The present invention relates to wall fans and in particular to a heating and cooling system with a temperature differential switch, the system configured to use the outside air to heat or cool a space when the temperature of the outside air is favorable rather than operating a heater or a cooler, or a Heating, Ventilating, and Air Conditioning (HVAC) system.
The cost of heating and air conditioning can be a substantial burden to users. Also, conventional heating and air conditioning systems create a carbon footprint damaging the environment. Conventional HVAC systems generally cycle a refrigerant to cool air or use a heater to heat air, and then circulate the cooled or heated air to various rooms. However, when a heater, a cooler, or an HVAC system is operating, and ambient outdoor air may also be available to drive indoor temperature a desired indoor temperature, known heaters, coolers, and HVAC systems do not take advantage of the potential energy savings.
Therefore, what is needed is a system which, depending on a desired indoor temperature and current outdoor temperature, will either draw the outdoor air into the indoor space when the outdoor air temperature is favorable, or will heat or cool indoor air when the outdoor air temperature is not favorable.
The present invention addresses the above and other needs by providing a wall fan which includes a control circuit both controlling the wall fan and a temperature control unit comprising a heater, a cooler, or a Heating, Ventilating, and Air Conditioning (HVAC) system. The control system receives a desired temperature and compares the desired temperature to an outdoor temperature. When the outdoor temperature indicates that drawing outside air into indoor space will drive the indoor air temperature toward the desired temperature, the control system activates the wall fan, and de-energizes the temperature control unit. When the outdoor temperature indicates that drawing outside air into indoor space will not drive the indoor air temperature toward the desired temperature, the control system de-energizes the wall fan, and energizes the heater, cooler, or HVAC system
In accordance with one aspect of the invention, there is provided a heating and cooling system including a wall fan drawing outdoor air into a room to help a room temperature reach a desired temperature. The system includes a human interface for programming the desired indoor temperature, an indoor temperature sensor for measuring the actual indoor temperature, an outdoor temperature sensor for measuring the outdoor temperature, and a microprocessor electrically connected to the temperature sensors. The microprocessor may compare: (i) the indoor temperature with the desired temperature to determine whether the system needs to change the indoor temperature to reach the desired temperature, and (ii) if a change is required, compare the outdoor temperature, the indoor temperature, and the desired temperature to determine whether there is an advantage in drawing outdoor air into the room to obtain the desired temperature. The microprocessor may be connected to a relay switch configured to power either a fan or activate a heater, a cooler, or an HVAC system, depending on whether the outdoor temperature is favorable.
In accordance with another aspect of the invention, there is provided a method for controlling a heating system including a wall fan and a temperature control unit comprising one of a heater and an HVAC system. The method includes: setting heating mode and a low temperature Tl and a high temperature Th; measuring an outdoor temperature To and an indoor temperature Ti; comparing To and Ti, If To is not greater than Ti, de-energize the wall fan and energize the temperature control unit, waiting a period of time P and then repeating measuring the outdoor temperature To and the indoor temperature Ti, otherwise, if To is greater than Ti (i.e., can use outdoor air to heat the room), if Tl is less than Ti and Ti is less than Th, energize the wall fan and de-energize the temperature control unit, or alternatively de-energize the wall fan and energize the temperature control unit; and after the period of time P, again measuring the outdoor temperature To and the indoor temperature Ti and repeating the method. The temperature Tl is a lower preferred indoor temperature and the temperature Th is a higher preferred indoor temperature.
In accordance with yet another aspect of the invention, there is provided a method for controlling a cooling system including a wall fan and a temperature control unit comprising one of a cooler and an HVAC system. The method includes: setting cooling mode and the lower temperature Tl and the higher temperature Th; measuring an outdoor temperature To and an indoor temperature Ti; comparing Ti and To; If Ti is not greater than To, de-energize the wall fan and energize the temperature control unit; waiting a period of time P, and then repeating measuring the outdoor temperature To and the indoor temperature Ti; otherwise, if Ti is greater than To (i.e., can use outdoor air to cool the room), if Tl is less than Ti and Ti is less than Th, energize the wall fan and de-energize the temperature control unit or alternatively de-energize the wall fan off and energize the temperature control unit; and after the period of time P, again measuring the outdoor temperature To and the indoor temperature Ti and repeating the method.
In accordance with still another aspect of the invention, there is provided a wall fan including a control circuit configured to control an HVAC system. The control circuit receives outdoor temperature, indoor temperature, and a desired temperature. When outside air can drive the indoor temperature towards the desired temperature, the control circuit sends a signal to the HVAC system, or the HVAC thermostat, to deactivate the HVAC system to save energy. The wall fan and control circuit are advantageously an add-on to an existing HVAC system.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
Corresponding reference characters indicate corresponding components throughout the several views of the drawings.
The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing one or more preferred embodiments of the invention. The scope of the invention should be determined with reference to the claims.
Various references are made to energizing and de-energizing a wall fan or a temperature control unit. Such energizing and de-energizing refers to providing operating power, and the actual operation of the wall fan or a temperature control unit remains under the control of settings applied to the wall fan or a temperature control unit. Additionally, energizing and de-energizing may also refer to sending a signal to a control element (e.g. a thermostat) controlling the temperature control unit which overrides any mechanical or electrical programming which turns the temperature control unit ON.
A temperature controlled area 10a including a wall fan 14 cooperating with a window heating or cooling unit 16a according to the present invention are shown in
The processor 50 determines if the wall fan 14 should be energized or de-energized, and if the heating/cooling unit 16a should be de-energized or energized, based on the method of
A temperature controlled area 10b including two rooms 12a and 12b including the wall fan 14 cooperating with a Heating, Ventilating, and a temperature control unit comprising an Air Conditioning (HVAC) system 16b are shown in
A control panel 26 may be mounted to the wall fan 14, be part of the wall fan 14, or mounted at any convenient location in the area 10. The control panel 26 allows a user to select heating or cooling and the desired temperatures Tl and Th. An outdoor temperature sensor 28a measures outdoor temperature To and in indoor temperature sensor measures an indoor temperature Ti. The temperatures Tl, Th, To, and Ti are all provided to a processor 50 (see
A circuit according to the present invention for controlling the wall fan 14 and HVAC is shown in
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
The present application claims the priority of U.S. Provisional Patent Application Ser. No. 62/100,755 filed Jan. 7, 2015, which application is incorporated in its entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3753184 | Holloway et al. | Aug 1973 | A |
3799245 | Ferdelman | Mar 1974 | A |
4018266 | Kay | Apr 1977 | A |
4136822 | Felter | Jan 1979 | A |
4987952 | Beal et al. | Jan 1991 | A |
5000381 | Mueller et al. | Mar 1991 | A |
5005636 | Haessig | Apr 1991 | A |
5065585 | Wylie et al. | Nov 1991 | A |
5239834 | Travers | Aug 1993 | A |
5626288 | Huber | May 1997 | A |
6283851 | Smith et al. | Sep 2001 | B1 |
6364024 | Dallas | Apr 2002 | B1 |
8079898 | Stevenson | Dec 2011 | B1 |
8118236 | Lestage et al. | Feb 2012 | B2 |
8156797 | Murray et al. | Apr 2012 | B2 |
8543244 | Keeling et al. | Sep 2013 | B2 |
20060273183 | Cavanagh et al. | Dec 2006 | A1 |
20080054085 | Case | Mar 2008 | A1 |
20090013703 | Werner | Jan 2009 | A1 |
20090014545 | Horiuchi | Jan 2009 | A1 |
20110159795 | Sprague | Jun 2011 | A1 |
20120190292 | Skrepcinski | Jul 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150184884 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
62100755 | Jan 2015 | US |