I. Field
The present disclosure relates generally to communication, and more specifically to techniques for reporting information in a wireless communication system.
II. Background
A wireless multiple-access communication system can concurrently support communication for multiple terminals on the downlink and uplink. The downlink (or forward link) refers to the communication link from the base stations to the terminals, and the uplink (or reverse link) refers to the communication link from the terminals to the base stations.
The terminals may be located throughout the system and may observe different channel conditions. Furthermore, these terminals may have different data requirements and/or capabilities. The terminals may report various types of information in order to obtain adequate service from the system and to ensure proper system operation. For example, a terminal may estimate the channel quality of the downlink for a base station and may send a channel quality report on the uplink to the base station. The base station may use the channel quality report to assign radio resources to the terminal and/or to select a suitable data rate for transmission on the downlink to the terminal.
The information reported by the terminals, although pertinent or important, represents overhead in the system. Hence, it is desirable to send the information as efficiently as possible so that more of the available radio resources can be used to send data. There is therefore a need in the art for techniques to efficiently report information in a wireless communication system.
Techniques for efficiently sending reports in a wireless communication system are described herein. The reports may convey various types of information such as channel quality, request for radio resources, available transmit power, interference, backlog information, sector information, and so on.
In an embodiment, reports are sent repetitively in accordance with a reporting format. A terminal receives an assignment of a control channel used to send reports and determines a reporting format to use based on the assignment. For example, one reporting format may be used for a full (e.g., full-tone) assignment of the control channel, and another reporting format may be used for a partial (e.g., split-tone) assignment. A reporting format indicates a specific sequence of reports sent in specific locations of a control channel frame. A reporting format may also have other features, as described below. The terminal generates a set of reports for each reporting interval and arranges the set of reports in accordance with the reporting format. The terminal repetitively sends a plurality of sets of reports in a plurality of reporting intervals using the reporting format.
In another embodiment, reports are adaptively sent based on operating conditions. A terminal sends reports in accordance with a first reporting format to a base station. The first reporting format may be a default reporting format or may be selected based on the current operating conditions of the terminal. The operating conditions may be characterized by the environment (e.g., mobility) of the terminal, capabilities of the terminal, quality of service (QoS) of traffics for the terminal, and so on. Changes in the operating conditions are detected. A second reporting format is then selected based on the detected changes in the operating conditions. The terminal thereafter sends reports in accordance with the second reporting format. An appropriate reporting format may be selected for use whenever changes in the operating conditions are detected.
Various aspects and embodiments of the invention are described in further detail below.
Aspects of embodiments of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
For a centralized architecture, a system controller 130 couples to base stations 110 and provides coordination and control for these base stations. System controller 130 may be a single network entity or a collection of network entities. For a distributed architecture, the base stations may communicate with one another as needed.
Terminals 120 may be dispersed throughout the system, and each terminal may be stationary or mobile. A terminal may also be called, and may contain some or all of the functionality of, a wireless terminal (WT), an access terminal (AT), a mobile station (MS), a user equipment (UE), a subscriber station and/or some other entity. A terminal may be a wireless device, a cellular phone, a personal digital assistant (PDA), a wireless modem, a handheld device, and so on. A terminal may communicate with one or more base stations via transmissions on the downlink and uplink. In the following description, the terms “terminal” and “user” are used interchangeably.
The reporting techniques described herein may be used for various wireless communication systems. These techniques may also be used for various radio technologies and multiple-access schemes such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal FDMA (OFDMA), Flash-OFDM®, and Single-Carrier FDMA (SC-FDMA). OFDMA and SC-FDMA partition a frequency band (e.g., the system bandwidth) into multiple orthogonal tones, which are also called subcarriers, subbands, bins, and so on. Each tone may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDMA and in the time domain with SC-FDMA. The techniques may also be used for wireless communication systems that utilize a combination of multiple-access schemes, e.g., OFDMA and CDMA.
For clarity, certain aspects of the reporting techniques are described below for an exemplary OFDMA system. In general, the OFDMA system may utilize any tone structure with any number of total tones and any number of usable tones. In an exemplary embodiment, the OFDMA system utilizes a tone structure with 128 total tones and 113 usable tones. An OFDM symbol may be generated in a manner known in the art and sent in an OFDM symbol period (or simply, a symbol period).
The reporting techniques described herein may be used with various signal structures. A signal structure indicates the manner in which data and signaling are sent. For clarity, an exemplary signal structure is described below.
In an embodiment, a terminal is assigned segments of a dedicated control channel (DCCH) upon transiting to an ON state of a connection with a base station. A connection may be considered as a collection of channels established between the terminal and the base station for the physical (PHY) and/or Medium Access Control (MAC) layers. The terminal may be able to receive data on the downlink and/or transmit data on the uplink while in the ON state. The terminal uses the assigned DCCH segments to send reports on the uplink to the base station. These reports may be for various types of information, as described below.
The DCCH may be implemented in various manners. In an embodiment, the DCCH comprises a set of logical tones (e.g., 31 logical tones), which are also referred to as DCCH tones. Each DCCH tone may be mapped to a specific usable/physical tone in each dwell and may hop from physical tone to physical tone in different dwells based on a tone hopping operation.
In the embodiment shown in
In general, a reporting format is a structure for sending one or more reports. A reporting format may convey various parameters such as which types of report are sent, how often reports of each type are sent, the location and length of each report, and/or other information. A reporting format may also be called a reporting structure, a control channel format, a DCCH format, and so on. Reports may be efficiently sent using a reporting format since overhead information (e.g., headers) is generally not needed to convey report type, location, size, and format of each report sent using the reporting format. All or most of the overhead information is implicit from the reporting format. The reports may thus contain all or mostly useful information and little or no overhead information.
As shown in
A terminal may send various types of report. Table 1 lists some report types and gives a short description for each report type.
DL SNR denotes downlink channel quality or received SNR observed at the terminal for a base station. The terminal may receive transmission on the downlink from one or multiple base stations. The terminal may measure the DL SNR of each base station based on a downlink pilot channel (DL.PICH) sent by that base station. The terminal may generate full and delta DL SNR reports for each base station. A full DL SNR report gives the DL SNR measured in the current reporting interval. A delta DL SNR report gives a delta SNR, which is the difference between the DL SNR in the current reporting interval and the DL SNR in a prior reporting interval. The delta SNR is also referred to as a relative SNR or a differential SNR. If the terminal can receive downlink transmission from multiple base stations, then a full DL SNR report for a base station may also indicate whether that base station is preferred or not preferred.
Self-noise SNR is the saturation level of the DL SNR and is the SNR that a receiver at the terminal would observe for a received signal if the base station transmits the signal at infinite power. The saturation level of the DL SNR is determined by self-noise of the terminal receiver, which may be caused by channel estimation errors and/or other factors. The terminal may determine the saturation level of the DL SNR as follows. The terminal may assume that if a base station transmits at power P, then the DL SNR may be given as:
where G represents the path gain of the wireless channel from the base station to the terminal. The quantities in equation (1) are given in linear units.
The term G·P represents the received signal power at the terminal. The term N represents the received interference power. The term a0·G·P represents self-noise, so that a higher value of a0 denotes a higher value of self-noise. The terminal may measure the received power of a downlink null channel (DL.NCH) to determine the interference power N. The terminal may also measure the received power (denoted as G·P0) and SNR (denoted by SNR0) of the DL.PICH. The saturation level of the DL SNR is equal to 1/a0and may be computed as follows:
The quantities in equation (2) are given in linear units.
The UL request conveys backlog information at the terminal. The terminal may maintain one or more (e.g., up to four) MAC frame queues. Each MAC frame queue may buffer MAC frames for one request group. The MAC frames may be generated from packets of upper layer protocols. Each packet may be mapped to one request group, and all MAC frames generated for that packet may be placed in the associated MAC frame queue. The UL request may convey the number of MAC frames in the (e.g., four) request groups that the terminal may transmit, which represent the backlog information for the terminal. The base station may assign traffic channel segments (or radio resources) to the terminal based on the backlog information, channel conditions, and/or other factors such as the priority of data to be sent by the terminal.
The delay information conveys the amount of delay experienced by the data to be sent by the terminal. The terminal may keep track of the delay experienced by the MAC frames in each request group. For example, the terminal may maintain D[k] which indicates the current head-of-line delay experienced by the oldest MAC frames in request group k, for k=0, . . . , 3. The delay information may then comprise the delays, or D[k], of the MAC frames in the request groups. The base station may take the delay information into consideration in assigning traffic channel segments to the terminal.
The DCCH backoff conveys the amount of transmit power available at the terminal for data transmission on the uplink. The terminal may adjust the transmit power of the DCCH to achieve a target level of performance for the reports sent on the DCCH. The terminal has a certain maximum transmit power, which may be dependent on the design of the terminal. The DCCH backoff is the difference between the maximum transmit power and the DCCH transmit power and may be given as follows:
wtULDCCHBackOff=wtPowerMax−wtULDCCHT×Power, Eq (3)
where wtULDCCHT×Power is the per-tone transmit power of the UL.DCCH,
wtPowerMax is the maximum transmit power of the terminal, and
wtULDCCHBackOff is the DCCH backoff.
All of the quantities in equation (3) are given in units of dBm. The DCCH backoff may be used to assign a suitable number of tones and/or to select a suitable data rate for transmission on the uplink.
The beacon ratio conveys interference potentially caused by the terminal to different base stations and may be used for interference management on the uplink. The terminal may measure the channel gain (or signal strength) of neighbor base stations relative to the channel gain of a serving base station. The terminal may measure the received power of the beacon (PB0) and the received power of the pilot channel (PP0) of the serving base station. The terminal may similarly measure the received power of the beacon (PBi) and the received power of the pilot channel (PPi) of each neighbor base station i. The terminal may then compute a channel gain ratio Gi for base station i, as follows:
where K is the ratio of the per-tone transmit power of the beacon to the transmit power of the pilot channel, and Z0 is a scaling factor that is dependent on how the tones are used in the serving base station.
A generic beacon ratio report (BNR) may be generated based on the channel gain ratios of the neighbor base stations, as follows:
where b0 is an uplink loading factor broadcast by the serving base station, and
bi is an uplink loading factor broadcast by neighbor base station i.
The quantities in equations (5) and (6) are given in linear units. Uplink loading factor bindicates the loading observed by base station i on the uplink for all terminals served by base station i. The uplink loading factor is used to indicate the amount of traffic load seen by base station i. The base stations may exchange or broadcast their loading factors to control uplink interference and increase the overall throughput.
The terminal may compute generic beacon ratio reports using equation (5) in beaconslots with even indices and using equation (6) in beaconslots with odd indices. The generic beacon ratio reports give the interference cost to all neighbor base stations (with equation (5)) or the closest neighbor base station (with equation (6)), if the terminal were to transmit to the serving base station.
A special beacon ratio report may be generated for neighbor base station k, as follows:
The special beacon ratio report gives the interference cost to a specific base station k, if the terminal were to transmit to the serving base station.
The sector boundary conveys the information about whether the terminal is located at the boundary of two adjacent sectors of the same base station, and if so, which sector boundary. The sector boundary information may be used by the base station to coordinate the scheduling of the traffic channels in the two sectors to better service the terminal when the terminal is in the sector boundary. For example, the base station may reduce the transmission power at one sector so that the terminal will experience less interference from that sector.
Table 1 gives some types of report that may be sent by the terminal to support efficient data transmission and proper system operation. Fewer, different and/or additional types of report may also be sent, and this is within the scope of the present invention.
Table 2 lists the different types of report included in reporting format 600 and the number of reports of each type. For reporting format 600, field D may be configured to send a report of one of four possible types, which is indicated in field C. Configurable field D provides flexibility in sending reports at the expense of some overhead for field C.
In an embodiment, the terminal sends reports in accordance with a reporting format in each reporting interval upon receiving an assignment of the DCCH. In another embodiment, the terminal sends a special set of reports in the first superslot after receiving the DCCH assignment and thereafter sends reports using the reporting format. The special set of reports may include, e.g., a 4-bit UL request, a 5-bit DL SNR report, a self-noise SNR report, a beacon ratio report, a DCCH backoff report, and so on. The terminal may thus quickly provide all pertinent information to the base station in the special set of reports.
In the embodiments shown in
In an embodiment, for a given DCCH assignment (e.g., a full-tone assignment or a 3-way split-tone assignment), different reporting formats are defined for different operating conditions. The operating conditions of a terminal may be characterized by various factors such as the environment of the terminal, the capabilities of the terminal, the QoS of the traffics to be sent by the terminal, the manner in which the system operates, and so on. These factors may influence which types of report to send, how often to send reports of each type, and what information to include in each report.
The environment of the terminal may be characterized by various factors such as mobility of the terminal (e.g., low or high mobility), the channel conditions (e.g., low or high SNR), and so on. A reporting format for low mobility (e.g., stationary or low speed) may send SNR reports less frequently than a reporting format for high mobility (e.g., high speed). An SNR report for low mobility channel conditions may have more bits than an SNR report for high mobility channel conditions. The reason is that the SNR in high mobility channel conditions tends to vary. Given the loop latency association with SNR measurement and reporting, it may not be necessary to report the SNR very accurately. A reporting format with more reports and/or more bits for certain reports may be used for good channel conditions since the base station can reliably receive the reports with less coding redundancy.
The capabilities of the terminal may indicate whether the terminal supports one or multiple frequency channels (or tone blocks). The capabilities may also indicate whether the terminal supports single-input single-output (SISO), single-input multiple-output (SIMO), multiple-input single-output (MISO), and/or multiple-input multiple-output (MIMO) operation, which may have different reporting requirements. A single data stream may be sent on a single spatial channel with SISO, SIMO and MISO. Multiple data streams may be sent simultaneously on multiple spatial channels with MIMO. A reporting format for SISO, SIMO and MISO may send a single SNR value for one spatial channel in an SNR report. A reporting format for MIMO may send either multiple SNR values for multiple spatial channels in one SNR report or multiple SNR reports each with a single SNR value for one spatial channel.
The QoS of traffics may influence reporting. Different types of traffic (e.g., voice, video, packet data, etc.) may have different QoS. QoS may be quantified by delay tolerance, peak data rate, average data rate, delivery option, and/or other criteria. For example, voice may be associated with a short delay requirement, a fixed data rate, and best effort delivery because of the time sensitive nature of voice. Packet data may be associated with a longer delay requirement, a high peak data rate, and guaranteed delivery. A reporting format may include more UL requests and/or UL requests with more details when different QoS traffics are present.
The manner in which the system operates may also influence reporting. For example, the system may use time division duplexing (TDD) or frequency division duplexing (FDD). In a TDD system, the downlink and uplink share the same frequency band, and the downlink channel may be assumed to be reciprocal of the uplink channel. In this case, a base station may estimate the downlink channel conditions (e.g., DL channel gains and/or SNR) based on an uplink transmission (e.g., pilot) from the terminal. In an FDD system, the downlink and uplink use different frequency bands, and the downlink channel may not correlate well with the uplink channel. In this case, the terminal may estimate the downlink channel conditions and send reports to the base station. Different reporting formats may be used for TDD and FDD systems.
In general, a reporting format may comprise any combination of report types, any number of reports of each type, and any arrangement of the reports. The number of reports of each type may be selected based on the capacity of the control channel assignment used to send the report, the importance or criticality of that report type relative to other report types, how quickly information of that report type changes (which may be dependent on the environment), and/or other factors. Each report may be of any size and may have any format/structure. The reports may be arranged so that each report is sent completely in one transmission, e.g., in one DCCH segment as shown in
In general, any number of reporting formats may be defined for a given control channel assignment. Each reporting format may be designed for certain operating conditions. In an embodiment, different reporting formats may include different reports that are more appropriate for different operating conditions covered by these reporting formats. In another embodiment, different reporting formats may have the same set of reports that may be arranged in different orders and/or have different formats/structures. The bit partition between different reports may be different for different reporting formats. For example, if a DCCH segment has a fixed number of information bits, then an UL request may drop from 4 bits down to 3 bits so that another report may gain an additional bit. Regardless of how the reporting formats may be defined, a suitable reporting format may be selected for use based on the current operating conditions of the terminal.
A switch in reporting format may be achieved in various manners. In an embodiment that is shown in
In an embodiment, a terminal may autonomously select a reporting format. The terminal may determine its operating conditions (e.g., environment, capabilities, etc.) and may select a suitable reporting format based on its operating conditions. In another embodiment, a terminal and a base station may jointly select a reporting format. For example, the terminal may determine its operating conditions and suggest a reporting format, and the base station may accept or reject the suggested reporting format. In yet another embodiment, a base station may select a reporting format for a terminal, e.g., based on information provided by the terminal.
A terminal may use one reporting format until a new reporting format is selected, e.g., due to detected changes in operating conditions. The terminal may also use multiple reporting formats in a predetermined manner. For example, the terminal may alternate between two reporting formats A and B, use reporting format A in odd reporting intervals, and use reporting format B in even reporting intervals. Reporting format 600 in
A terminal may have multiple connections with multiple base stations. The terminal may use the same reporting format for all base stations or may use different reporting formats for different base stations.
Each report may have any format/structure that is suitable for that report. A report may convey a single value or multiple values. In an embodiment, one or more look-up tables may be defined for each type of report. Each look-up table may map a computed value to a report value with a specific number of bits. As an example, for DL SNR, one look-up table may map a computed DL SNR value for a base station to a 5-bit value for a full DL SNR report for non-DL-macrodiversity, another look-up table may map the computed DL SNR value as well as whether the base station is preferred to a 5-bit value for a full DL SNR report for DL-macrodiversity, yet another look-up table may map a delta DL SNR value to a 3-bit value for a delta DL SNR report, and so on. Each look-up table may be defined to achieve good performance for the corresponding report. Table 3 shows an exemplary look-up table that maps a DL SNR value within a range of −13 dB to +29 dB to a 5-bit value for a full DL SNR report. Table 3 also shows an exemplary look-up table that maps a delta SNR value within a range of −5 dB to +5 dB to a 3-bit value for a delta DL SNR report. Other look-up tables may also be defined for the other types of report.
In an embodiment, a single dictionary is used for each report type. A dictionary for a report type defines a specific format/structure for each report of that type. The dictionary defines how each report is interpreted. For example, a dictionary for DL SNR may have one format for a 5-bit DL SNR report for non-DL-macrodiversity, another format for a 5-bit DL SNR report for DL-macrodiversity, and yet another format for a 3-bit DL SNR report. The same dictionary, and hence the same three SNR report formats, may be used for all reporting formats having DL SNR reports.
In another embodiment, multiple dictionaries are used for a given report type. Each dictionary conveys a specific format/structure for each report of that type. Multiple SNR dictionaries may be used for SNR reports. For example, an SNR report for low mobility may use a different format than an SNR report for high mobility. Different look-up tables may be used for SNR reports for low and high mobility. As another example, an SNR report for good channel conditions may use a different format than an SNR report for poor channel conditions. The range of SNR values and/or the SNR step sizes may be different for different SNR report formats. Multiple request dictionaries may also be used for UL requests, e.g., for different QoS. Each request dictionary may provide certain backlog information (e.g., number of MAC frames and/or delay information) at the terminal and/or use different formats for the UL requests. For example, a 4-bit UL request may have different meanings in different request dictionaries. Multiple dictionaries may also be used for other types of report.
Referring back to
The specific dictionary to use for each report may be conveyed explicitly or implicitly. In an embodiment, each reporting format uses a specific dictionary for each report. In this embodiment, the dictionary for each report type is implicitly conveyed by the reporting format. For each reporting format selected for use, the terminal and the base station know a priori the specific dictionary to use for DL SNR reports, the specific dictionary to use for UL requests, and so on. The terminal and the base station can both properly interpret each report sent using the selected reporting format.
In another embodiment, a dictionary may be selected for each report type independently of the reporting format. For example, multiple request dictionaries may be available for a given reporting format. Different dictionaries may be selected for use in different operating scenarios (e.g., different mobility). An appropriate dictionary may be selected whenever changes in operation conditions are detected, e.g., in conjunction with or independent of the selection of reporting format. The selected dictionary may be conveyed via signaling or in some other manner.
The information bits for reports may be encoded, modulated, and processed in various manners. In an embodiment, the information bits to be sent in a DCCH segment are encoded (e.g., with a block code) to generate code bits. The code bits are then mapped to modulation symbols based on a modulation scheme. The modulation symbols are sent in the tone-symbols for the DCCH segment. In an embodiment, a sequence of scrambling bits is used to scramble the information bits or the code bits in some or all of the DCCH segments. For example, the scrambling sequence may be applied to some reports and not applied to some other reports. In an embodiment, the scrambling sequence is a function of the reporting format. In this embodiment, when the reporting format changes, the scrambling sequence also changes. The scrambling sequence may be used to detect state disconnect, which is a situation in which a terminal believes that it is using one reporting format while a base station believes that the terminal is using a different reporting format.
The reporting format indicates a specific sequence of reports sent in specific locations of a control channel frame. A control channel frame is a unit of the control channel used to send one set of reports in accordance with the reporting format. The control channel frame may comprise multiple control channel segments, e.g., 40 DCCH segments. The reporting format may include one or more reports in each control channel segment.
The reporting format may include multiple types of report, e.g., for SNR, uplink request, available transmit power, interference, delay information, and so on, or a combination thereof. The reporting format may include any number of reports of each type, which may be determined based on the importance of the reports of that type. For example, reports for SNR and uplink request may be sent more often than reports of other types. The reporting format may include multiple reports of a particular type in different locations of the control channel frame, reports of different sizes for a given type, and so on.
The terminal may determine a dictionary to use for each report type from among at least one dictionary available for that report type. The dictionary for each report type defines the format/structure for each report of that type. The terminal may generate reports of each type in accordance with the dictionary applicable for that report type. Multiple dictionaries may be used for SNR reports, e.g., one dictionary for low mobility and another dictionary for high mobility. Multiple dictionaries may also be used for uplink request for different QoS traffics. Multiple dictionaries may also be defined for other report types.
For block 1314, changes in the operating conditions may be detected by the terminal and/or the base station, e.g., based on changes in the environment of the terminal, the capabilities of the terminal, the QoS of traffics for the terminal, and so on. The second reporting format may be selected based on the detected changes in the operating conditions. For example, changes in mobility of the terminal may be detected. The second reporting format may then be selected based on the detected changes in mobility. The first reporting format may be suitable for a first mobility condition (e.g., stationary or low speed) and the second reporting format may be suitable for a second mobility condition (e.g., high speed). Changes in QoS of traffics for the terminal may also be detected. The second reporting format may then be selected based on the detected changes in QoS. The first and second reporting formats may be designed for different QoS traffics.
Each reporting format may be associated with specific dictionaries. Alternatively, the dictionaries may be selected independently of the reporting format. In any case, the terminal determines the proper dictionary to use for each report in the current reporting format. The terminal generates reports of each type in accordance with the dictionary for that report type.
The change from the first reporting format to the second reporting format may be indicated by a field that indicates the reporting format type, e.g., as shown in
The reporting techniques may be used for sending reports from a terminal to a base station on the uplink, as described above. The reporting techniques may also be used to send reports from a base station to a terminal on the downlink.
At terminal 120, an antenna 1552 receives downlink signals from base station 110 and other base stations and provides a received signal to a receiver (RCVR) 1554. Receiver 1554 conditions and digitizes the received signal and provides samples. An OFDM demodulator (Demod) 1556 performs OFDM demodulation on the samples and provides frequency-domain symbols. A receive (RX) data and signaling processor 1558 processes (e.g., symbol demaps, deinterleaves, and decodes) the frequency-domain symbols and provides decoded data and signaling for terminal 120.
On the uplink, a controller/processor 1570 generates reports in accordance with the reporting format and dictionaries selected for use. A TX data and signaling processor 1560 generates output symbols for traffic data, signaling (e.g., reports), and pilot to be sent to base station 110. An OFDM modulator 1562 performs OFDM modulation on the output symbols and generates OFDM symbols. A transmitter 1564 conditions the OFDM symbols and generates an uplink signal, which is transmitted via antenna 1552.
At base station 110, the uplink signals from terminal 120 and other terminals are received by antenna 1516, conditioned and digitized by a receiver 1520, demodulated by an OFDM demodulator 1522, and processed by an RX data and signaling processor 1524 to recover the traffic data and signaling sent by terminal 120 and other terminals.
Controllers/processors 1530 and 1570 direct the operation of various processing units at base station 110 and terminal 120, respectively. Controller/ processor 1570 may perform process 1100 in
The reporting techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof. For a hardware implementation, the processing units at a terminal or a base station to support reporting may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
For a firmware and/or software implementation, the reporting techniques may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The firmware and/or software codes may be stored in a memory (e.g., memory 1532 or 1572 in
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present application is a continuation-in-part of U.S. patent application Ser. No. 10/648,766, filed Aug. 25, 2003 which issued as U.S. Pat. No. 7,218,948 on May 15, 2007 and which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/449,729 filed Feb. 24, 2003, and this application claims the benefit of provisional U.S. Application Ser. No. 60/752,973, entitled “COMMUNICATIONS METHODS AND APPARATUS,” filed Dec. 22, 2005, assigned to the assignee hereof and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4631720 | Koeck | Dec 1986 | A |
4660196 | Gray et al. | Apr 1987 | A |
4679244 | Kawasaki et al. | Jul 1987 | A |
4833701 | Comroe et al. | May 1989 | A |
5128938 | Borras | Jul 1992 | A |
5203013 | Breeden et al. | Apr 1993 | A |
5387905 | Grube et al. | Feb 1995 | A |
5434848 | Chimento, Jr. et al. | Jul 1995 | A |
5461645 | Ishii | Oct 1995 | A |
5465389 | Agrawal et al. | Nov 1995 | A |
5491837 | Haartsen | Feb 1996 | A |
5506865 | Weaver, Jr. | Apr 1996 | A |
5537414 | Takiyasu et al. | Jul 1996 | A |
5579307 | Richetta et al. | Nov 1996 | A |
5732328 | Mitra et al. | Mar 1998 | A |
5835847 | Gilmore et al. | Nov 1998 | A |
5867478 | Baum et al. | Feb 1999 | A |
5898925 | Honkasalo et al. | Apr 1999 | A |
5914950 | Tiedemann et al. | Jun 1999 | A |
5915221 | Sawyer et al. | Jun 1999 | A |
5923650 | Chen et al. | Jul 1999 | A |
5933421 | Alamouti et al. | Aug 1999 | A |
5940771 | Gollnick et al. | Aug 1999 | A |
5966657 | Sporre | Oct 1999 | A |
5966662 | Murto | Oct 1999 | A |
5978657 | Suzuki | Nov 1999 | A |
5999534 | Kim | Dec 1999 | A |
6002676 | Fleming | Dec 1999 | A |
6004276 | Wright et al. | Dec 1999 | A |
6026081 | Hamabe et al. | Feb 2000 | A |
6028842 | Chapman et al. | Feb 2000 | A |
6028843 | Delp et al. | Feb 2000 | A |
6035000 | Bingham et al. | Mar 2000 | A |
6069871 | Sharma et al. | May 2000 | A |
6070072 | Dorenbosch et al. | May 2000 | A |
6073025 | Chheda et al. | Jun 2000 | A |
6075025 | Bishop et al. | Jun 2000 | A |
6122270 | Whinnett et al. | Sep 2000 | A |
6128506 | Knutsson et al. | Oct 2000 | A |
6131016 | Greenstein et al. | Oct 2000 | A |
6141565 | Feuerstein et al. | Oct 2000 | A |
6169896 | Sant et al. | Jan 2001 | B1 |
6173005 | Kotzin et al. | Jan 2001 | B1 |
6181948 | Kondo | Jan 2001 | B1 |
6201793 | Chen et al. | Mar 2001 | B1 |
6205129 | Esteves et al. | Mar 2001 | B1 |
6215791 | Kim | Apr 2001 | B1 |
6236646 | Beming et al. | May 2001 | B1 |
6256478 | Allen et al. | Jul 2001 | B1 |
6259927 | Butovitsch et al. | Jul 2001 | B1 |
6263392 | McCauley | Jul 2001 | B1 |
6298233 | Souissi et al. | Oct 2001 | B1 |
6308080 | Burt et al. | Oct 2001 | B1 |
6310857 | Duffield et al. | Oct 2001 | B1 |
6311065 | Ushiki et al. | Oct 2001 | B1 |
6374085 | Saints et al. | Apr 2002 | B1 |
6377583 | Lyles et al. | Apr 2002 | B1 |
6377955 | Hartmann et al. | Apr 2002 | B1 |
6405047 | Moon | Jun 2002 | B1 |
6414946 | Satou et al. | Jul 2002 | B1 |
6445917 | Bark et al. | Sep 2002 | B1 |
6453151 | Kiang et al. | Sep 2002 | B1 |
6493539 | Falco et al. | Dec 2002 | B1 |
6526281 | Gorsuch et al. | Feb 2003 | B1 |
6538986 | Isaksson et al. | Mar 2003 | B2 |
6545999 | Sugita | Apr 2003 | B1 |
6553336 | Johnson et al. | Apr 2003 | B1 |
6590890 | Stolyar et al. | Jul 2003 | B1 |
6597914 | Silventoinen et al. | Jul 2003 | B1 |
6600903 | Lilja et al. | Jul 2003 | B1 |
6609007 | Eibling et al. | Aug 2003 | B1 |
6621808 | Sadri | Sep 2003 | B1 |
6625133 | Balachandran et al. | Sep 2003 | B1 |
6662024 | Walton et al. | Dec 2003 | B2 |
6671512 | Laakso et al. | Dec 2003 | B2 |
6680909 | Bansal et al. | Jan 2004 | B1 |
6697417 | Fernandez-Corbaton et al. | Feb 2004 | B2 |
6710651 | Forrester | Mar 2004 | B2 |
6742020 | Dimitroff et al. | May 2004 | B1 |
6745003 | Maca et al. | Jun 2004 | B1 |
6745044 | Holtzman et al. | Jun 2004 | B1 |
6751187 | Walton et al. | Jun 2004 | B2 |
6771934 | Demers et al. | Aug 2004 | B2 |
6788963 | Laroia et al. | Sep 2004 | B2 |
6798761 | Cain et al. | Sep 2004 | B2 |
6804289 | Takahashi | Oct 2004 | B2 |
6804521 | Tong et al. | Oct 2004 | B2 |
6807428 | Casaccia | Oct 2004 | B2 |
6816476 | Kim et al. | Nov 2004 | B2 |
6836673 | Trott | Dec 2004 | B1 |
6865168 | Sekine | Mar 2005 | B1 |
6889056 | Shibutani | May 2005 | B2 |
6889257 | Patel | May 2005 | B1 |
6892071 | Park et al. | May 2005 | B2 |
6895005 | Malin et al. | May 2005 | B1 |
6895364 | Banfer | May 2005 | B2 |
6901268 | Chang et al. | May 2005 | B2 |
6901270 | Beach | May 2005 | B1 |
6904016 | Kuo et al. | Jun 2005 | B2 |
6904290 | Palenius | Jun 2005 | B1 |
6912405 | Hiramatsu et al. | Jun 2005 | B2 |
6917607 | Yeom et al. | Jul 2005 | B1 |
6940827 | Li et al. | Sep 2005 | B2 |
6957072 | Kangras et al. | Oct 2005 | B2 |
6967937 | Gormley | Nov 2005 | B1 |
6968156 | Sugaya et al. | Nov 2005 | B2 |
7006841 | Monogioudis et al. | Feb 2006 | B2 |
7024460 | Koopmas et al. | Apr 2006 | B2 |
7027782 | Moon et al. | Apr 2006 | B2 |
7031983 | Israni et al. | Apr 2006 | B2 |
7034254 | Grabowski et al. | Apr 2006 | B2 |
7039029 | Lee et al. | May 2006 | B2 |
7043254 | Chawla et al. | May 2006 | B2 |
7047009 | Laroia et al. | May 2006 | B2 |
7054643 | Trossen et al. | May 2006 | B2 |
7061885 | Kurtz | Jun 2006 | B2 |
7092672 | Pekonen | Aug 2006 | B1 |
7120123 | Quigley et al. | Oct 2006 | B1 |
7120448 | Brouwer et al. | Oct 2006 | B2 |
7123910 | Lucidarme et al. | Oct 2006 | B2 |
7139536 | Chiu | Nov 2006 | B2 |
7142548 | Fong et al. | Nov 2006 | B2 |
7146172 | Li et al. | Dec 2006 | B2 |
7158796 | Tiedemann, Jr. et al. | Jan 2007 | B2 |
7161909 | Sharma | Jan 2007 | B2 |
7162203 | Brunner et al. | Jan 2007 | B1 |
7197025 | Chuah | Mar 2007 | B2 |
7203493 | Fujii et al. | Apr 2007 | B2 |
7212821 | Laroia et al. | May 2007 | B2 |
7218948 | Laroia et al. | May 2007 | B2 |
7245935 | Lin | Jul 2007 | B2 |
7260054 | Olszewski et al. | Aug 2007 | B2 |
7269406 | Qi | Sep 2007 | B2 |
7277709 | Vadgama | Oct 2007 | B2 |
7277737 | Vollmer et al. | Oct 2007 | B1 |
7280814 | Austin et al. | Oct 2007 | B2 |
7283836 | Hwang et al. | Oct 2007 | B2 |
7299277 | Moran et al. | Nov 2007 | B1 |
7317921 | Mueckenheim et al. | Jan 2008 | B2 |
7319680 | Cho | Jan 2008 | B2 |
7321563 | Kim et al. | Jan 2008 | B2 |
7340267 | Budka et al. | Mar 2008 | B2 |
7349667 | Magee et al. | Mar 2008 | B2 |
7356635 | Woodings et al. | Apr 2008 | B2 |
7362702 | Terrell et al. | Apr 2008 | B2 |
7382755 | Dugad et al. | Jun 2008 | B2 |
7395058 | Kalofonos et al. | Jul 2008 | B1 |
7397803 | Love et al. | Jul 2008 | B2 |
7400901 | Kostic et al. | Jul 2008 | B2 |
7412265 | Chen et al. | Aug 2008 | B2 |
7418260 | Lucidarme | Aug 2008 | B2 |
7420939 | Laroia et al. | Sep 2008 | B2 |
7430206 | Terry et al. | Sep 2008 | B2 |
7430207 | Wu et al. | Sep 2008 | B2 |
7430420 | Derakhshan et al. | Sep 2008 | B2 |
7447148 | Gao et al. | Nov 2008 | B2 |
7463577 | Sudo et al. | Dec 2008 | B2 |
7486620 | Seol | Feb 2009 | B2 |
7486638 | Ofuji et al. | Feb 2009 | B2 |
7502614 | Uchida et al. | Mar 2009 | B2 |
7508792 | Petrovic et al. | Mar 2009 | B2 |
7510828 | Lynn et al. | Mar 2009 | B2 |
7512076 | Kwon et al. | Mar 2009 | B2 |
7512185 | Sharon et al. | Mar 2009 | B2 |
7519013 | Destino et al. | Apr 2009 | B2 |
7519033 | Soomro | Apr 2009 | B2 |
7522544 | Cheng et al. | Apr 2009 | B2 |
7525971 | Carroll et al. | Apr 2009 | B2 |
7526091 | Jeong et al. | Apr 2009 | B2 |
7558572 | Anigstein | Jul 2009 | B2 |
7561893 | Moulsley et al. | Jul 2009 | B2 |
7668573 | Laroia et al. | Feb 2010 | B2 |
7743284 | Taylor et al. | Jun 2010 | B1 |
7986660 | Ramos | Jul 2011 | B2 |
7986672 | Tiedemann, Jr. et al. | Jul 2011 | B2 |
8005454 | Lavelle | Aug 2011 | B1 |
8040831 | Kurtz et al. | Oct 2011 | B2 |
8190163 | Laroia et al. | May 2012 | B2 |
8233462 | Walton et al. | Jul 2012 | B2 |
RE43593 | Kayama et al. | Aug 2012 | E |
8284752 | Ketchum et al. | Oct 2012 | B2 |
8325621 | Simonsson et al. | Dec 2012 | B2 |
8437251 | Das et al. | May 2013 | B2 |
8503938 | Laroia et al. | Aug 2013 | B2 |
8560026 | Chanterac | Oct 2013 | B2 |
20010007552 | Schiff et al. | Jul 2001 | A1 |
20010036181 | Rogers | Nov 2001 | A1 |
20010046878 | Chang et al. | Nov 2001 | A1 |
20010055293 | Parsa et al. | Dec 2001 | A1 |
20020012326 | Chang et al. | Jan 2002 | A1 |
20020031105 | Zeira et al. | Mar 2002 | A1 |
20020037729 | Kitazawa et al. | Mar 2002 | A1 |
20020045448 | Park et al. | Apr 2002 | A1 |
20020049040 | Sugaya et al. | Apr 2002 | A1 |
20020075835 | Krishnakumar et al. | Jun 2002 | A1 |
20020077140 | Monogioudis et al. | Jun 2002 | A1 |
20020077141 | Hwang | Jun 2002 | A1 |
20020080967 | Abdo | Jun 2002 | A1 |
20020082011 | Fujii et al. | Jun 2002 | A1 |
20020085516 | Bridgelall | Jul 2002 | A1 |
20020093953 | Naim et al. | Jul 2002 | A1 |
20020107028 | Rantalainen et al. | Aug 2002 | A1 |
20020122431 | Cho et al. | Sep 2002 | A1 |
20020136195 | Kurtz et al. | Sep 2002 | A1 |
20020142788 | Chawla et al. | Oct 2002 | A1 |
20020143858 | Teague et al. | Oct 2002 | A1 |
20020147017 | Li et al. | Oct 2002 | A1 |
20020177452 | Ruutu et al. | Nov 2002 | A1 |
20020186678 | Averbuch et al. | Dec 2002 | A1 |
20020188723 | Choi | Dec 2002 | A1 |
20030003921 | Laakso et al. | Jan 2003 | A1 |
20030007498 | Angle et al. | Jan 2003 | A1 |
20030012212 | Earnshaw et al. | Jan 2003 | A1 |
20030016641 | Terry et al. | Jan 2003 | A1 |
20030023412 | Rappaport et al. | Jan 2003 | A1 |
20030027587 | Proctor, Jr. | Feb 2003 | A1 |
20030032463 | Cannon | Feb 2003 | A1 |
20030050012 | Black | Mar 2003 | A1 |
20030063587 | Cho | Apr 2003 | A1 |
20030064737 | Eriksson et al. | Apr 2003 | A1 |
20030078067 | Kim et al. | Apr 2003 | A1 |
20030095519 | Kuo et al. | May 2003 | A1 |
20030100269 | Lehtinen et al. | May 2003 | A1 |
20030114180 | Black et al. | Jun 2003 | A1 |
20030123396 | Seo et al. | Jul 2003 | A1 |
20030123410 | Youm | Jul 2003 | A1 |
20030123559 | Classon | Jul 2003 | A1 |
20030139197 | Kostic et al. | Jul 2003 | A1 |
20030144042 | Weinfield et al. | Jul 2003 | A1 |
20030157899 | Trossen et al. | Aug 2003 | A1 |
20030161285 | Tiedemann, Jr. | Aug 2003 | A1 |
20030169705 | Knisely et al. | Sep 2003 | A1 |
20030185224 | Ramanan et al. | Oct 2003 | A1 |
20030185285 | Talwar | Oct 2003 | A1 |
20030193915 | Lee et al. | Oct 2003 | A1 |
20030198204 | Taneja et al. | Oct 2003 | A1 |
20030198206 | Cain et al. | Oct 2003 | A1 |
20030202563 | Das | Oct 2003 | A1 |
20030206541 | Yun et al. | Nov 2003 | A1 |
20030207691 | Chen | Nov 2003 | A1 |
20030207693 | Roderique | Nov 2003 | A1 |
20030214906 | Hu et al. | Nov 2003 | A1 |
20030214928 | Chuah et al. | Nov 2003 | A1 |
20030223354 | Olszewski et al. | Dec 2003 | A1 |
20040001429 | Ma et al. | Jan 2004 | A1 |
20040004954 | Terry et al. | Jan 2004 | A1 |
20040013103 | Zhang et al. | Jan 2004 | A1 |
20040057402 | Ramos et al. | Mar 2004 | A1 |
20040062206 | Soong et al. | Apr 2004 | A1 |
20040081089 | Ayyagari | Apr 2004 | A1 |
20040082344 | Moilanen et al. | Apr 2004 | A1 |
20040085936 | Gopalakrishnan | May 2004 | A1 |
20040091026 | Nakayama | May 2004 | A1 |
20040111640 | Baum | Jun 2004 | A1 |
20040120289 | Hamalainen | Jun 2004 | A1 |
20040120411 | Walton et al. | Jun 2004 | A1 |
20040125776 | Haugli et al. | Jul 2004 | A1 |
20040127226 | Dugad et al. | Jul 2004 | A1 |
20040131007 | Smee et al. | Jul 2004 | A1 |
20040141466 | Kim et al. | Jul 2004 | A1 |
20040147262 | Lescuyer et al. | Jul 2004 | A1 |
20040147276 | Gholmieh et al. | Jul 2004 | A1 |
20040160922 | Nanda et al. | Aug 2004 | A1 |
20040162097 | Vijayan et al. | Aug 2004 | A1 |
20040166869 | Laroia et al. | Aug 2004 | A1 |
20040166886 | Laroia et al. | Aug 2004 | A1 |
20040166887 | Laroia et al. | Aug 2004 | A1 |
20040171401 | Balachandran et al. | Sep 2004 | A1 |
20040180658 | Uchida et al. | Sep 2004 | A1 |
20040184410 | Park | Sep 2004 | A1 |
20040192371 | Zhao et al. | Sep 2004 | A1 |
20040196802 | Bae et al. | Oct 2004 | A1 |
20040203717 | Wingrowicz et al. | Oct 2004 | A1 |
20040203981 | Budka et al. | Oct 2004 | A1 |
20040213326 | Parizhsky et al. | Oct 2004 | A1 |
20040218617 | Sagfors | Nov 2004 | A1 |
20040223455 | Fong et al. | Nov 2004 | A1 |
20040224677 | Kuchibhotla et al. | Nov 2004 | A1 |
20040228313 | Cheng et al. | Nov 2004 | A1 |
20040233838 | Sudo et al. | Nov 2004 | A1 |
20040235510 | Elicegui et al. | Nov 2004 | A1 |
20040248518 | Kashiwase et al. | Dec 2004 | A1 |
20040248568 | Lucidarme et al. | Dec 2004 | A1 |
20040252647 | Chang et al. | Dec 2004 | A1 |
20040252662 | Cho et al. | Dec 2004 | A1 |
20040253996 | Chen et al. | Dec 2004 | A1 |
20040258040 | Joshi et al. | Dec 2004 | A1 |
20040259546 | Balachandran et al. | Dec 2004 | A1 |
20040264414 | Dorenbosch | Dec 2004 | A1 |
20040266474 | Petrus et al. | Dec 2004 | A1 |
20050003768 | Laroia | Jan 2005 | A1 |
20050003847 | Love et al. | Jan 2005 | A1 |
20050008892 | Yamamoto et al. | Jan 2005 | A1 |
20050037775 | Moeglein et al. | Feb 2005 | A1 |
20050047344 | Seol et al. | Mar 2005 | A1 |
20050047393 | Liu et al. | Mar 2005 | A1 |
20050047416 | Heo et al. | Mar 2005 | A1 |
20050053099 | Spear et al. | Mar 2005 | A1 |
20050058637 | Lynn et al. | Mar 2005 | A1 |
20050064821 | Hedberg et al. | Mar 2005 | A1 |
20050068922 | Jalali | Mar 2005 | A1 |
20050085197 | Laroia et al. | Apr 2005 | A1 |
20050099987 | Lester et al. | May 2005 | A1 |
20050111361 | Hosein | May 2005 | A1 |
20050111462 | Walton et al. | May 2005 | A1 |
20050118981 | Laroia | Jun 2005 | A1 |
20050118993 | Roux et al. | Jun 2005 | A1 |
20050122900 | Tuulos et al. | Jun 2005 | A1 |
20050128999 | Kwon et al. | Jun 2005 | A1 |
20050135320 | Tiedemann, Jr. et al. | Jun 2005 | A1 |
20050136937 | Qian et al. | Jun 2005 | A1 |
20050143084 | Cheng et al. | Jun 2005 | A1 |
20050143114 | Moulsley et al. | Jun 2005 | A1 |
20050152320 | Marinier et al. | Jul 2005 | A1 |
20050157803 | Kim et al. | Jul 2005 | A1 |
20050157876 | Jeong et al. | Jul 2005 | A1 |
20050170782 | Rong et al. | Aug 2005 | A1 |
20050181732 | Kang et al. | Aug 2005 | A1 |
20050181799 | Laroia | Aug 2005 | A1 |
20050185632 | Draves, Jr. et al. | Aug 2005 | A1 |
20050195765 | Sharon et al. | Sep 2005 | A1 |
20050201331 | Gaal et al. | Sep 2005 | A1 |
20050201353 | Lee et al. | Sep 2005 | A1 |
20050207335 | Schmidl et al. | Sep 2005 | A1 |
20050207359 | Hwang et al. | Sep 2005 | A1 |
20050207373 | Roy et al. | Sep 2005 | A1 |
20050220052 | Uehara et al. | Oct 2005 | A1 |
20050232154 | Bang et al. | Oct 2005 | A1 |
20050243938 | Armstrong et al. | Nov 2005 | A1 |
20050249118 | Terry et al. | Nov 2005 | A1 |
20050250509 | Choksi et al. | Nov 2005 | A1 |
20050250510 | Kaikkonen et al. | Nov 2005 | A1 |
20050250529 | Funnell et al. | Nov 2005 | A1 |
20050255873 | Zhang et al. | Nov 2005 | A1 |
20050259662 | Kim et al. | Nov 2005 | A1 |
20050265301 | Heo et al. | Dec 2005 | A1 |
20050281232 | Kim et al. | Dec 2005 | A1 |
20050281278 | Black et al. | Dec 2005 | A1 |
20050289256 | Cudak et al. | Dec 2005 | A1 |
20060003767 | Kim et al. | Jan 2006 | A1 |
20060015357 | Cagan | Jan 2006 | A1 |
20060018284 | Rudolf et al. | Jan 2006 | A1 |
20060019694 | Sutivong et al. | Jan 2006 | A1 |
20060025160 | Kodali | Feb 2006 | A1 |
20060034174 | Nishibayashi et al. | Feb 2006 | A1 |
20060040696 | Lin et al. | Feb 2006 | A1 |
20060045013 | Vannithamby et al. | Mar 2006 | A1 |
20060056346 | Vadgama et al. | Mar 2006 | A1 |
20060057965 | Braun | Mar 2006 | A1 |
20060073836 | Laroia et al. | Apr 2006 | A1 |
20060079257 | Iochi et al. | Apr 2006 | A1 |
20060079267 | Kim et al. | Apr 2006 | A1 |
20060083161 | Laroia et al. | Apr 2006 | A1 |
20060089104 | Kaikkonen et al. | Apr 2006 | A1 |
20060092881 | Laroia et al. | May 2006 | A1 |
20060094366 | Cho | May 2006 | A1 |
20060104240 | Sebire et al. | May 2006 | A1 |
20060120470 | Hwang | Jun 2006 | A1 |
20060126497 | Na et al. | Jun 2006 | A1 |
20060128410 | Derryberry et al. | Jun 2006 | A1 |
20060128412 | Mantha et al. | Jun 2006 | A1 |
20060133346 | Chheda et al. | Jun 2006 | A1 |
20060133521 | Sampath | Jun 2006 | A1 |
20060135193 | Ratasuk et al. | Jun 2006 | A1 |
20060140154 | Kwak et al. | Jun 2006 | A1 |
20060142032 | Derakhshan et al. | Jun 2006 | A1 |
20060164981 | Olsson et al. | Jul 2006 | A1 |
20060165029 | Melpignano et al. | Jul 2006 | A1 |
20060176807 | Wu et al. | Aug 2006 | A1 |
20060182022 | Abedi | Aug 2006 | A1 |
20060203765 | Laroia et al. | Sep 2006 | A1 |
20060205356 | Laroia et al. | Sep 2006 | A1 |
20060205396 | Laroia et al. | Sep 2006 | A1 |
20060215604 | Mueckenheim et al. | Sep 2006 | A1 |
20060234722 | Hanebeck et al. | Oct 2006 | A1 |
20060245452 | Frederiksen et al. | Nov 2006 | A1 |
20060246916 | Cheng et al. | Nov 2006 | A1 |
20060251156 | Grant | Nov 2006 | A1 |
20060256747 | Jaakkola | Nov 2006 | A1 |
20060270399 | Qi et al. | Nov 2006 | A1 |
20060285481 | Lane et al. | Dec 2006 | A1 |
20060287743 | Sampath et al. | Dec 2006 | A1 |
20070002757 | Soomro et al. | Jan 2007 | A1 |
20070002806 | Soomro et al. | Jan 2007 | A1 |
20070004437 | Harada et al. | Jan 2007 | A1 |
20070010226 | Laroia et al. | Jan 2007 | A1 |
20070015541 | Dominique et al. | Jan 2007 | A1 |
20070026803 | Malm | Feb 2007 | A1 |
20070026808 | Love et al. | Feb 2007 | A1 |
20070026810 | Love | Feb 2007 | A1 |
20070030828 | Vimpari et al. | Feb 2007 | A1 |
20070036116 | Eiger et al. | Feb 2007 | A1 |
20070054624 | Kashiwagi | Mar 2007 | A1 |
20070057952 | Swedberg et al. | Mar 2007 | A1 |
20070066273 | Laroia et al. | Mar 2007 | A1 |
20070070894 | Wang et al. | Mar 2007 | A1 |
20070081492 | Petrovic et al. | Apr 2007 | A1 |
20070081498 | Niwano | Apr 2007 | A1 |
20070104128 | Laroia et al. | May 2007 | A1 |
20070104164 | Laroia et al. | May 2007 | A1 |
20070109999 | Brunner | May 2007 | A1 |
20070133412 | Hutter et al. | Jun 2007 | A1 |
20070140168 | Laroia et al. | Jun 2007 | A1 |
20070140179 | Zhang et al. | Jun 2007 | A1 |
20070141994 | Cheng et al. | Jun 2007 | A1 |
20070147283 | Laroia et al. | Jun 2007 | A1 |
20070147377 | Laroia et al. | Jun 2007 | A1 |
20070149126 | Rangan et al. | Jun 2007 | A1 |
20070149128 | Das et al. | Jun 2007 | A1 |
20070149129 | Das et al. | Jun 2007 | A1 |
20070149131 | Li et al. | Jun 2007 | A1 |
20070149132 | Li et al. | Jun 2007 | A1 |
20070149137 | Richardson et al. | Jun 2007 | A1 |
20070149138 | Das et al. | Jun 2007 | A1 |
20070149194 | Das et al. | Jun 2007 | A1 |
20070149227 | Parizhsky et al. | Jun 2007 | A1 |
20070149228 | Das | Jun 2007 | A1 |
20070149238 | Das et al. | Jun 2007 | A1 |
20070159969 | Das et al. | Jul 2007 | A1 |
20070168326 | Das et al. | Jul 2007 | A1 |
20070173208 | Nishio et al. | Jul 2007 | A1 |
20070177510 | Natarajan et al. | Aug 2007 | A1 |
20070183308 | Korobokov et al. | Aug 2007 | A1 |
20070213087 | Laroia et al. | Sep 2007 | A1 |
20070243882 | Edge | Oct 2007 | A1 |
20070249287 | Das et al. | Oct 2007 | A1 |
20070249360 | Das et al. | Oct 2007 | A1 |
20070253355 | Hande et al. | Nov 2007 | A1 |
20070253357 | Das et al. | Nov 2007 | A1 |
20070253358 | Das et al. | Nov 2007 | A1 |
20070253385 | Li et al. | Nov 2007 | A1 |
20070253449 | Das et al. | Nov 2007 | A1 |
20070254595 | Yoon | Nov 2007 | A1 |
20070258365 | Das et al. | Nov 2007 | A1 |
20070298728 | Imamura | Dec 2007 | A1 |
20080031368 | Lindoff et al. | Feb 2008 | A1 |
20080037474 | Niwano | Feb 2008 | A1 |
20080051086 | Etemad et al. | Feb 2008 | A2 |
20080057969 | Agami et al. | Mar 2008 | A1 |
20080076462 | Iochi et al. | Mar 2008 | A1 |
20080144521 | Soomro et al. | Jun 2008 | A1 |
20080159235 | Son et al. | Jul 2008 | A1 |
20080167047 | Abedi | Jul 2008 | A1 |
20080212524 | Niwano | Sep 2008 | A1 |
20090004983 | Darabi | Jan 2009 | A1 |
20090034455 | Lee et al. | Feb 2009 | A1 |
20090103507 | Gu et al. | Apr 2009 | A1 |
20090252122 | Leinonen et al. | Oct 2009 | A1 |
20090298496 | Pettersson | Dec 2009 | A1 |
20090303900 | Cho et al. | Dec 2009 | A1 |
20100177731 | Ananthaiyer et al. | Jul 2010 | A1 |
20100220626 | Das et al. | Sep 2010 | A1 |
20110090812 | Aoyama | Apr 2011 | A1 |
20110149789 | Edge | Jun 2011 | A1 |
20120140756 | Rudolf et al. | Jun 2012 | A1 |
20130230027 | Das et al. | Sep 2013 | A1 |
20130242888 | Das et al. | Sep 2013 | A1 |
20150043374 | Hande et al. | Feb 2015 | A1 |
20150333948 | Richardson | Nov 2015 | A1 |
20150334590 | Das | Nov 2015 | A1 |
20160255633 | Parizhsky | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
3603-2006 | Dec 2006 | CL |
3604-2006 | Dec 2006 | CL |
3605-2006 | Dec 2006 | CL |
1159262 | Sep 1997 | CN |
1159286 | Sep 1997 | CN |
1265792 | Sep 2000 | CN |
1286006 | Feb 2001 | CN |
1286821 | Mar 2001 | CN |
1286832 | Mar 2001 | CN |
1316140 | Oct 2001 | CN |
1335036 | Feb 2002 | CN |
1338877 | Mar 2002 | CN |
1338878 | Mar 2002 | CN |
1507708 | Jun 2004 | CN |
1545252 | Nov 2004 | CN |
1604685 | Apr 2005 | CN |
1684457 | Oct 2005 | CN |
10162564 | Jul 2003 | DE |
1037419 | Sep 2000 | EP |
1037491 | Sep 2000 | EP |
1 054 518 | Nov 2000 | EP |
1089500 | Apr 2001 | EP |
1179962 | Feb 2002 | EP |
1180881 | Feb 2002 | EP |
1180907 | Feb 2002 | EP |
1221273 | Jul 2002 | EP |
1233637 | Aug 2002 | EP |
1377100 | Jan 2004 | EP |
1493284 | Jan 2005 | EP |
1511245 | Mar 2005 | EP |
1564953 | Aug 2005 | EP |
1571762 | Sep 2005 | EP |
1 594 260 | Nov 2005 | EP |
1758276 | Feb 2007 | EP |
1841259 | Oct 2007 | EP |
2340693 | Feb 2000 | GB |
08008806 | Jan 1996 | JP |
8503591 | Apr 1996 | JP |
9275582 | Oct 1997 | JP |
09307939 | Nov 1997 | JP |
10022975 | Jan 1998 | JP |
10173585 | Jun 1998 | JP |
11122167 | Apr 1999 | JP |
2000049689 | Feb 2000 | JP |
2001007761 | Jan 2001 | JP |
2001016152 | Jan 2001 | JP |
2001510974 | Aug 2001 | JP |
2001512921 | Aug 2001 | JP |
2001251680 | Sep 2001 | JP |
2001523901 | Nov 2001 | JP |
2001525135 | Dec 2001 | JP |
2002077992 | Mar 2002 | JP |
2002111627 | Apr 2002 | JP |
2002262330 | Sep 2002 | JP |
2003018641 | Jan 2003 | JP |
2003500911 | Jan 2003 | JP |
2003509983 | Mar 2003 | JP |
2003510887 | Mar 2003 | JP |
2003520153 | Jul 2003 | JP |
2003244161 | Aug 2003 | JP |
2004153585 | May 2004 | JP |
2004297284 | Oct 2004 | JP |
2004533731 | Nov 2004 | JP |
2004350052 | Dec 2004 | JP |
2005073276 | Mar 2005 | JP |
2005130482 | May 2005 | JP |
2005136773 | May 2005 | JP |
2005142965 | Jun 2005 | JP |
2005525730 | Aug 2005 | JP |
2005526417 | Sep 2005 | JP |
2005333671 | Dec 2005 | JP |
2006514735 | May 2006 | JP |
06268574 | Oct 2006 | JP |
2006526323 | Nov 2006 | JP |
2007503156 | Feb 2007 | JP |
2007509531 | Apr 2007 | JP |
2007514364 | May 2007 | JP |
2007514378 | May 2007 | JP |
2007521685 | Aug 2007 | JP |
2007522692 | Aug 2007 | JP |
2007525044 | Aug 2007 | JP |
2007525045 | Aug 2007 | JP |
2006518578 | Mar 2011 | JP |
2011045054 | Mar 2011 | JP |
2006524966 | May 2011 | JP |
1019990084525 | Dec 1999 | KR |
20010014223 | Feb 2001 | KR |
20040018526 | Mar 2004 | KR |
20040053859 | Jun 2004 | KR |
20040084599 | Oct 2004 | KR |
20040110044 | Dec 2004 | KR |
20050021083 | Mar 2005 | KR |
20050023187 | Mar 2005 | KR |
20050039376 | Apr 2005 | KR |
1020050099633 | Oct 2005 | KR |
1020050121274 | Dec 2005 | KR |
20060012282 | Feb 2006 | KR |
2149518 | May 2000 | RU |
2181529 | Apr 2002 | RU |
2188506 | Aug 2002 | RU |
2202154 | Apr 2003 | RU |
200423642 | Nov 2004 | TW |
200539627 | Dec 2005 | TW |
9408432 | Apr 1994 | WO |
9623371 | Aug 1996 | WO |
WO9845967 | Oct 1998 | WO |
WO9856120 | Dec 1998 | WO |
9907090 | Feb 1999 | WO |
9909779 | Feb 1999 | WO |
9913600 | Mar 1999 | WO |
WO9959254 | Nov 1999 | WO |
0001188 | Jan 2001 | WO |
WO0101610 | Jan 2001 | WO |
0122759 | Mar 2001 | WO |
WO01035548 | May 2001 | WO |
0142047 | Jun 2001 | WO |
WO0182504 | Nov 2001 | WO |
0199291 | Dec 2001 | WO |
WO0232183 | Apr 2002 | WO |
WO0233841 | Apr 2002 | WO |
WO02032183 | Apr 2002 | WO |
WO02033841 | Apr 2002 | WO |
0239760 | May 2002 | WO |
WO0249305 | Jun 2002 | WO |
WO02073831 | Sep 2002 | WO |
02101941 | Dec 2002 | WO |
WO02104058 | Dec 2002 | WO |
WO03094544 | Nov 2003 | WO |
03105498 | Dec 2003 | WO |
2004031918 | Apr 2004 | WO |
2004077685 | Sep 2004 | WO |
2004077728 | Sep 2004 | WO |
2004084503 | Sep 2004 | WO |
2004084575 | Sep 2004 | WO |
WO2004084452 | Sep 2004 | WO |
2004098072 | Nov 2004 | WO |
2004100450 | Nov 2004 | WO |
2004105420 | Dec 2004 | WO |
2004110081 | Dec 2004 | WO |
2005018115 | Feb 2005 | WO |
2005020490 | Mar 2005 | WO |
2005034438 | Apr 2005 | WO |
2005039119 | Apr 2005 | WO |
2005057812 | Jun 2005 | WO |
2005060132 | Jun 2005 | WO |
WO2005060271 | Jun 2005 | WO |
WO2005060277 | Jun 2005 | WO |
2005065056 | Jul 2005 | WO |
WO2005065056 | Jul 2005 | WO |
WO2005069519 | Jul 2005 | WO |
2005107311 | Nov 2005 | WO |
2005125049 | Dec 2005 | WO |
WO2006044718 | Apr 2006 | WO |
2006075293 | Jul 2006 | WO |
2007031956 | Mar 2007 | WO |
Entry |
---|
Hosein, et al., “Optimal Assignment of Mobile Station Serving Sector for the Forward Link of a Time-Shared Wireless Packet Data Channel.” Fifth IEE International Conference on 3G Mobile Communication Technologies (3G 2004). Oct. 18-Oct. 20, 2004, pp. 654-658. |
Kwon, et al., “Quasi-Dedicated Access Scheme for Uplink Realtime Services in Future Wireless Communication Systems,” Vehicular Technology Conference, 2005. VTC 2005—Spring. 2005 IEEE 61st Stockholm, Sweden, Apr. 20-May 1, 2005, Piscataway, NJ, USA, May 30, 2005, pp. 3117-3121. |
Majmundar, “Impact of Mobile-Originated Short Message Service on the Digital Control Channel of TDMA Systems,” Vehicular Technology Conference, 2000. IEEE VTS Fall VTC 2000. 52nd Sep. 24-28, 2000, Piscataway, NJ, USA, IEEE, Sep. 24, 2000, pp. 1550-1555. |
International Search Report—PCT/US06/048525, International Search Authority—European Patent Office, Jun. 25, 2008. |
Written Opinion—PCT/US06/048525, International Search Authority—European Patent Office, Jun. 25, 2008. |
European Search Report—EP10157769—Berlin—Apr. 9, 2010. |
IEEE P802.16e/D5: “Draft IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands”, pp. 1-356, Sep. 2004 |
IEEE P802.16e/D5: “Draft IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands”, pp. 184-190, Sep. 2004. |
Hang Zhang et al, “Clean up for Closed-Loop MIMO in H-ARQ MAP IE”, IEEE P802.16e/D7 Broadband Wireless Access Working Group <http://ieee802.org/16>, pp. 1-6, Mar. 10, 2010. |
Translation of Office Action in Ukraine application 200508984 corresponding to U.S. Appl. No. 11/748,433, citing US20020160802, WO0232183, RU2181529, WO9845967, EP1377100, U.S. Pat. No. 5,867,478, US20010007552 , U.S. Pat. No. 6,035,000 and U.S. Pat. No. 5,933,421 dated Dec. 9, 2010. |
Translation of Office Action in Ukraine Application 2010-10406 corresponding to U.S. Appl. No. 11/748,433, citing U.S. Pat. No. 5,867,478, US20010007552, U.S. Pat. No. 6,035,000 ,U.S. Pat. No. 5,933,421 ,WO02073831 ,WO02032183 ,RU2181529 and EP1377100 dated Feb. 22, 2011. |
3GPP: ETSI TS 125 331 V6.3.0: Radio Resource Control (RRC) protocol specification (3GPP TS 25.331 version 6.3.0 Release 6), Sep. 1, 2004, pp. 49, 202-209, 220,221,406,579-585, 589, 930. |
3GPP TSG RAN2#45bis. “EDCH Buffer Status Reporting,” R2-050026, Sophia Antipolis, France, Jan. 10-14, 2005, URL: http://www.3gpp.org/ftp/tsg—ran/WG2—RL2/TSGR2—45bis/Dcs/R2-050026.zip. |
3GPP TSG-RAN WG2 meeting #48. “Scheduling Information Contents,” R2-051957, London, United Kingdom, Aug. 29, 2005, URL: http://3gpp.org/ftp/tsg—ran/WG2—RL2/TSGR2—48/Docments/R2-095517.zip. |
Chang, Cheng-Ta: “Downlink Transmit Power Issues in a WCDMA Cellular System,” Dec. 14, 2004, p. 3, Fig. 1, Retrieved online: http://wintech.ee.nctu.edu.tw/handoff/MediaTek/Material/Wintech/1214/Downlink%20Transmit%20Power%20Issues%20in%20a%20WCDMA%20Cellular%20System.pdf. |
Ericsson: Discussion on SIR Measurement, TSG-RAN Working Group 4 (Radio) meeting #18, R4-010895, Berlin, Germany, 3GPP TS 25.101 V3.7.0, Jul. 9, 2001, URL: http://www.3gpp.org/ftp/tsg—ran/WG4—Radio/TSGR4—18/Docs/R4-010895.zip. |
Gunnarsson, G. et al., “Location Trial System for Mobile Phones,” Global Telecommunications Conference, 1998. GLOBECOM 98. The Bridge to Global Integration. IEEE, vol. 4, pp. 2211-2216, Nov. 8-12, 1998. |
Hobfeld, T. et al., “Supporting Vertical Handover by Using a Pastry Peer-to-Peer Overlay Network,” Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2006. Percom Workshops 2006. Mar. 13-17, 2006, pp. 163-167, p. 164, paragraph III, IEEE, Piscataway, NJ, USA, XP010910514, ISBN: 0-7695-2520-2. |
LG Electronics Inc., “Relative Buffer Status Reporting,” 3GPP TSG-RAN WG2 meeting #46bis, R2-050852, Apr. 4, 2005, pp. 1-3, URL, http://www.3gpp.org/ftp/tsg—ran/WG2—RL2/TSGR2—46bis/Documents/R2-050852.zip. |
Samsung: “Uplink control signaling structure (Revision of R1-041086),” 3GPP TSG-RAN WG1 Meeting #38bis, Tdoc R1-041222, 3GPP, Sep. 20, 2004, URL: http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—38bis/Dcs/R1-041222.zip. |
Taiwan Search Report—TW095148274—TIPO—Nov. 27, 2012. |
TIM/TILAB, Blu, Mobilkom Austria, One2one,Telefonica: “Re-introduction of SIR measurement,” 3GPP TSG-RAN4 Meeting #17, R4-010647, 3GPP, Goteborg, Sweden, May 21, 2001, URL: http://www.3gpp.org/ftp/tsg—ran/WG4—Radio/TSGR4—17/Docs/R4-010647.Zip. |
Taiwan Search Report—TW095148274—TIPO—Sep. 25, 2013. |
European Search Report—EP14194480—Search Authority—Berlin—Mar. 10, 2015. |
Taiwan Search Report—TW095148274—TIPO—Jul. 22, 2014. |
Wada, “Study of an OFDM Cellular System Using a Single Band,” 2002 Communication Society Convention, Collection of Lecture Papers 1, Japan, IEEE, Aug. 20, 2002, p. 355, B-5-58. |
Gunnarson, F., et al.: “Uplink Admission Control in WCDMA Based on Relative Load Estimates”, IEEE International Conference on Communications, vol. 1, pp. 3091-3095, IEEE, New York, NY USA (Apr. 28, 2002). |
Wada, “Study of an ORDM Cellular System Using a Single Band,” 2002 Communication Society Convention, Collection of Lecture Papers 1, Japan, IEEE, Aug. 20, 2002, p. 355, B-5-58. |
Number | Date | Country | |
---|---|---|---|
20070168326 A1 | Jul 2007 | US | |
20100211540 A9 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
60449729 | Feb 2003 | US | |
60752973 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10648766 | Aug 2003 | US |
Child | 11486601 | US |