodes, it should be understood that in a typical cache, a much larger number of data objects and nodes are stored in the cache and similar processes are performed. For example in an 2 GB (gigabyte) DRAM cache with a 1 GB data object cache portion, a 1 gigabyte node cache portion, an average node size of 8 KB (kilobytes) and an average data object size of 1 KB, the data object cache portion would hold approximately 1 million data objects and the node cache portion would hold approximately 250,000 nodes. In some embodiments, only internal nodes 304 are cached in node cache portion 106-2. In some embodiments, root node 302 and leaf nodes 306 are cached in node cache portion 106-2, but most leaf nodes are quickly evicted from node cache portion 106-2, while internal nodes 304 are frequently used and are thus frequently refreshed in cache 106, so that the node cache portion 106-2 includes primarily internal nodes 304 during normal operation (e.g., 50% or more of the capacity of node cache portion 106-2 is occupied by internal nodes). Using a data object cache in addition to a node cache instead of solely using a node cache improves the performance of the cache by increasing the likelihood that a requested data object will be available from the cache. For example, using a 1 GB data object cache in addition to a 1 GB node cache approximately quadruples the object capacity of the cache as compared with a 2 GB node cache. Additional details regarding efficient cache utilization in a tiered data structure are described below with reference to method 400 and
After identifying the leaf node that includes the requested data object, computer system 102 locks (323) the leaf node that includes the requested data object, as shown in
In some circumstances, the detected request (e.g., detected in operation 320) includes a request to access multiple data objects that are in a single leaf node, in which case operations 324-326 are, optionally, repeated for two or more of the multiple data objects, so as to reduce the number of traversals of tiered data structure 104. After the operation(s) based on the conditional-update response have been performed, computer system 102 unlocks (328) the leaf node (e.g., leaf node 306-4) that was locked in response to the request to access the requested data object. Additional details regarding performing conditional updates for reducing frequency of data modification operations (e.g., in a tiered data structure) are described below with reference to method 500 and
The data objects (e.g., D059, D060, D061, D063, D066) in leaf node 306-4 each include unique key information (e.g., K59, K60, K61, K63, K66, respectively) and a corresponding value (e.g., V59, V60, V61, V63, V66, respectively). In some embodiments, the unique key information for some of the data objects is a full unique key for the data objects, while the unique key information for other data objects is a portion of a unique key for the data objects, and the metadata for these data objects indicates a location of a key prefix that is shared with one or more other data objects that can be used to recreate the unique key for the data object in combination with the unique key information stored with the data object. For example, data object 59 includes a full unique key in unique key information K59, while data object 60 includes a partial key in unique key information K60 and metadata M60 associated with data object 60 is used to identify a location of a key prefix (e.g., a portion of K59 that serves as a key prefix for data object 60 and, in combination with unique key information K60 can be used to determine a unique key for data object 60). Similarly, data object 61 includes a partial key in unique key information K61 and metadata M61 associated with data object 61 is used to identify a location of a key prefix (e.g., a portion of K59 that serves as a key prefix for data object 61 and, in combination with unique key information K61 can be used to determine a unique key for data object 61).
Metadata (e.g., M59, M60, M61, M63, and M66) for a corresponding data object optionally includes one or more of the following: key length information 334 indicating a length of unique key information associated with the corresponding data object; data length information 336 indicating a length of the corresponding data object or the value of the corresponding data object; prefix offset information 338 that indicates a location of a start of a key prefix for the corresponding data object; prefix length information 340 that indicates a length of the key prefix for the corresponding data object; data overflow pointer 342 that indicates a location of data for the corresponding data object that is too large to fit in the leaf node; and global version information 344 that indicates a version of the corresponding data object. In some embodiments, the global version information 344 includes information identifying the order of each change to data objects in tiered data structure 104 (
In some embodiments different data objects have different types of metadata with different lengths, sometimes called variable-length metadata. Using variable length metadata enables shorter metadata to be used in many situations, and using shorter metadata increases the number of data objects that can be stored in a leaf node. As one example, there are four types of metadata, type-0 metadata, type-1 metadata, type-2 metadata and type-3 metadata. Type-0 metadata is used when the data object has the same key prefix, key length, and data length as the preceding data object, in which case the metadata includes only global version information 344 (e.g., represented as a 64-bit unsigned integer), and other information such as key prefix location, data length and key length are determined by looking at the metadata corresponding to the preceding data object. Type-1 metadata is used when the data object has a key length and data length that can each fit in a single byte and data that fits in the leaf node, in which case the metadata includes key length information 334 (e.g., represented as an 8-bit unsigned integer), data length information 336 (e.g., represented as an 8-bit unsigned integer), prefix offset information 338 (e.g., represented as an 16-bit unsigned integer), prefix length information 340 (e.g., represented as an 8-bit unsigned integer), and global version information 344 (e.g., represented as a 64-bit unsigned integer). Type-2 metadata is used when the data object has a key length and data length that can each fit in two bytes, in which case the metadata includes key length information 334 (e.g., represented as an 16-bit unsigned integer), data length information 336 (e.g., represented as an 16-bit unsigned integer), prefix offset information 338 (e.g., represented as an 16-bit unsigned integer), prefix length information 340 (e.g., represented as an 16-bit unsigned integer), data overflow pointer 342 (e.g., represented as a 64-bit unsigned integer), and global version information 344 (e.g., represented as a 64-bit unsigned integer). Type-3 metadata is used for data objects that do not fit in the other categories, in which case the metadata includes key length information 334 (e.g., represented as an 32-bit unsigned integer), data length information 336 (e.g., represented as an 32-bit unsigned integer), prefix offset information 338 (e.g., represented as an 16-bit unsigned integer), prefix length information 340 (e.g., represented as an 32-bit unsigned integer), data overflow pointer 342 (e.g., represented as a 64-bit unsigned integer), and global version information 344 (e.g., represented as a 64-bit unsigned integer). Type-3 metadata is the most flexible metadata type, but is also the largest of these four metadata types. Enabling the use of other types of metadata (e.g., type-0, type-1, and type-2) saves space in the leaf node when type-3 metadata is not needed to store all of the relevant metadata for a data object. While the example above describes four types of metadata, the principles described above (e.g., using a shorter formats for metadata where the shorter format enables all of the necessary metadata information to be conveyed by the shorter metadata) would apply equally to other types of metadata and thus, in principle, any number of types of metadata could be used in an analogous manner.
In some situations one or more data objects are updated without adding or deleting a data object from leaf node 306-4. However, even though a data object has not been added or deleted, updating a data object will, in some circumstances change a size of the data object (e.g., by changing a type of metadata used by the data object to a smaller or larger size of metadata or by changing a length of the data to a smaller or larger length). The change in the data object or associated metadata will, in many circumstances, change locations of data objects, metadata and headers relative to the locations from which offsets identifying locations of these elements are measured, and thus after a data object or metadata has been updated, computer system 102 updates the offset information in the header and metadata corresponding to one or more of the other data objects. Additional details regarding compaction of information in a tiered data structure are described below with reference to method 600 and
Attention is now directed to
A computer system (e.g., computer system 102 in
In some circumstances, two or more of the leaf nodes each include (404) multiple data objects, each of the data objects including unique key information (e.g., a unique key or information from which a unique key can be identified such as a shortened key and a location/length of a key prefix) and a corresponding value. In some embodiments, the corresponding value is data. In some embodiments, the corresponding value is a pointer identifying a location where the data is stored. In some embodiments, the data objects are contiguous data objects where the unique key information for a respective contiguous data object is adjacent or substantially adjacent to the corresponding value for the respective contiguous data object or other data for the respective contiguous data object that is adjacent to the corresponding value. In some embodiments, the data objects are split data objects where the unique key information for a respective split data object is separated from the corresponding value for the respective split data object by other data for other data objects and the unique key information for the respective split data object is stored with a pointer that identifies a location of the corresponding value for the respective split data object.
In response to detecting the request to access the first data object, the computer system determines (406) whether the first data object is stored in a cache (e.g., data object cache portion 106-1 in
In some embodiments, the cache is stored (410) in high-speed memory (e.g., RAM or other non-persistent memory with a high read/write rate that loses stored information when power is shut off to the memory, or even high-speed persistent memory). In some circumstances, high-speed persistent memory is more expensive than slower persistent memory and thus the amount of high-speed persistent memory is smaller than the amount of slower persistent memory, so as to reduce device cost. In some embodiments, the tiered data structure is stored in persistent memory that has a slower average read and/or write speed than the high-speed memory (e.g., wherein the persistent memory comprises Flash memory, any suitable three-dimensional non-volatile memory such as vertical NAND, RRAM (also called ReRAM), etc.; hard drive disks, or other persistent memory that maintains its state even when power is shut off to the memory). In some embodiments, the cache is populated (412) with data objects retrieved by traversing the tiered data structure in response to prior requests to access data objects from the tiered data structure.
After determining whether the first data object is stored in the cache, in accordance with a determination that the first data object is stored in the cache, the computer system returns (414) the first data object from the cache to the requestor. For example, data object 25 is retrieved from data object cache portion 106-1 in response to request 2 in
In some embodiments, returning the first data object from the cache to the requestor includes locating (416) the first data object in the cache using a hash table to map a unique key of the first data object that is included with the request to a portion of the cache (sometimes referred to as a “bucket”) that includes the first data object (and, optionally, one or more other data objects which have unique keys that are mapped to the portion of the cache by the hash table). In some embodiments, returning the first data object from the cache to the requestor includes locating (418) the first data object in the cache without reference to the tiered data structure (e.g., without traversing the tiered data structure and without retrieving the leaf node that includes the first data object). In some embodiments, the cache has a predefined size, at a respective point in time, the cache is populated with recently accessed data objects for a plurality of leaf nodes (e.g., in response to prior requests to access the data objects) and the predefined size of the cache is smaller (420) than the aggregate size of the plurality of leaf nodes. For example, more data objects are stored in the cache than could be stored in the cache if each of the data objects was stored with its corresponding leaf node. Thus, in some embodiments, separately caching data objects enables a larger number of recently used data objects to be stored in the cache than would be able to be stored if full leaf nodes were cached, as described above with reference to
After determining whether the first data object is stored in the cache, in accordance with a determination that the first data object is not stored (424) in the cache (e.g., because a search for the first data object in the cache failed to find the first data object in the cache), the computer system traverses (426) the tiered data structure to a leaf node that includes the first data object. In some embodiments, in conjunction with traversing the tiered data structure to the leaf node for the first data object, the computer system caches (428) internal nodes that are traversed between a root node and the leaf node for the first data object. For example in
After traversing the tiered data structure, the computer system returns (432) the first data object from the leaf node for the first data object in the tiered data structure to the requestor. In some embodiments, in accordance with a determination that the first data object is not stored in the cache, after returning the first data object from the leaf node for the first data object, the computer system stores (434) the first data object in the cache. In some embodiments, in conjunction with storing the first data object in the cache, in accordance with a determination that cache eviction criteria have been met, the computer system evicts (435) one or more other data objects from the cache (e.g., evicting the least recently used data objects in accordance with a least recently used (LRU) cache eviction policy or evicting the oldest data objects in accordance with a first in first out (FIFO) cache eviction policy). In some embodiments, the computer system also caches (436) the leaf node for the first data object in the cache. For example, in
In some embodiments, the cache has a data object portion (e.g., data object cache portion 106-1 in
In some circumstances, the computer system detects (446) an insert request to insert a second data object into the tiered data structure. In some embodiments, in response (448) to detecting the insert request, the computer system traverses (450) the tiered data structure to a leaf node for the second data object and inserting the second data object into the leaf node for the second data object (e.g., the leaf node for the first data object or another leaf node that is different from the leaf node for the first data object). In some embodiments, inserting the second data object in the tiered data structure causes a leaf node and optionally one or more internal nodes to be split. In some embodiments, in accordance with a determination that the second data object was successfully inserted into the tiered data structure, the computer system stores (452) the second data object in the cache separately from the leaf node for the second data object. In some embodiments, if the second data object is not successfully inserted into the tiered data structure, the computer system forgoes storing the second data object in the cache (e.g., the second data object is not stored in the cache) and an error message is optionally sent to the requestor indicating that the second data object was not inserted.
In some circumstances, the computer system detects (454) an update request to update a third data object in the tiered data structure. In some embodiments, in response (456) to detecting the update request, the computer system traverses (458) the tiered data structure to a leaf node for the third data object and updating the third data object in the leaf node for the third data object (e.g., the leaf node for the first data object or another leaf node that is different from the leaf node for the first data object). In some embodiments, in accordance with a determination that the third data object was successfully updated in the tiered data structure, the computer system stores (460) the updated third object in the cache separately from the leaf node for the third data object. In some embodiments, if the third data object is not successfully updated in the tiered data structure, the computer system forgoes updating the third data object in the cache (e.g., the third data object is not updated in the cache) and an error message is optionally sent to the requestor indicating that the third data object was not updated. In some embodiments, if a prior version of the third data object is already in the cache, then storing the updated third object in the cache includes updating/replacing the prior version of the third data object in the cache with the updated third object, whereas if a prior version of the third object is not stored in the cache, the updated third object is stored in the cache without needing to delete or overwrite a prior version of the third object.
In some circumstances, the computer system detects (462) a delete request to delete a fourth data object in the tiered data structure. In some embodiments, in response (464) to detecting the delete request, the computer system traverses (466) the tiered data structure to a leaf node for the fourth data object and deleting the fourth data object from the leaf node for the fourth data object (e.g., the leaf node for the first data object or another leaf node that is different from the leaf node for the first data object). In some embodiments, deleting the fourth data object in the tiered data structure causes two or more leaf nodes and, optionally, two or more internal nodes to be combined. In some embodiments, in accordance with a determination that the fourth data object was successfully deleted in the tiered data structure and is stored in the cache, the computer system deletes (468) the fourth object from the cache. In some embodiments, if the fourth data object is not successfully deleted from the tiered data structure, the computer system forgoes deleting the fourth data object from the cache (e.g., the fourth data object is not deleted from the cache) and an error message is optionally sent to the requestor indicating that the fourth data object was not deleted. In situations where the fourth object is not stored in the cache (e.g., in accordance with a determination that the fourth object is not in the cache), the fourth object does not need to be deleted from the object cache.
It should be understood that the particular order in which the operations in
Attention is now directed to
A computer system (e.g., computer system 102 in
In some circumstances, two or more of the leaf nodes each include (504) multiple data objects, each of the data objects including unique key information (e.g., a unique key or information from which a unique key can be identified such as a shortened key and a location/length of a key prefix) and a corresponding value. In some embodiments, the corresponding value is data. In some embodiments, the corresponding value is a pointer identifying a location where the data is stored. In some embodiments, the data objects are contiguous data objects where the unique key information for a respective contiguous data object is adjacent or substantially adjacent to the corresponding value for the respective contiguous data object or other data for the respective contiguous data object that is adjacent to the corresponding value. In some embodiments, the data objects are split data objects where the unique key information for a respective split data object is separated from the corresponding value for the respective split data object by other data for other data objects and the unique key information for the respective split data object is stored with a pointer that identifies a location of the corresponding value for the respective split data object. In some embodiments, the request to access a first data object comprises (506) a conditional request to modify the first data object (e.g., a request that may or may not result in modifying the first data object depending on one or more conditions such as the current value of the first data object).
In some embodiments, the computer system performs (508) one or more operations in response to detecting the request to access the first data object. The computer system retrieves (510) a leaf node that includes the first data object. In some embodiments, retrieving the leaf node includes traversing (512) the tiered data structure by navigating through one or more internal nodes to the leaf node that includes the first data object, and after traversing through the one or more internal nodes, the computer system read-locks (514) the one or more internal nodes that were traversed to reach the leaf node that includes the first data object. In response to detecting the request to access the first data object, the computer system also locks (516) the leaf node that includes the first data object. In some embodiments, the leaf node that includes the first data object is write-locked (518) while the first conditional-update communication is transmitted and the response is received. For example, in
In order to improve the efficiency of performing the conditional update operation, the computer system performs a plurality of operations while the leaf node that includes the first data object is locked. In particular, while the leaf node that includes the first data object is (520) locked, the computer system transmits (522), to the requestor, a first conditional-update communication that includes an indication of the current value of the first data object. In some embodiments, the conditional-update communication includes (524) an executable callback object.
After transmitting the first conditional-update communication, the computer system detects (526) a first conditional-update response corresponding to the first data object received from the requestor in response to the first conditional-update communication (e.g., based on the indication of the current value of the first data object). In some embodiments, the conditional-update response corresponds (528) to a result generated based on execution of the callback object.
In response to detecting the first conditional-update response corresponding to the first data object, the computer system performs (530) one or more operations based on the first conditional-update response corresponding to the first data object. In some embodiments, the first conditional-update communication provides (532) information that enables the requestor to determine whether or not to update the value of the first data object based on a current value of the first data object and performing the one or more operations based on the first conditional-update response includes determining whether or the conditional-update response includes a request to update the value of the first data object. In accordance with a determination that the first conditional-update response includes a request to update the value of the first data object, the computer system updates (534) the value of the first data object in accordance with the first conditional-update response. In accordance with a determination that the first conditional-update response does not include a request to update the value of the first data object (e.g., the first conditional-update response includes a request to maintain the value of the first data object or the first conditional-update response includes a request to end the update operation for the first data object without requesting that the value of the first data object be updated), the computer system forgoes (536) updating the value of the first data object (e.g., the first conditional-update response corresponding to the first data object enables performance of an update operation that is not a blind update).
In some circumstances, the request to access the first data object identifies (538) a plurality of data objects including the first data object. In some embodiments, while the leaf node that includes the first data object is locked, and after performing the one or more operations based on the first conditional-update response corresponding to the first data object, the computer system transmits (540), to the requestor, a second conditional-update communication that includes an indication of the current value of a second data object in the plurality of data objects. The computer system subsequently detects (542) a second conditional-update response corresponding to the second data object received from the requestor in response to the second conditional-update communication (e.g., based on the indication of the current value of the second data object) and, in response to detecting the second conditional-update response corresponding to the second data object, the computer system performs (544) one or more operations based on the second conditional-update response corresponding to the second data object. In some embodiments, this process is repeated for a number of different data objects in a predefined (key) order until an object is reached that is not in the leaf node that includes the first data object (e.g., as shown above in
After performing the one or more operations based on the first conditional-update response corresponding to the first data object, the computer system unlocks (546) the leaf node that includes the first data object (e.g., so that other read and/or write operations can be performed on the leaf node and/or data objects contained therein. For example, in
It should be understood that the particular order in which the operations in
Attention is now directed to
A computer system (e.g., computer system 102 in
Furthermore, two or more of the leaf nodes each include (606) multiple data objects, each of the data objects including unique key information (e.g., a unique key or information from which a unique key can be identified such as a shortened key and a location/length of a key prefix) and a corresponding value. In some embodiments, the corresponding value is data. In some embodiments, the corresponding value is a pointer identifying a location where the data is stored. In some embodiments, the data objects are contiguous data objects where the unique key information for a respective contiguous data object is adjacent or substantially adjacent to the corresponding value for the respective contiguous data object or other data for the respective contiguous data object that is adjacent to the corresponding value. In some embodiments, the data objects are split data objects where the unique key information for a respective split data object is separated from the corresponding value for the respective split data object by other data for other data objects and the unique key information for the respective split data object is stored with a pointer that identifies a location of the corresponding value for the respective split data object. Additionally, the first data object is (608) uniquely identified by a first key. For example, in
In response to detecting the request to access the first data object, the computer system retrieves (610) a leaf node that includes the first data object. In some embodiments, the data objects in the leaf node are sorted (612) by key in a predefined key order (e.g., the keys of the data objects in the leaf node are either monotonically increasing or monotonically decreasing from a beginning to an end of the leaf node). In some embodiments, each respective data object of a plurality of the data objects in the leaf node, including the first data object, includes metadata (614) that identifies a location of a key prefix for the key corresponding to the respective data object. In some embodiments, the metadata specifies a location (e.g., an offset to the start of the key prefix) and a length of the key prefix in the leaf node (e.g., metadata M60 for data object 60 includes prefix offset information 338 and prefix length information 340 in
In some embodiments, the leaf node includes (618) a fixed length header for each of the plurality of data objects (e.g., headers H59, H60, H61, H63, and H66 in
In some embodiments, the leaf node, as stored, is compressed. Thus, in some circumstances, when the stored leaf node is retrieved by the computer system it is still compressed. In such circumstances, after retrieving the leaf node and prior to identifying the first data object in the leaf node, the computer system decompresses (620) the leaf node. In some embodiments (e.g., if the content of the leaf node is modified while accessing the leaf node), the leaf node is recompressed after being modified and the compressed, modified, leaf node is stored.
After retrieving the leaf node that includes the first data object and, optionally, decompressing the leaf node, the computer system identifies (622) the first data object in the leaf node. In the process of identifying the first data object in the leaf node, the computer system combines (624) unique key information (e.g., a “shortened” or “truncated” key) of the first data object with a key prefix that is stored separately in the leaf node to generate a combined key. In some embodiments, the key prefix for the first data object is stored (626) as part of a second data object (e.g., as part of the unique key information of the second data information) that is stored before the first data object in predefined order (e.g., a key order) in the leaf node. In some embodiments, the key prefix comprises (628) a predefined portion of a key (or unique key information) of a distinct second data object in the leaf node. For example, to retrieve data object 60 from leaf node 306-4, after leaf node 306-4 is retrieved, metadata M60 for data object 60 is retrieved and used to identify a key prefix that is a portion of key K59 for data object 59 and the key prefix (e.g., a specified portion of K59) is combined with unique key information K60 for data object 60 to generate a full unique key (or combined key) for data object 60, which is then available for comparison with the first key for the requested data object.
In the process of identifying the first data object in the leaf node, the computer system also determines (630) that the combined key matches the first key that uniquely identifies the first data object. In some embodiments, identifying the first data object includes (632) searching through the leaf node for the first data object by comparing the first key with a plurality of candidate keys for candidate data objects in the leaf node. For example, the computer system uses a binary search pattern where a middle key in a range of key values is compared to the first key and then if the first key is greater than the middle key a first subrange above the middle key is searched starting with a key in the middle of the first subrange, but if the first key is less than the middle key, a second subrange that is below the middle key is searched starting with a key in the middle of the second subrange. In some embodiments, a respective candidate key for a respective candidate data object is generated by combining unique key information for the respective candidate data object with a corresponding key prefix for the respective candidate data object to generate the respective candidate key. After identifying the first data object, the computer system provides (634) access to the first data object to the requestor.
In some circumstances, the computer system detects (636) a request to update the first data object in the leaf node. In some embodiments, in response (638) to detecting the request to update the first data object, the computer system updates (640) the value of the first data object, wherein updating the value of the first data object changes a location of the key prefix for the first data object in the leaf node. In some embodiments, updating the value of the first data object causes a change in an offset distance from a predefined point in the leaf node (e.g., an offset from a beginning or ending of the leaf node) to the data object that includes the key prefix for the first data object. In some embodiments, in response (638) to detecting the request to update the first data object, the computer system updates (642) the unique key information corresponding to the first data object to reflect the change in the location of the key prefix for the first data object. While changing the value of the respective data object does not change the key of the first data object, a change in size of the first data object will, in some circumstances, cause one or more data objects to be moved around in the leaf node in accordance with the change in size of the first data object. When data objects are moved around in the leaf node, pointers in one or more headers (e.g., offsets specified by one or more fixed length headers) and/or metadata for data objects (e.g., offsets to one or more the key prefixes) will, in some circumstances, be updated to account for the movement of the data objects in the leaf node.
In some circumstances, the computer system detects (644) a request to insert a new data object in the tiered data structure. In some embodiments, in response (646) to detecting the request to insert the new data object in the tiered data structure, the computer system identifies (648) a respective leaf node, of the plurality of leaf nodes in the tiered data structure, into which the new data object is to be inserted and identifies (650) a position in the respective leaf node that is after a prior data object in the respective leaf node in a predefined order. In some embodiments in response (646) to detecting the request to insert the new data object in the tiered data structure, the computer system determines (652) a prefix for the key of the respective data object based on a comparison between the key of the respective data object with the key of the prior data object and inserts (654) the data object into the respective leaf node along with an indication of a location in the leaf node of the prefix for the key of the respective data object. In some embodiments, the computer system also updates metadata (e.g., prefix information) that identifies a location of a prefix for one or more data objects that are after the new data object in the predefined order (e.g., data objects that point to a key prefix in a data object that is before the new data object in the predefined order). An example of adding a data object to a leaf node is described above in greater detail with reference to
In some circumstances, the computer system detects (656) a request to delete a respective data object in the leaf node that is before a subsequent data object in the leaf node, the respective data object having a key. In some embodiments, in response to detecting the request to delete the respective data object, and in accordance with a determination that the subsequent data object relies on a portion of the key of the respective data object as a key prefix for the subsequent data object, the computer system updates (658) the subsequent data object so that metadata of the subsequent data object does not rely on the portion of the key of the respective data object as the key prefix for the subsequent data object (e.g., by including the whole key in the subsequent data object or by relying on a portion of a key of a different data object in the leaf node). An example of deleting a data object from a leaf node is described above in greater detail with reference to
It should be understood that the particular order in which the operations in
Semiconductor memory devices include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information. Each type of memory device may have different configurations. For example, flash memory devices may be configured in a NAND or a NOR configuration.
The memory devices can be formed from passive and/or active elements, in any combinations. By way of non-limiting example, passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse, phase change material, etc., and optionally a steering element, such as a diode, etc. Further by way of non-limiting example, active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
Multiple memory elements may be configured so that they are connected in series or so that each element is individually accessible. By way of non-limiting example, flash memory devices in a NAND configuration (NAND memory) typically contain memory elements connected in series. A NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group. Alternatively, memory elements may be configured so that each element is individually accessible (e.g., a NOR memory array). NAND and NOR memory configurations are exemplary, and memory elements may be otherwise configured.
The semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three dimensional memory structure.
In a two dimensional memory structure, the semiconductor memory elements are arranged in a single plane or a single memory device level. Typically, in a two dimensional memory structure, memory elements are arranged in a plane (e.g., in an x-z direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements. The substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed. As a non-limiting example, the substrate may include a semiconductor such as silicon.
The memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations. The memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
A three dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the y direction is substantially perpendicular and the x and z directions are substantially parallel to the major surface of the substrate).
As a non-limiting example, a three dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels. As another non-limiting example, a three dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements in each column. The columns may be arranged in a two dimensional configuration (e.g., in an x-z plane), resulting in a three dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes. Other configurations of memory elements in three dimensions can also constitute a three dimensional memory array.
By way of non-limiting example, in a three dimensional NAND memory array, the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-z) memory device level. Alternatively, the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels. Other three dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels. Three dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
Typically, in a monolithic three dimensional memory array, one or more memory device levels are formed above a single substrate. Optionally, the monolithic three dimensional memory array may also have one or more memory layers at least partially within the single substrate. As a non-limiting example, the substrate may include a semiconductor such as silicon. In a monolithic three dimensional array, the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array. However, layers of adjacent memory device levels of a monolithic three dimensional memory array may be shared or have intervening layers between memory device levels.
Then again, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device having multiple layers of memory. For example, non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three dimensional memory arrays. Further, multiple two dimensional memory arrays or three dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements. As non-limiting examples, memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading. This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate. For example, a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
The term “three-dimensional memory device” (or 3D memory device) is herein defined to mean a memory device having multiple memory layers or multiple levels (e.g., sometimes called multiple memory device levels) of memory elements, including any of the following: a memory device having a monolithic or non-monolithic 3D memory array, some non-limiting examples of which are described above; or two or more 2D and/or 3D memory devices, packaged together to form a stacked-chip memory device, some non-limiting examples of which are described above.
One of skill in the art will recognize that this invention is not limited to the two dimensional and three dimensional exemplary structures described but cover all relevant memory structures within the spirit and scope of the invention as described herein and as understood by one of skill in the art.
It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, which changing the meaning of the description, so long as all occurrences of the “first contact” are renamed consistently and all occurrences of the second contact are renamed consistently. The first contact and the second contact are both contacts, but they are not the same contact.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the phrase “at least one of A, B and C” is to be construed to require one or more of the listed items, and this phase reads on a single instance of A alone, a single instance of B alone, or a single instance of C alone, while also encompassing combinations of the listed items such as “one or more of A and one or more of B without any of C,” and the like.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.
This application claims priority to U.S. Provisional Application Ser. No. 61/973,170, filed Mar. 31, 2014, which is incorporated by reference herein in its entirety. This application is also related to U.S. Provisional Patent Application No. 61/973,174, filed Mar. 31, 2014, U.S. Provisional Patent Application No. 61/973,177, filed Mar. 31, 2014, U.S. patent application Ser. No. 14/336,949, filed Jul. 21, 2014, and U.S. patent application Ser. No. 14/336,967, filed Jul. 21, 2014, all of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4173737 | Skerlos et al. | Nov 1979 | A |
4888750 | Kryder et al. | Dec 1989 | A |
4916652 | Schwarz et al. | Apr 1990 | A |
5129089 | Nielsen | Jul 1992 | A |
5270979 | Harari et al. | Dec 1993 | A |
5329491 | Brown et al. | Jul 1994 | A |
5381528 | Brunelle | Jan 1995 | A |
5519847 | Fandrich et al. | May 1996 | A |
5530705 | Malone | Jun 1996 | A |
5537555 | Landry | Jul 1996 | A |
5551003 | Mattson et al. | Aug 1996 | A |
5636342 | Jeffries | Jun 1997 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5666114 | Brodie et al. | Sep 1997 | A |
5708849 | Coke et al. | Jan 1998 | A |
5765185 | Lambrache et al. | Jun 1998 | A |
5890193 | Chevaliier | Mar 1999 | A |
5936884 | Hasbun et al. | Aug 1999 | A |
5943692 | Marberg et al. | Aug 1999 | A |
5946714 | Miyauchi | Aug 1999 | A |
5982664 | Watanabe | Nov 1999 | A |
6000006 | Bruce et al. | Dec 1999 | A |
6006345 | Berry, Jr. | Dec 1999 | A |
6016560 | Wada et al. | Jan 2000 | A |
6018304 | Bessios | Jan 2000 | A |
6044472 | Crohas | Mar 2000 | A |
6070074 | Perahia et al. | May 2000 | A |
6119250 | Nishimura et al. | Sep 2000 | A |
6138261 | Wilcoxson et al. | Oct 2000 | A |
6182264 | Ott | Jan 2001 | B1 |
6192092 | Dizon et al. | Feb 2001 | B1 |
6260120 | Blumenau et al. | Jul 2001 | B1 |
6295592 | Jeddeloh et al. | Sep 2001 | B1 |
6311263 | Barlow et al. | Oct 2001 | B1 |
6408394 | Vander Kamp et al. | Jun 2002 | B1 |
6412042 | Paterson et al. | Jun 2002 | B1 |
6442076 | Roohparvar | Aug 2002 | B1 |
6449625 | Wang | Sep 2002 | B1 |
6484224 | Robins et al. | Nov 2002 | B1 |
6516437 | Van Stralen et al. | Feb 2003 | B1 |
6564285 | Mills et al. | May 2003 | B1 |
6647387 | McKean et al. | Nov 2003 | B1 |
6678788 | O'Connell | Jan 2004 | B1 |
6757768 | Potter et al. | Jun 2004 | B1 |
6775792 | Ulrich et al. | Aug 2004 | B2 |
6810440 | Micalizzi, Jr. et al. | Oct 2004 | B2 |
6836808 | Bunce et al. | Dec 2004 | B2 |
6836815 | Purcell et al. | Dec 2004 | B1 |
6842436 | Moeller | Jan 2005 | B2 |
6865650 | Morley et al. | Mar 2005 | B1 |
6871257 | Conley et al. | Mar 2005 | B2 |
6895464 | Chow et al. | May 2005 | B2 |
6966006 | Pacheco et al. | Nov 2005 | B2 |
6978343 | Ichiriu | Dec 2005 | B1 |
6980985 | Amer-Yahia et al. | Dec 2005 | B1 |
6981205 | Fukushima et al. | Dec 2005 | B2 |
6988171 | Beardsley et al. | Jan 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7024514 | Mukaida et al. | Apr 2006 | B2 |
7028165 | Roth et al. | Apr 2006 | B2 |
7032123 | Kane et al. | Apr 2006 | B2 |
7043505 | Teague et al. | May 2006 | B1 |
7076598 | Wang | Jul 2006 | B2 |
7100002 | Shrader et al. | Aug 2006 | B2 |
7102860 | Wenzel | Sep 2006 | B2 |
7111293 | Hersh et al. | Sep 2006 | B1 |
7126873 | See et al. | Oct 2006 | B2 |
7133282 | Sone | Nov 2006 | B2 |
7155579 | Neils et al. | Dec 2006 | B1 |
7162678 | Saliba | Jan 2007 | B2 |
7173852 | Gorobets et al. | Feb 2007 | B2 |
7184446 | Rashid et al. | Feb 2007 | B2 |
7275170 | Suzuki | Sep 2007 | B2 |
7295479 | Yoon et al. | Nov 2007 | B2 |
7328377 | Lewis et al. | Feb 2008 | B1 |
7516292 | Kimura et al. | Apr 2009 | B2 |
7523157 | Aguilar, Jr. et al. | Apr 2009 | B2 |
7527466 | Simmons | May 2009 | B2 |
7529466 | Takahashi | May 2009 | B2 |
7533214 | Aasheim et al. | May 2009 | B2 |
7546478 | Kubo et al. | Jun 2009 | B2 |
7566987 | Black et al. | Jul 2009 | B2 |
7571277 | Mizushima | Aug 2009 | B2 |
7574554 | Tanaka et al. | Aug 2009 | B2 |
7596643 | Merry et al. | Sep 2009 | B2 |
7681106 | Jarrar et al. | Mar 2010 | B2 |
7685494 | Varnica et al. | Mar 2010 | B1 |
7707481 | Kirschner et al. | Apr 2010 | B2 |
7761655 | Mizushima et al. | Jul 2010 | B2 |
7765454 | Passint | Jul 2010 | B2 |
7774390 | Shin | Aug 2010 | B2 |
7840762 | Oh et al. | Nov 2010 | B2 |
7870326 | Shin et al. | Jan 2011 | B2 |
7890818 | Kong et al. | Feb 2011 | B2 |
7913022 | Baxter | Mar 2011 | B1 |
7925960 | Ho et al. | Apr 2011 | B2 |
7934052 | Prins et al. | Apr 2011 | B2 |
7945825 | Cohen et al. | May 2011 | B2 |
7954041 | Hong et al. | May 2011 | B2 |
7971112 | Murata | Jun 2011 | B2 |
7974368 | Shieh et al. | Jul 2011 | B2 |
7978516 | Olbrich | Jul 2011 | B2 |
7996642 | Smith | Aug 2011 | B1 |
8006161 | Lestable et al. | Aug 2011 | B2 |
8032724 | Smith | Oct 2011 | B1 |
8041884 | Chang | Oct 2011 | B2 |
8042011 | Nicolaidis et al. | Oct 2011 | B2 |
8069390 | Lin | Nov 2011 | B2 |
8190967 | Hong et al. | May 2012 | B2 |
8250380 | Guyot | Aug 2012 | B2 |
8254181 | Hwang et al. | Aug 2012 | B2 |
8259506 | Sommer et al. | Sep 2012 | B1 |
8312349 | Reche et al. | Nov 2012 | B2 |
8412985 | Bowers et al. | Apr 2013 | B1 |
8429436 | Fillingim et al. | Apr 2013 | B2 |
8438459 | Cho et al. | May 2013 | B2 |
8453022 | Katz | May 2013 | B2 |
8627117 | Johnston | Jan 2014 | B2 |
8634248 | Sprouse et al. | Jan 2014 | B1 |
8694854 | Dar et al. | Apr 2014 | B1 |
8724789 | Altberg et al. | May 2014 | B2 |
8885434 | Kumar | Nov 2014 | B2 |
8898373 | Kang et al. | Nov 2014 | B1 |
8910030 | Goel | Dec 2014 | B2 |
8923066 | Subramanian et al. | Dec 2014 | B1 |
9043517 | Sprouse et al. | May 2015 | B1 |
9128690 | Lotzenburger et al. | Sep 2015 | B2 |
20010050824 | Buch | Dec 2001 | A1 |
20020024846 | Kawahara et al. | Feb 2002 | A1 |
20020036515 | Eldridge et al. | Mar 2002 | A1 |
20020083299 | Van Huben et al. | Jun 2002 | A1 |
20020116651 | Beckert et al. | Aug 2002 | A1 |
20020122334 | Lee et al. | Sep 2002 | A1 |
20020152305 | Jackson et al. | Oct 2002 | A1 |
20020162075 | Talagala et al. | Oct 2002 | A1 |
20020165896 | Kim | Nov 2002 | A1 |
20030041299 | Kanazawa et al. | Feb 2003 | A1 |
20030043829 | Rashid | Mar 2003 | A1 |
20030079172 | Yamagishi et al. | Apr 2003 | A1 |
20030088805 | Majni et al. | May 2003 | A1 |
20030093628 | Matter et al. | May 2003 | A1 |
20030163594 | Aasheim et al. | Aug 2003 | A1 |
20030163629 | Conley et al. | Aug 2003 | A1 |
20030188045 | Jacobson | Oct 2003 | A1 |
20030189856 | Cho et al. | Oct 2003 | A1 |
20030198100 | Matsushita et al. | Oct 2003 | A1 |
20030204341 | Guliani et al. | Oct 2003 | A1 |
20030212719 | Yasuda et al. | Nov 2003 | A1 |
20030225961 | Chow et al. | Dec 2003 | A1 |
20040024957 | Lin et al. | Feb 2004 | A1 |
20040024963 | Talagala et al. | Feb 2004 | A1 |
20040057575 | Zhang et al. | Mar 2004 | A1 |
20040062157 | Kawabe | Apr 2004 | A1 |
20040073829 | Olarig | Apr 2004 | A1 |
20040085849 | Myoung et al. | May 2004 | A1 |
20040114265 | Talbert | Jun 2004 | A1 |
20040143710 | Walmsley | Jul 2004 | A1 |
20040148561 | Shen et al. | Jul 2004 | A1 |
20040153902 | Machado et al. | Aug 2004 | A1 |
20040167898 | Margolus et al. | Aug 2004 | A1 |
20040181734 | Saliba | Sep 2004 | A1 |
20040199714 | Estakhri et al. | Oct 2004 | A1 |
20040210706 | In et al. | Oct 2004 | A1 |
20040237018 | Riley | Nov 2004 | A1 |
20050060456 | Shrader et al. | Mar 2005 | A1 |
20050060501 | Shrader | Mar 2005 | A1 |
20050073884 | Gonzalez et al. | Apr 2005 | A1 |
20050108588 | Yuan | May 2005 | A1 |
20050114587 | Chou et al. | May 2005 | A1 |
20050138442 | Keller, Jr. et al. | Jun 2005 | A1 |
20050154825 | Fair | Jul 2005 | A1 |
20050172065 | Keays | Aug 2005 | A1 |
20050172207 | Radke et al. | Aug 2005 | A1 |
20050193161 | Lee et al. | Sep 2005 | A1 |
20050201148 | Chen et al. | Sep 2005 | A1 |
20050231765 | So et al. | Oct 2005 | A1 |
20050249013 | Janzen et al. | Nov 2005 | A1 |
20050251617 | Sinclair et al. | Nov 2005 | A1 |
20050257120 | Gorobets et al. | Nov 2005 | A1 |
20050273560 | Hulbert et al. | Dec 2005 | A1 |
20050281088 | Ishidoshiro et al. | Dec 2005 | A1 |
20050289314 | Adusumilli et al. | Dec 2005 | A1 |
20060010174 | Nguyen et al. | Jan 2006 | A1 |
20060039196 | Gorobets et al. | Feb 2006 | A1 |
20060039227 | Lai et al. | Feb 2006 | A1 |
20060053246 | Lee | Mar 2006 | A1 |
20060069932 | Oshikawa et al. | Mar 2006 | A1 |
20060085671 | Majni et al. | Apr 2006 | A1 |
20060087893 | Nishihara et al. | Apr 2006 | A1 |
20060103480 | Moon et al. | May 2006 | A1 |
20060107181 | Dave et al. | May 2006 | A1 |
20060136570 | Pandya | Jun 2006 | A1 |
20060136681 | Jain et al. | Jun 2006 | A1 |
20060156177 | Kottapalli et al. | Jul 2006 | A1 |
20060195650 | Su et al. | Aug 2006 | A1 |
20060244049 | Yaoi et al. | Nov 2006 | A1 |
20060259528 | Dussud et al. | Nov 2006 | A1 |
20060291301 | Ziegelmayer | Dec 2006 | A1 |
20070011413 | Nonaka et al. | Jan 2007 | A1 |
20070058446 | Hwang et al. | Mar 2007 | A1 |
20070061597 | Holtzman et al. | Mar 2007 | A1 |
20070076479 | Kim et al. | Apr 2007 | A1 |
20070081408 | Kwon et al. | Apr 2007 | A1 |
20070083697 | Birrell et al. | Apr 2007 | A1 |
20070088716 | Brumme et al. | Apr 2007 | A1 |
20070091677 | Lasser et al. | Apr 2007 | A1 |
20070113019 | Beukema | May 2007 | A1 |
20070133312 | Roohparvar | Jun 2007 | A1 |
20070147113 | Mokhlesi et al. | Jun 2007 | A1 |
20070150790 | Gross et al. | Jun 2007 | A1 |
20070156842 | Vermeulen et al. | Jul 2007 | A1 |
20070157064 | Falik et al. | Jul 2007 | A1 |
20070174579 | Shin | Jul 2007 | A1 |
20070180188 | Fujibayashi et al. | Aug 2007 | A1 |
20070180346 | Murin | Aug 2007 | A1 |
20070191993 | Wyatt | Aug 2007 | A1 |
20070201274 | Yu et al. | Aug 2007 | A1 |
20070204128 | Lee et al. | Aug 2007 | A1 |
20070208901 | Purcell et al. | Sep 2007 | A1 |
20070234143 | Kim | Oct 2007 | A1 |
20070245061 | Harriman | Oct 2007 | A1 |
20070245099 | Gray et al. | Oct 2007 | A1 |
20070263442 | Cornwall et al. | Nov 2007 | A1 |
20070268754 | Lee et al. | Nov 2007 | A1 |
20070277036 | Chamberlain et al. | Nov 2007 | A1 |
20070279988 | Nguyen | Dec 2007 | A1 |
20070291556 | Kamei | Dec 2007 | A1 |
20070294496 | Goss et al. | Dec 2007 | A1 |
20070300130 | Gorobets | Dec 2007 | A1 |
20080013390 | Zipprich-Rasch | Jan 2008 | A1 |
20080019182 | Yanagidaira et al. | Jan 2008 | A1 |
20080022163 | Tanaka et al. | Jan 2008 | A1 |
20080028275 | Chen et al. | Jan 2008 | A1 |
20080043871 | Latouche et al. | Feb 2008 | A1 |
20080052446 | Lasser et al. | Feb 2008 | A1 |
20080052451 | Pua et al. | Feb 2008 | A1 |
20080056005 | Aritome | Mar 2008 | A1 |
20080071971 | Kim et al. | Mar 2008 | A1 |
20080077841 | Gonzalez et al. | Mar 2008 | A1 |
20080077937 | Shin et al. | Mar 2008 | A1 |
20080086677 | Yang et al. | Apr 2008 | A1 |
20080112226 | Mokhlesi | May 2008 | A1 |
20080141043 | Flynn et al. | Jun 2008 | A1 |
20080144371 | Yeh et al. | Jun 2008 | A1 |
20080147714 | Breternitz et al. | Jun 2008 | A1 |
20080147964 | Chow et al. | Jun 2008 | A1 |
20080147998 | Jeong | Jun 2008 | A1 |
20080148124 | Zhang et al. | Jun 2008 | A1 |
20080163030 | Lee | Jul 2008 | A1 |
20080168191 | Biran et al. | Jul 2008 | A1 |
20080168319 | Lee et al. | Jul 2008 | A1 |
20080170460 | Oh et al. | Jul 2008 | A1 |
20080229000 | Kim | Sep 2008 | A1 |
20080229003 | Mizushima et al. | Sep 2008 | A1 |
20080229176 | Arnez et al. | Sep 2008 | A1 |
20080270680 | Chang | Oct 2008 | A1 |
20080282128 | Lee et al. | Nov 2008 | A1 |
20080285351 | Shlick et al. | Nov 2008 | A1 |
20080313132 | Hao et al. | Dec 2008 | A1 |
20090003058 | Kang | Jan 2009 | A1 |
20090019216 | Yamada et al. | Jan 2009 | A1 |
20090031083 | Willis et al. | Jan 2009 | A1 |
20090037652 | Yu et al. | Feb 2009 | A1 |
20090070608 | Kobayashi | Mar 2009 | A1 |
20090116283 | Ha et al. | May 2009 | A1 |
20090125671 | Flynn et al. | May 2009 | A1 |
20090144598 | Yoon et al. | Jun 2009 | A1 |
20090168525 | Olbrich et al. | Jul 2009 | A1 |
20090172258 | Olbrich et al. | Jul 2009 | A1 |
20090172259 | Prins et al. | Jul 2009 | A1 |
20090172260 | Olbrich et al. | Jul 2009 | A1 |
20090172261 | Prins et al. | Jul 2009 | A1 |
20090172262 | Olbrich et al. | Jul 2009 | A1 |
20090172308 | Prins et al. | Jul 2009 | A1 |
20090172335 | Kulkarni et al. | Jul 2009 | A1 |
20090172499 | Olbrich et al. | Jul 2009 | A1 |
20090193058 | Reid | Jul 2009 | A1 |
20090204823 | Giordano et al. | Aug 2009 | A1 |
20090207660 | Hwang et al. | Aug 2009 | A1 |
20090213649 | Takahashi et al. | Aug 2009 | A1 |
20090222708 | Yamaga | Sep 2009 | A1 |
20090228761 | Perlmutter et al. | Sep 2009 | A1 |
20090249160 | Gao et al. | Oct 2009 | A1 |
20090268521 | Ueno et al. | Oct 2009 | A1 |
20090292972 | Seol et al. | Nov 2009 | A1 |
20090296466 | Kim et al. | Dec 2009 | A1 |
20090296486 | Kim et al. | Dec 2009 | A1 |
20090310422 | Edahiro et al. | Dec 2009 | A1 |
20090319864 | Shrader | Dec 2009 | A1 |
20100002506 | Cho et al. | Jan 2010 | A1 |
20100008175 | Sweere et al. | Jan 2010 | A1 |
20100011261 | Cagno et al. | Jan 2010 | A1 |
20100020620 | Kim et al. | Jan 2010 | A1 |
20100037012 | Yano et al. | Feb 2010 | A1 |
20100061151 | Miwa et al. | Mar 2010 | A1 |
20100091535 | Sommer et al. | Apr 2010 | A1 |
20100103737 | Park | Apr 2010 | A1 |
20100110798 | Hoei et al. | May 2010 | A1 |
20100115206 | de la Iglesia et al. | May 2010 | A1 |
20100118608 | Song et al. | May 2010 | A1 |
20100138592 | Cheon | Jun 2010 | A1 |
20100153616 | Garratt | Jun 2010 | A1 |
20100161936 | Royer et al. | Jun 2010 | A1 |
20100174959 | No et al. | Jul 2010 | A1 |
20100199027 | Pucheral et al. | Aug 2010 | A1 |
20100199125 | Reche | Aug 2010 | A1 |
20100199138 | Rho | Aug 2010 | A1 |
20100202196 | Lee et al. | Aug 2010 | A1 |
20100202239 | Moshayedi et al. | Aug 2010 | A1 |
20100208521 | Kim et al. | Aug 2010 | A1 |
20100262889 | Bains | Oct 2010 | A1 |
20100281207 | Miller et al. | Nov 2010 | A1 |
20100281342 | Chang et al. | Nov 2010 | A1 |
20100306222 | Freedman | Dec 2010 | A1 |
20100332858 | Trantham et al. | Dec 2010 | A1 |
20110010514 | Benhase et al. | Jan 2011 | A1 |
20110022819 | Post | Jan 2011 | A1 |
20110051513 | Shen et al. | Mar 2011 | A1 |
20110066597 | Mashtizadeh et al. | Mar 2011 | A1 |
20110066806 | Chhugani | Mar 2011 | A1 |
20110072302 | Sartore | Mar 2011 | A1 |
20110078407 | Lewis | Mar 2011 | A1 |
20110083060 | Sakurada et al. | Apr 2011 | A1 |
20110099460 | Dusija et al. | Apr 2011 | A1 |
20110113281 | Zhang et al. | May 2011 | A1 |
20110122691 | Sprouse | May 2011 | A1 |
20110131444 | Buch et al. | Jun 2011 | A1 |
20110138260 | Savin | Jun 2011 | A1 |
20110173378 | Filor et al. | Jul 2011 | A1 |
20110179249 | Hsiao | Jul 2011 | A1 |
20110199825 | Han et al. | Aug 2011 | A1 |
20110205823 | Hemink et al. | Aug 2011 | A1 |
20110213920 | Frost et al. | Sep 2011 | A1 |
20110222342 | Yoon et al. | Sep 2011 | A1 |
20110225346 | Goss et al. | Sep 2011 | A1 |
20110228601 | Olbrich et al. | Sep 2011 | A1 |
20110231600 | Tanaka et al. | Sep 2011 | A1 |
20110239077 | Bai et al. | Sep 2011 | A1 |
20110264843 | Haines et al. | Oct 2011 | A1 |
20110271040 | Kamizono | Nov 2011 | A1 |
20110283119 | Szu et al. | Nov 2011 | A1 |
20110289125 | Guthery | Nov 2011 | A1 |
20110320733 | Sanford et al. | Dec 2011 | A1 |
20120011393 | Roberts et al. | Jan 2012 | A1 |
20120017053 | Yang et al. | Jan 2012 | A1 |
20120023144 | Rub | Jan 2012 | A1 |
20120054414 | Tsai et al. | Mar 2012 | A1 |
20120063234 | Shiga et al. | Mar 2012 | A1 |
20120072639 | Goss et al. | Mar 2012 | A1 |
20120096217 | Son et al. | Apr 2012 | A1 |
20120110250 | Sabbag et al. | May 2012 | A1 |
20120117317 | Sheffler | May 2012 | A1 |
20120117397 | Kolvick et al. | May 2012 | A1 |
20120151124 | Baek et al. | Jun 2012 | A1 |
20120151253 | Horn | Jun 2012 | A1 |
20120151294 | Yoo et al. | Jun 2012 | A1 |
20120173797 | Shen | Jul 2012 | A1 |
20120173826 | Takaku | Jul 2012 | A1 |
20120185750 | Hayami | Jul 2012 | A1 |
20120195126 | Roohparvar | Aug 2012 | A1 |
20120203951 | Wood et al. | Aug 2012 | A1 |
20120210095 | Nellans et al. | Aug 2012 | A1 |
20120216079 | Fai et al. | Aug 2012 | A1 |
20120233391 | Frost et al. | Sep 2012 | A1 |
20120236658 | Byom et al. | Sep 2012 | A1 |
20120239858 | Melik-Martirosian | Sep 2012 | A1 |
20120239868 | Ryan et al. | Sep 2012 | A1 |
20120239976 | Cometti et al. | Sep 2012 | A1 |
20120259863 | Bodwin et al. | Oct 2012 | A1 |
20120275466 | Bhadra et al. | Nov 2012 | A1 |
20120278564 | Goss et al. | Nov 2012 | A1 |
20120284574 | Avila et al. | Nov 2012 | A1 |
20120284587 | Yu et al. | Nov 2012 | A1 |
20130007073 | Varma | Jan 2013 | A1 |
20130007343 | Rub et al. | Jan 2013 | A1 |
20130007543 | Goss et al. | Jan 2013 | A1 |
20130024735 | Chung et al. | Jan 2013 | A1 |
20130031438 | Hu et al. | Jan 2013 | A1 |
20130036418 | Yadappanavar et al. | Feb 2013 | A1 |
20130038380 | Cordero et al. | Feb 2013 | A1 |
20130047045 | Hu et al. | Feb 2013 | A1 |
20130073924 | D'Abreu et al. | Mar 2013 | A1 |
20130079942 | Smola et al. | Mar 2013 | A1 |
20130086131 | Hunt et al. | Apr 2013 | A1 |
20130086132 | Hunt et al. | Apr 2013 | A1 |
20130094288 | Patapoutian et al. | Apr 2013 | A1 |
20130111279 | Jeon et al. | May 2013 | A1 |
20130111298 | Seroff et al. | May 2013 | A1 |
20130117606 | Anholt et al. | May 2013 | A1 |
20130121084 | Jeon et al. | May 2013 | A1 |
20130124792 | Melik-Martirosian et al. | May 2013 | A1 |
20130124888 | Tanaka et al. | May 2013 | A1 |
20130128666 | Avila et al. | May 2013 | A1 |
20130132652 | Wood et al. | May 2013 | A1 |
20130176784 | Cometti et al. | Jul 2013 | A1 |
20130179646 | Okubo et al. | Jul 2013 | A1 |
20130191601 | Peterson et al. | Jul 2013 | A1 |
20130194865 | Bandic et al. | Aug 2013 | A1 |
20130194874 | Mu et al. | Aug 2013 | A1 |
20130232289 | Zhong et al. | Sep 2013 | A1 |
20130238576 | Binkert | Sep 2013 | A1 |
20130254507 | Islam et al. | Sep 2013 | A1 |
20130258738 | Barkon et al. | Oct 2013 | A1 |
20130265838 | Li | Oct 2013 | A1 |
20130282955 | Parker et al. | Oct 2013 | A1 |
20130290611 | Biederman et al. | Oct 2013 | A1 |
20130297613 | Yu | Nov 2013 | A1 |
20130301373 | Tam | Nov 2013 | A1 |
20130304980 | Nachimuthu et al. | Nov 2013 | A1 |
20130343131 | Wu et al. | Dec 2013 | A1 |
20130346672 | Sengupta et al. | Dec 2013 | A1 |
20140013188 | Wu et al. | Jan 2014 | A1 |
20140032890 | Lee et al. | Jan 2014 | A1 |
20140063905 | Ahn et al. | Mar 2014 | A1 |
20140075133 | Li et al. | Mar 2014 | A1 |
20140082261 | Cohen et al. | Mar 2014 | A1 |
20140082456 | Li et al. | Mar 2014 | A1 |
20140095775 | Talagala et al. | Apr 2014 | A1 |
20140122818 | Hayasaka et al. | May 2014 | A1 |
20140122907 | Johnston | May 2014 | A1 |
20140136762 | Li et al. | May 2014 | A1 |
20140136883 | Cohen | May 2014 | A1 |
20140136927 | Li et al. | May 2014 | A1 |
20140143505 | Sim et al. | May 2014 | A1 |
20140181458 | Loh et al. | Jun 2014 | A1 |
20140201596 | Baum et al. | Jul 2014 | A1 |
20140223084 | Lee et al. | Aug 2014 | A1 |
20140258755 | Stenfort | Sep 2014 | A1 |
20140269090 | Flynn et al. | Sep 2014 | A1 |
20140310494 | Higgins et al. | Oct 2014 | A1 |
20140359381 | Takeuchi et al. | Dec 2014 | A1 |
20150023097 | Khoueir et al. | Jan 2015 | A1 |
20150037624 | Thompson et al. | Feb 2015 | A1 |
20150153799 | Lucas et al. | Jun 2015 | A1 |
20150153802 | Lucas et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
1 299 800 | Apr 2003 | EP |
1 465 203 | Oct 2004 | EP |
1 990 921 | Nov 2008 | EP |
2 386 958 | Nov 2011 | EP |
2 620 946 | Jul 2013 | EP |
2002-532806 | Oct 2002 | JP |
WO 2007036834 | Apr 2007 | WO |
WO 2007080586 | Jul 2007 | WO |
WO 2008075292 | Jun 2008 | WO |
WO 2008121553 | Oct 2008 | WO |
WO 2008121577 | Oct 2008 | WO |
WO 2009028281 | Mar 2009 | WO |
WO 2009032945 | Mar 2009 | WO |
WO 2009058140 | May 2009 | WO |
WO 2009084724 | Jul 2009 | WO |
WO 2009134576 | Nov 2009 | WO |
WO 2011024015 | Mar 2011 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jun. 30, 2015, received in International Patent Application No. PCT/US2015/023927, which corresponds to U.S. Appl. No. 14/454,687, 11 pages (Kadayam). |
International Search Report and Written Opinion dated Jul. 23, 2015, received in International Patent Application No. PCT/US2015/030850, which corresponds to U.S. Appl. No. 14/298,843, 12 pages. (Ellis). |
International Search Report and Written Opinion dated Jul. 25, 2014, received in International Patent Application No. PCT/US2014/029453, which corresponds to U.S. Appl. No. 13/963,444, 9 pages (Frayer). |
Barr, “Introduction to Watchdog Timers,” Oct. 2001, 3 pgs. |
Canim, “Buffered Bloom Filters on Solid State Storage,” ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs. |
Kang, “A Multi-Channel Architecture for High-Performance NAND Flash-Based Storage System,” J. Syst. Archit., vol. 53, Issue 9, Sep. 2007, 15 pgs. |
Kim, “A Space-Efficient Flash Translation Layer for CompactFlash Systems,” May 2002, IEEE vol. 48, No. 2, 10 pgs. |
Lu, “A Forest-structured Bloom Filter with Flash Memory,” MSST 2011, Denver, CO, May 23-27, 2011, article, 6 pgs. |
Lu, “A Forest-structured Bloom Filter with Flash Memory,” MSST 2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs. |
McLean, “Information Technology-AT Attachment with Packet Interface Extension,” Aug. 19, 1998, 339 pgs. |
Microchip Technology, “Section 10. Watchdog Timer and Power-Saving Modes,” 2005, 14 pages. |
Park et al., “A High Performance Controller for NAND Flash-Based Solid State Disk (NSSD),” Proceedings of Non-Volatile Semiconductor Memory Workshop, Feb. 2006, 4 pgs. |
Zeidman, 1999 Verilog Designer's Library, 9 pgs. |
International Search Report and Written Opinion dated Jun. 6, 2013, received in International Patent Application No. PCT/US2012/059447, which corresponds to U.S. Appl. No. 13/602,031, 12 pgs (Tai). |
International Search Report and Written Opinion dated May 23, 2013, received in International Patent Application No. PCT/US2012/065914, which corresponds to U.S. Appl. No. 13/679,963, 7 pgs (Frayer). |
International Search Report and Written Opinion, dated Mar. 19, 2009 received in International Patent Application No. PCT/US08/88133, which corresponds to U.S. Appl. No. 12/082,202, 7 pgs (Prins). |
International Search Report and Written Opinion dated Feb. 19, 2009, received in International Patent Application No. PCT/US08/88236, which corresponds to U.S. Appl. No. 12/082,203, 7 pgs (Olbrich). |
International Search Report and Written Opinion dated Feb. 19, 2009, received in International Patent Application No. PCT/US08/88217, which corresponds to U.S. Appl. No. 12/082,204, 7 pgs (Olbrich). |
International Search Report and Written Opinion, dated Mar. 19, 2009, received in International Patent Application No. PCT/US08/88136, which corresponds to U.S. Appl. No. 12/082,205, 7 pgs (Olbrich). |
International Search Report and Written Opinion dated Feb. 18, 2009, received in International Patent Application No. PCT/US08/88206, which corresponds to U.S. Appl. No. 12/082,206, 7 pgs (Prins). |
International Search Report and Written Opinion dated Feb. 27, 2009, received in International Patent Application No. PCT/US2008/088154, which corresponds to U.S. Appl. No. 12/082,207, 8 pgs (Prins). |
European Search Report dated Feb. 23, 2012, received in European Patent Application No. 08866997.3, which corresponds to U.S. Appl. No. 12/082,207, 6 pgs (Prins). |
Office Action dated Apr. 18, 2012, received in Chinese Patent Application No. 200880127623.8, which corresponds to U.S. Appl. No. 12/082,207,12 pgs (Prins). |
Office Action dated Dec. 31, 2012, received in Chinese Patent Application No. 200880127623.8, which corresponds to U.S. Appl. No. 12/082,207, 9 pgs (Prins). |
Notification of the Decision to Grant a Patent Right for Patent for Invention dated Jul. 4, 2013, received in Chinese Patent Application No. 200880127623.8, which corresponds to U.S. Appl. No. 12/082,207,1 pg (Prins). |
Office Action dated Jul. 24, 2012, received in Japanese Patent Application No. JP 2010-540863, 3 pgs (Prins). |
International Search Report and Written Opinion dated Feb. 13, 2009, received in International Patent Application No. PCT/US08/88164, which corresponds to U.S. Appl. No. 12/082,220, 6 pgs (Olbrich). |
International Search Report and Written Opinion dated Feb. 26, 2009, received in International Patent Application No. PCT/US08/88146, which corresponds to U.S. Appl. No. 12/082,221, 10 pgs (Prins). |
International Search Report and Written Opinion dated Feb. 19, 2009, received in International Patent Application No. PCT/US08/88232, which corresponds to U.S. Appl. No. 12/082,222, 8 pgs (Olbrich). |
International Search Report and Written Opinion dated Feb. 13, 2009, received in International Patent Application No. PCT/US08/88229, which corresponds to U.S. Appl. No. 12/082,223, 7 pgs (Olbrich). |
International Search Report and Written Opinion dated Oct. 27, 2011, received in International Patent Application No. PCT/US2011/028637, which corresponds to U.S. Appl. No. 12/726,200, 13 pgs (Olbrich). |
International Search Report and Written Opinion dated Aug. 31, 2012, received in International Patent Application PCT/US2012/042764, which corresponds to U.S. Appl. No. 13/285,873, 12 pgs (Frayer). |
International Search Report and Written Opinion dated Mar. 4, 2013, received in PCT/US2012/042771, which corresponds to U.S. Appl. No. 13/286,012, 14 pgs (Stonelake). |
International Search Report and Written Opinion dated Sep. 26, 2012, received in International Patent Application No. PCT/US2012/042775, which corresponds to U.S. Appl. No. 13/285,892, 8 pgs (Weston-Lewis et al.). |
International Search Report and Written Opinion dated Jun. 6, 2013, received in International Patent Application No. PCT/US2012/059453, which corresponds to U.S. Appl. No. 13/602,039, 12 pgs (Frayer). |
International Search Report and Written Opinion dated Feb. 14, 2013, received in International Patent Application No. PCT/US2012/059459, which corresponds to U.S. Appl. No. 13/602,047, 9 pgs (Tai). |
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074772, which corresponds to U.S. Appl. No. 13/831,218, 10 pages (George). |
International Search Report and Written Opinion dated Mar. 24, 2014, received in International Patent Application No. PCT/US2013/074777, which corresponds to U.S. Appl. No. 13/831,308, 10 pages (George). |
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074779, which corresponds to U.S. Appl. No. 13/831,374, 8 pages (George). |
International Search Report and Written Opinion dated Apr. 5, 2013, received in International Patent Application No. PCT/US2012/065916, which corresponds to U.S. Appl. No. 13/679,969, 7 pgs (Frayer). |
International Search Report and Written Opinion dated Jun. 17, 2013, received in International Patent Application No. PCT/US2012/065919, which corresponds to U.S. Appl. No. 13/679,970, 8 pgs (Frayer). |
IBM Research-Zurich, “The Fundamental Limit of Flash Random Write Performance: Understanding, Analysis and Performance Modeling,” Mar. 31, 2010, pp. 1-15. |
Office Action dated Dec. 8, 2014, received in Chinese Patent Application No. 201180021660.2, which corresponds to U.S. Appl. No. 12/726,200, 7 pages (Olbrich). |
Office Action dated Jul. 31, 2015, received in Chinese Patent Application No. 201180021660.2, which corresponds to U.S. Appl. No. 12/726,200, 9 pages. |
International Search Report and Written Opinion dated Sep. 14, 2015, received in International Patent Application No. PCT/US2015/036807, which corresponds to U.S. Appl. No. 14/311,152, 9 pages (Higgins). |
Bayer, “Prefix B-Trees”, IP.COM Journal, IP.COM Inc., West Henrietta, NY, Mar. 30, 2007, 29 pages. |
Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, IBM Research Report, Jun. 23, 2009, http://domino.research.ibm.com/library/cyberdig.nsf/papers/40B2C45876D0D747852575E100620CE7/$File/rc24815.pdf, 13 pages. |
Lee et al., “A Semi-Preemptive Garbage Collector for Solid State Drives,” Apr. 2011, IEEE, pp. 12-21. |
Oracle, “Oracle9i: Database Concepts”, Jul. 2001, http://docs.oracle.com/cd/A91202—01/901—doc/server.901/a88856.pdf, 49 pages. |
Office Action dated Feb. 17, 2015, received in Chinese Patent Application No. 201210334987.1, which corresponds to U.S. Appl. No. 12/082,207, 9 pages (Prins). |
International Search Report and Written Opinion dated May 4, 2015, received in International Patent Application No. PCT/US2014/065987, which corresponds to U.S. Appl. No. 14/135,400, 12 pages (George). |
International Search Report and Written Opinion dated Mar. 17, 2015, received in International Patent Application No. PCT/US2014/067467, which corresponds to U.S. Appl. No. 14/135,420, 13 pages (Lucas). |
International Search Report and Written Opinion dated Apr. 20, 2015, received in International Patent Application No. PCT/US2014/063949, which corresponds to U.S. Appl. No. 14/135,433, 21 pages (Delpapa). |
International Search Report and Written Opinion dated Jun. 8, 2015, received in International Patent Application No. PCT/US2015/018252, which corresponds to U.S. Appl. No. 14/339,072, 9 pages (Busch). |
International Search Report and Written Opinion dated Jun. 2, 2015, received in International Patent Application No. PCT/US2015/018255, which corresponds to U.S. Appl. No. 14/336,967, 14 pages (Chander). |
Ashkenazi et al., “Platform independent overall security architecture in multi-processor system-on-chip integrated circuits for use in mobile phones and handheld devices,” ScienceDirect, Computers and Electrical Engineering 33 (2007), 18 pages. |
Invitation to Pay Additional Fees dated Feb. 13, 2015, received in International Patent Application No. PCT/US2014/063949, which corresponds to U.S. Appl. No. 14/135,433, 6 pages (Delpapa). |
International Search Report and Written Opinion dated Mar. 9, 2015, received in International Patent Application No. PCT/US2014/059747, which corresponds to U.S. Appl. No. 14/137,440, 9 pages (Fitzpatrick). |
International Search Report and Written Opinion dated Jan. 21, 2015, received in International Application No. PCT/US2014/059748, which corresponds to U.S. Appl. No. 14/137,511, 13 pages (Dancho). |
International Search Report and Written Opinion dated Feb. 18, 2015, received in International Application No. PCT/US2014/066921, which corresponds to U.S. Appl. No. 14/135,260, 13 pages (Fitzpatrick). |
Gasior, “Gigabyte's i-Ram storage device, Ram disk without the fuss,” The Tech Report, p. 1, Jan. 25, 2006, 5 pages. |
Oestreicher et al., “Object Lifetimes in Java Card,” 1999, USENIX, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20150278093 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61973170 | Mar 2014 | US |