This invention relates to computer tomography, and in particular to processes, methods and systems for reconstructing three dimensional images from the data obtained by a circle and line scan of an object, such as when the object first moves through a C-arm, and then the C-arm rotates around either a non moving or a moving object.
Over the last thirty years, computer tomography (CT) has gone from image reconstruction based on scanning in a slice-by-slice process to spiral scanning to also include non-spiral scanning techniques such as those performed with C-arm devices, with all techniques and devices experiencing problems with image reconstruction.
From the 1970s to 1980s the slice-by-slice scanning was used. In this mode the incremental motions of the patient on the table through the gantry and the gantry rotations were performed one after another. Since the patient was stationary during the gantry rotations, the trajectory of the x-ray source around the patient was circular. Pre-selected slices through the patient were reconstructed using the data obtained by such circular scans.
From the mid 1980s to present day, spiral type scanning has become the preferred process for data collection in CT. Under spiral scanning a table with the patient continuously moves at a constant speed through the gantry that is continuously rotating about the table. At first, spiral scanning has used one-dimensional detectors, which receive data in one dimension (a single row of detectors). Later, two-dimensional detectors, where multiple rows (two or more rows) of detectors sit next to one another, have been introduced. In CT there have been significant problems for image reconstruction especially for two-dimensional detectors. Data provided by the two-dimensional detectors will be referred to as cone-beam (CB) data or CB projections.
In addition to spiral scans there are non-spiral scans, in which the trajectory of the x-ray source is different from spiral. In medical imaging, non-spiral scans are frequently performed using a C-arm device, which is usually smaller and more portable than spiral type scanning systems. For example, C-arm scanning devices have been useful for being moved in and out of operating rooms, and the like.
There are known problems with using C-arm devices to reconstruct data. See in particular for example, pages 755-759 of Kudo, Hiroyuki et al., Fast and Stable Cone-Beam Filtered Backprojection Method for Non-planar Orbits, IOP Publishing LTD, 1998, pages 747-760. The Kudo paper describes image reconstruction using C-arm devices for various shift-variant filtered back projection (FBP) structures, which are less efficient than convolution-based FBP algorithms.
For three-dimensional (also known as volumetric) image reconstruction from the data provided by spiral and non-spiral scans with two-dimensional detectors, there are two known groups of algorithms: Exact algorithms and Approximate algorithms, that each have known problems. Under ideal circumstances, exact algorithms can provide a replication of an exact image. Thus, one should expect that exact algorithms would produce images of good quality even under non-ideal (that is, realistic) circumstances.
However, exact algorithms can be known to take many hours to provide an image reconstruction, and can take up great amounts of computer power when being used. These algorithms can require keeping considerable amounts of cone beam projections in memory.
Approximate algorithms possess a filtered back projection (FBP) structure, so they can produce an image very efficiently and using less computing power than Exact algorithms. However, even under the ideal circumstances these algorithms produce an approximate image that may be similar to but still different from the exact image. In particular, Approximate algorithms can create artifacts, which are false features in an image. Under certain circumstances and conditions these artifacts could be quite severe.
To date, there are no known algorithms that can combine the beneficial attributes of Exact and Approximate algorithms into a single algorithm that is capable of replicating an exact image under the ideal circumstances, uses small amounts of computer power, and reconstructs the exact images in an efficient manner (i.e., using the FBP structure) in the cases of complete circle and line and incomplete circle and line scanning.
If the C-arm rotates 360 degrees around the patient, this produces a complete circle. If the C-arm rotates less than 360 degrees around the patient, this produces an incomplete circle. In what follows, the word circle covers both complete and incomplete cases. Here and everywhere below by the phrase that the algorithm of the invention reconstructs an exact image we will mean that the algorithm is capable of reconstructing an exact image. Since in real life any data contains noise and other imperfections, no algorithm is capable of reconstructing an exact image.
Image reconstruction has been proposed in many U.S. Patents. See for example, U.S. Pat. Nos. 5,663,995 and 5,706,325 and 5,784,481 and 6,014,419 to Hu; U.S. Pat. Nos. 5,881,123 and 5,926,521 and 6,130,930 and 6,233,303 to Tam; U.S. Pat. No. 5,960,055 to Samaresekera et al.; U.S. Pat. No. 5,995,580 to Schaller; U.S. Pat. No. 6,009,142 to Sauer; U.S. Pat. No. 6,072,851 to Sivers; U.S. Pat. No. 6,173,032 to Besson; U.S. Pat. No. 6,198,789 to Dafni; U.S. Pat. No. 6,215,841 and U.S. Pat. No. 6,266,388 to Hsieh. Other U.S. patents have also been proposed for image reconstruction as well. See U.S. Pat. No. 6,504,892 to Ning; U.S. Pat. No. 6,148,056 to Lin; U.S. Pat. No. 5,784,481 to Hu; U.S. Pat. No. 5,706,325 to Hu; and U.S. Pat. No. 5,170,439 to Zeng et al.
However, none of the patents overcome all of the deficiencies to image reconstruction referenced above. The inventor is not aware of any known processes, methods and systems that combines the beneficial attributes of Exact and Approximate algorithms into a single algorithm that is capable of replicating an exact image under the ideal circumstances, uses small amounts of computer power, and reconstructs the exact images in an efficient manner (i.e., using the FBP structure) in the cases of complete circle and line and incomplete circle and line scanning.
A primary objective of the invention is to provide improved processes, methods and systems for reconstructing images of objects that have been scanned with two-dimensional detectors.
A secondary objective of the invention is to provide improved processes, methods and systems for reconstructing images of objects scanned with a circle and line x-ray source trajectory that is able to reconstruct an exact image and not an approximate image.
A third objective of the invention is to provide improved processes, methods and systems for reconstructing images of objects scanned with a circle and line x-ray source trajectory that creates an exact image in an efficient manner using a filtered back projection (FBP) structure.
A fourth objective of the invention is to provide improved processes, methods and systems for reconstructing images of objects scanned with a circle and line x-ray source trajectory that creates an exact image with minimal computer power.
A fifth objective of the invention is to provide improved processes, methods and systems for reconstructing images of objects scanned with a circle and line x-ray source trajectory that creates an exact image utilizing a convolution-based FBP structure.
A sixth objective of the invention is to provide improved processes, methods and systems for reconstructing images of objects scanned with a circle and line x-ray source trajectory that is CB projection driven allowing for the algorithm to work simultaneously with the CB data acquisition.
A seventh objective of the invention is to provide improved processes, methods and systems for reconstructing images of objects scanned with a circle and line x-ray source trajectory that does not require storing numerous CB projections in computer memory.
An eighth objective of the invention is to provide improved processes, methods and systems for reconstructing images of objects scanned with a circle and line x-ray source trajectory that allows for almost real time imaging to occur where images are displayed as soon as a slice measurement is completed.
A preferred embodiment of the invention uses a seven overall step process for reconstructing the image of an object under a circle and line scan. In a first step a current CB projection is measured. Next, a family of lines is identified on a detector according to a novel algorithm. Next, a computation of derivatives between neighboring projections occurs and is followed by a convolution of the derivatives with a filter along lines from the selected family of lines. Next, using the filtered data, the image is updated by performing back projection. Finally, the preceding steps are repeated for each CB projection until an entire object has been scanned. This embodiment works with keeping several (approximately 2-4) CB projections in memory at a time and uses one family of lines.
The invention is not limited to an object that undergoes a scan consisting of a single circle and a single line segment. The invention can be applied to trajectories consisting of several circles and line segments by applying it to various circle and line pairs, and then combining the results.
The circle and line scanning can include a partial planar curve scan before or after a line scan. The planar curved scan can be less than a full circle and even greater than a full circle. Additional and subsequent circle and line scans can be done consecutively after a first circle and line scan.
Further objects and advantages of this invention will be apparent from the following detailed description of the presently preferred embodiments, which are illustrated schematically in the accompanying drawings.
Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
This invention is a Continuation-In-Part of U.S. patent application Ser. No. 10/728, 136, filed Dec. 4, 2003 which claims the benefit of priority to U.S. Provisional Application Ser. No. 60/430,802 filed, Dec. 4, 2002, and is a Continuation-In-Part of U.S. patent application Ser. No. 10/389,534 filed Mar. 14, 2003 which is a Continuation-In-Part of Ser. No. 10/389,090 filed Mar. 14, 2003, which is a Continuation-In-Part of Ser. No. 10/143,160 filed May 10, 2002 now U.S. Pat. No. 6,574,299, which claims the benefit of priority to U.S. Provisional Application 60/312,827 filed Aug. 16, 2001, all of which are incorporated by reference
As previously described,
Alternatively, a conventional gantry, such as ones manufactured by Siemens, Toshiba, General Electric, and the like, can be used, as shown by the dotted concentric lines, for the X-ray sources and detector array. The gantry can rotate partially, and up to a full circle, or greater than a full circle.
A preferred embodiment works with keeping several (approximately 2 to approximately 4) CB projections in computer memory at a time and uses one family of lines.
In the first step 10, a current CB(cone beam) projection set is taken. The next steps 20 and 30 identify sets of lines on a virtual x-ray detector array according to the novel algorithm, which will be explained later in greater detail. In the given description of the algorithm the detector array can be considered to be flat, so the selected line can be a straight tilted line across the array.
The next step 40 is the preparation for the filtering step, which includes computations of the necessary derivative of the CB projection data for the selected lines.
The next step 50 is the convolution of the computed derivative (the processed CB data) with a filter along lines from the selected family of lines. This step can also be described as shift-invariant filtering of the derivative of the CB projection data. In the next step 60, the image of the object being computed is updated by performing back projection. In the final step 70 it is indicated that the above steps 10-60 are repeated, unless image reconstruction is completed or there are no more CB projections to process.
The invention will now be described in more detail by first describing the main inversion formula followed by the novel algorithm of the invention.
Referring to
We suppose I1s→y(s)∈L and I2
s→y(s)∈C are parameterizations of the line and circle, respectively. Here s is a real parameter, and y(s) is a point on the trajectory representing the x-ray source position. We assume that the circle is of radius R and centered at the origin. Let U be an open set, such that
U⊂{x1,x2,x3)∈U:x12+x22<R2}.
Next, we pick a reconstruction point x∈U, and consider the plane π(x) through x and L. π(x) intersects C at two points. One of them is y0, and the second is denoted yC(x). Let L1π(x) be the line segment containing x and connecting yC(x) to L. Then yL(x)∈L denotes the other endpoint of L1π(x). Our procedure determines two parametric intervals. The first one I1(x)⊂I1 corresponds to the section of L between y0 and yL(x) The second one I2(x)⊂I2 corresponds to the section of C between y0 and yC (x).
We use the following notations in equations 1 and 2 as follows:
where
Next, we suppose first s∈I1(x). Project x and C onto the detector plane DP(s) as shown in
Consequently, the projected circle Ĉ is a parabola, which opens downward. As is seen from
We now pick a source position y(s) on the circle, s∈I2 (x), and define another unit vector by equation 5.
Here {dot over (y)}(s) is the velocity vector of the source at the current position. The detector plane DP(s) corresponding to the source y(s)∈C with various points and lines projected onto it is shown in
where using equation 7
Θk(s,x,γ):=cos γβ(s,x)+sin γek(s,x), ek(s,x):=β(s,x)×uk(s,x). (7)
We now describe an efficient (that is, of the convolution-based FBP type) implementation of inversion formula equation (6). Pick y(s)∈L. For a point x∈U we have to find s1(s,x)∈I2(x) (see
Under the invention filtering must be performed along lines on the detector parallel to {dot over (y)}(s). The resulting family is denoted —2 in
Let us describe this in more detail. It is clear that s, (s, x) actually depends only on s and β(s, x). Therefore, we can write below including equations 9 and 10.
Any source position y(s) and a filtering line from the corresponding family (either —1 or —2, depending on whether y(s)∈L or y(s)∈C), determine a plane. We call it a filtering plane. Since e(s,β)·β=0,|e(s,β)|=1, we can write equations 11 and 12.
δ=(cos θ,sin θ); ek(s,β)=(−sin θ,cos θ) (11)
for all β, e(s,β) confined to a filtering plane. Here θ denotes polar angle within a filtering plane. Therefore,
for all β confined to a filtering plane.
Equation (12) is of convolution type and one application of Fast Fourier Transform (FFT) gives values of Ψk(s,β) for all β confined to a filtering plane at once. Equations (10) and (12) would represent that the resulting algorithm is of the convolution-based FBP type. This means that processing of every CB projection consists of two steps. First, shift-invariant and x-independent filtering along a family of lines on the detector is performed. Second, the result is back-projected to update the image matrix. A property of the back-projection step is that for any point {circumflex over (x)} on the detector the value obtained by filtering at {circumflex over (x)} is used for all points x on the line segment connecting the current source position y(s) with {circumflex over (x)}. Since ∂/∂q in (12) is a local operation, each CB projection is stored in memory as soon as it has been acquired for a short period of time for computing this derivative at a few nearby points and is never used later.
Now we describe the algorithm in detail following the seven steps 10-70 shown in
Step 10. We load the current CB(cone beam) projection into computer memory. Suppose that the mid point of the CB projections currently stored in memory is y(s0). The detector plane corresponding to the x-ray source located at y(s0) is denoted DP(s0).
Step 20.
The invention is not limited to an object that undergoes a scan consisting of a single circle and a single line segment. The algorithm can be applied to trajectories consisting of several circles and line segments by applying it to various circle and line pairs, and then combining the results. The algorithm can be applied to trajectories in which a planar curve is not necessarily a circle, but, for example, an ellipse, and the like.
Other Embodiments of the invention are possible. For example, one can integrate by parts in equation (6) as described in the inventor's previous U.S. patent application Ser. No. 10/143,160 filed May 10, 2002 now U.S. Pat. No. 6,574,299, now incorporated by reference, to get an exact convolution-based FBP-type inversion formula which requires keeping only one CB projection in computer memory. The algorithmic implementation of this alternative embodiment can be similar to and include the algorithmic implementation of Embodiment Two in the inventor's previous U.S. patent application Ser. No. 10/143,160 filed May 10, 2002 now U.S. Pat. No. 6,574,299, now incorporated by reference. The corresponding equations will now be described.
Introduce the following notations in equation 13:
While the invention has been described with rotating C-arm type devices, the invention can be used with rotating gantry devices.
Furthermore, the amount of rotating can include a single rotational curve of at least approximately 5 degrees up to approximately 360 degrees or greater. Theoretically, there is no limit on the minimum range of rotation. Under realistic practical circumstances, a minimum range of rotation is between approximately 10 and approximately 20 degrees.
The circle and line scanning of an object can have a line scanning before or after a single rotational curve scan as defined above.
Subsequent circle and line scanning can occur as needed for image reconstruction.
Although the preferred embodiments describe applications of using x-ray sources for creating data for image reconstruction, the invention can be applicable with other sources that create line integral data for image reconstruction, such as but not limited to early arriving photons.
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
| Number | Date | Country | Kind |
|---|---|---|---|
| PCT/US03/38375 | Dec 2003 | WO | international |
| PCT/US02/25597 | Aug 2002 | WO | international |
This invention is a Continuation-In-Part of U.S. patent application Ser. No. 10/728, 136, filed Dec. 4, 2003 which claims the benefit of priority to U.S. Provisional Application Ser. No. 60/430,802 filed, Dec. 4, 2002, and is a Continuation-In-Part of U.S. patent application Ser. No. 10/389,534 filed Mar. 14, 2003 which is a Continuation-In-Part of Ser. No. 10/389,090 filed Mar. 14, 2003, which is a Continuation-In-Part of Ser. No. 10/143,160 filed May 10, 2002 now U.S. Pat. No. 6,574,299, which claims the benefit of priority to U.S. Provisional Application 60/312,827 filed Aug. 16, 2001.
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/US04/12536 | 4/23/2004 | WO | 2/7/2005 |