The field of the invention is lamps, in particular, halogen lamps, that have high efficiency. This high efficiency can be brought about by the shape of the envelope of the lamp and the configuration and position of the filament in the lamp.
As shown in
There are several major requirements of the halogen lamp design with infrared (IR) reflecting technology developed to produce higher efficiency halogen lamps. IR reflectivity and visible transmission of the infrared reflecting multilayer should be increased. Bulb and filament shape should be optimized to reflect infrared radiation back to the filament as much as possible. Also, the filament should be maintained in the designed place, namely, in center of the bulb both during manufacturing and throughout its lifetime. Nevertheless, to reach B class is a huge step, even for low wattage lamps, where wire and coil dimensions are small. Small wire and coil size can easily cause the misfit and deformation of the filament during manufacturing and throughout its lifetime.
In one embodiment the lamp of this disclosure includes a light transmissive (e.g., glass) envelope comprising two spaced apart, connected elliptical portions that together form a hollow interior. The envelope has sealed end portions. There is a central portion of the envelope that spaces apart the elliptical portions. An electrically conductive filament is disposed in the interior of the envelope. Leads are in electrical contact with the filament near the end portions of the envelope for providing power to the lamp. The filament includes coiled-coil portions disposed in the elliptical portions in a coiled-coil shape and a single coil interval portion disposed between the coiled-coil portions at the central portion of the envelope. That is, the coiled-coil portions of the filament are where a coil of the filament is in turn coiled. The single coil interval portion of the filament is where there is only a single coil in the filament. At least one filament support positions the filament near a center of the envelope. Gas is hermetically sealed in the interior of the envelope.
Referring to specific aspects of the lamp described above, each of the elliptical portions has a major axis and a minor axis, wherein the major axis can be between about 12 mm and 17 mm and the minor axis (mm) can be approximately equal to 1.2*(major axis−5). The central portion of the envelope can be in a shape of a cylindrical tube. The filament support can be made of metal having a high melting point (e.g., above 1800-2000° C.), for example, tungsten or molybdenum. The filament can be designed for a line voltage of 230-240 volts and the lamp can be operated at 25-150 W. An infrared radiation reflecting coating can be disposed on a surface of the envelope. The lamp can be a halogen lamp in which case the gas comprises an inert gas containing halogen. For example, the gas may contain Ar, Kr, Xe, or N2, or combinations thereof as inert gases, and Cl, I, Br or F, or combinations thereof as halogens.
The filament can include single coil interval portions near the end portions of the envelope. The filament support can comprise side filament supports located near each of the end portions of the envelope and a central filament support located at the central portion of the envelope. The envelope can include outer tubular portions near the end portions adjacent and outside of the elliptical portions. The side filament supports can be disposed in the elliptical portions of the envelope, as well as in the outer tubular portions. Each of the side filament supports can be welded to one of the single coil intervals near the end portions of the envelope in close proximity to one of the coiled-coil portions of the filament. The envelope can include pinch portions located near its end portions. The side filament supports can extend within an inner space of the envelope in the elliptical portions and so as not to touch the pinch portions. The side filament supports are separated from the pinch portion, even from the Mo foil in the pinch portion, to prevent high current arcing at end of life, which may cause explosion of the lamp. On the other hand, the inner surface of the pinch portion is curved, which could cause deformation of the filament support during manufacturing.
The filament support can be a foil. The foil can have a thickness ranging from 0.01 to 0.3 mm. Near to the edge of the foil the glass of the envelope can be melted embedding the foil partially. The filament support can comprise a single foil welded to the filament or two foils (or folded single foil) that sandwich the filament therebetween and are welded to the filament. The two foils or folded single foil can also be welded together.
Another embodiment of the lamp of this disclosure includes a light transmissive (e.g., glass) envelope comprising two connected elliptical portions that together form a hollow interior. Each elliptical portion including a major axis and a minor axis, wherein the major axis is between about 12 mm and 17 mm and the minor axis (mm) is approximately equal to 1.2*(major axis−5). An electrically conductive filament is disposed in the interior of the envelope. The envelope includes sealed end portions. Leads are in electrical contact with the filament near the end portions of the envelope for providing power to the lamp. At least one filament support is used for positioning the filament near a center of the envelope. A gas is hermetically sealed in the interior of the envelope.
All of the specific aspects of the lamp of this disclosure discussed above in connection with the first embodiment can apply to this embodiment in any combination. For example, there can be a central (e.g., cylindrical tubular) portion of the envelope between the elliptical portions. The filament can include coiled-coil portions disposed in the elliptical portions in a coiled-coil shape and a single coil interval portion disposed between the coiled-coil portions at the central portion of the envelope. Also, the filament support can include side filament supports near the end portions of the envelope and a central filament support in the central portion of the envelope.
Many additional features, advantages and a fuller understanding of the invention will be had from the accompanying drawings and the detailed description that follows. It should be understood that the above Brief Description of the Invention describes the invention in broad terms while the following Detailed Description of the Invention describes the invention more narrowly and presents specific embodiments that should not be construed as necessary limitations of the invention as broadly defined in the claims.
Prior Art
a) is an enlarged side view of a double ellipse lamp of this disclosure after the fill gas tube has been removed;
a) shows one aspect of the double filament support foil;
a)-(c) show aspects of a single, folded filament support foil.
Referring to
The lamp is hermetically sealed at the end portions of the envelope by pinch portions 30 at which the glass envelope is pressed together closed into flattened cross-sections. The flattened pinch portion 30 is shown in
The filament is disposed at a center of the envelope (i.e., close to a central axis extending between the end portions of the envelope in the interior of the envelope and located at a center C of the elliptical portions, represented by the cross C in
In the case of 230-240 line voltage filaments a coiled coil segment 38 of the filament 22, which is the active (radiating) part of the filament, is too long to mount into a single ellipsoid bulb in contrast to 120V filaments. Therefore, the coiled coil (CC) segment 38 is separated into two parts with a central single coiled (SC) segment (interval) 40 in the middle. The two separated active CC parts 38 are mounted to separate ellipsoid parts 14, 16 of the halogen burner (
One way to increase the efficiency of the double elliptical design is to increase the ellipse surface, but this is limited by the diameter of the tube from which the bulb is formed. The infrared radiation from the filament to the direction of the open ends of the ellipsoids cannot be reflected back to the filament. Efficiency is increased by optical coupling between the two CC segments through the cylindrical portion of the envelope between the elliptical portions, as shown schematically in
The efficiency increment (IR gain) depends on the ellipse geometry (the major and minor axis), coil geometry, and significantly on the distance between elliptical portions (D, mm) as shown in
Although many different ellipse geometries are possible, for the usual 230-240 V CC filaments in the 25-150 W wattage range a, the major axis of the elliptical portions 14, 16, ranges between 12 mm and 17 mm. To maximize IR gain the minor axis of the elliptical portions, b, is approximately equal to 1.2*(a−5). The relevant IR gain map is shown in
Gain is maximized by keeping the filament 22 in the center of the envelope (along the central axis C of the elliptical portions). Misfit of the filament can occur during manufacturing due to improper coil support design and during burning throughout lifetime due to deformation of the coil caused by gravity force. To resolve both issues, filament coil supports 44, 46 can be made from an appropriately formed metal foil, onto which the intervals 32, 40 are welded at 50 as seen in
The material of the foil is a metal or metallic alloy with high melting temperature (e.g., at least 1800-2000° C.), for example, tungsten or possibly molybdenum. The thickness of the filament support foils 44, 46 can be between 0.01 and 0.3 mm. Single or double foils can be used depending on the centering requirements, but the double foil filament supports (sandwich structure) 48a, 48b, 48c may provide better centricity. Different double foil filament supports are shown in
The sandwich foil structure can be made from one piece, if double wide foil is folded in half as shown in
To fix the filament support foil 44, 46 in the axial direction, the bulb or envelope glass can be melted onto the edge of the foils in one or more small areas during manufacturing. This can prevent the displacement of the support foils in the axial direction. An advantage of this filament support solution is that it prevents forming a high current arc at end of life, because there are no thick wires required coming into the inner space 18 of the lamp from the pinch portion from the lead wires. In the exemplary design of the lamp shown in the drawings there are two free single coiled parts 32 of the filament at both side of the inner space of the lamp close to the pinch portion (see
In a conventional halogen lamp, evaporated material of the filament can condense on the inner surface of the envelope causing it to darken. Filament evaporation and envelope darkening results in loss of light or less lamp efficiency. The envelope may be filled with a fill gas which helps to reduce evaporation of the filament, such as an inert gas, e.g., Ar, Kr or Xe or combinations thereof, nitrogen and halogen. One example of the fill gas includes about 5% N2 and about 95% Xe (volume percent) and some halogen. A part of the Xe can be replaced by Kr, e.g. about 65% Xe, 30% Kr. The halogen can be, for example, Br, Cl or I or combinations thereof. Halogens can be filled in very different compounds in gas form or even in liquid. Other components might be added to the fill gas in very small amounts, for example, O2, H2 or other compounds containing Si or P.
Many modifications and variations of the invention will be apparent to those of ordinary skill in the art in light of the foregoing disclosure. Therefore, it is to be understood that, within the scope of the appended claims, the invention can be practiced otherwise than has been specifically shown and described.
Number | Name | Date | Kind |
---|---|---|---|
4413205 | Ooms | Nov 1983 | A |
4535269 | Tschetter et al. | Aug 1985 | A |
4578616 | Cardwell, Jr. | Mar 1986 | A |
5045748 | Ahlgren et al. | Sep 1991 | A |
5146134 | Stadler et al. | Sep 1992 | A |
5404069 | Olwert | Apr 1995 | A |
5686794 | Streppel | Nov 1997 | A |
5962973 | Rice | Oct 1999 | A |
7759871 | Chowdhury et al. | Jul 2010 | B2 |
20040104678 | Bigio et al. | Jun 2004 | A1 |
20050095946 | Fridrich | May 2005 | A1 |
20090295290 | Magai | Dec 2009 | A1 |
20100327731 | Aurongzeb et al. | Dec 2010 | A1 |
20110215718 | Heil et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
202009008919 | Sep 2009 | DE |
805881 | Dec 1958 | GB |
2461628 | Jan 2010 | GB |
59130367 | Sep 1984 | JP |
Entry |
---|
Search Report and Written Opinion from corresponding PCT Application No. PCT/US2012/041841 dated Aug. 6, 2012. |
Number | Date | Country | |
---|---|---|---|
20120319576 A1 | Dec 2012 | US |