This disclosure relates to the removal of volatile components from a liquid or a slurry containing solids and liquids and using a screw conveyor or auger system that transfers solid/liquid slurries through a tube heated by solar energy from a parabolic solar trough. The system flashes off the volatile component then counter-currently flows that vapor back into the augur creating a Multi-effect or Multi Flash device which greatly improves the overall efficiency of removal of the volatile material.
There are numerous industrial operations that introduce volatiles into their operations and then require that those volatiles be removed later. Well known applications are mines or quarries that introduce water and later require that the moisture be removed. Dewatering is a process that separates liquid-solid mixtures, such as slurries comprised of particles and process water, that are present in aggregate, minerals, coal and frac sand wet processing applications.
A number of chemical engineering unit operations have been developed in the past to deal with water removal. Wet classification is a process of separating particles in a feed material depending on their settling rates in a fluid. Larger, heavier sized particles sink to the bottom, while smaller, lighter fractions float to the top and overflow weirs on the equipment. Centrifugation can dewater materials by centrifugal force that draws particles away from the center of rotation. Filtration can remove water and other liquids from slurries by forcing the liquid through a permeable barrier or filter media and leave a trapped cake of drier solids that are too large to pass through the barrier or filter media. Dewatering through filtration creates dry material as well as reusable process water.
These approaches can be complex and in some cases labor intensive.
This disclosure describes a solar powered device for efficient removal of volatile liquids from industrial solid-liquid slurries including at least: a screw conveyor inside an elongated tube, with the conveying flights of the screw conveyor mounted onto a hollow pipe within the elongated tube; a first end of the elongated tube comprising a feed port for a solid-liquid slurry; a second end of the elongated tube comprising a waste drop for removal of the solids material after its liquids have been removed; wherein the elongated tube is centered in a parabolic solar trough that impinges solar energy onto the elongated tube to volatilize the volatile liquid from the contained slurry; wherein the elongated tube is not perfectly round but is topped with an enclosed vertical U-shaped or V-shaped top that provides a pathway for the volatile vapor removed from the solid-liquid slurry; and wherein the hollow pipe that recycles the volatile vapor removed from the solid-liquid slurry counter-currently back through the hollow pipe within the elongated tube removes the resulting liquid. Furthermore, the solids removed through the waste drop from the elongated tube pass through a long auger discharge where they are conveyed by an internal screw conveyor and finally exist the overall device through a final waste drop.
The disclosure also describes a method for utilizing solar power for efficient removal of volatile materials such as water from industrial slurries including at least: providing a screw conveyor or auger inside an elongated tube, with the conveying flights of the screw conveyor mounted onto a hollow pipe within the elongated tube; providing a first end of the elongated tube with a feed port for a solid-liquid slurry; providing a second end of the elongated tube with a waste end for removal of solids material; positioning the elongated tube in a parabolic solar trough that impinges solar energy onto the elongated tube to volatilize the volatile liquid from the contained slurry; providing an enclosed vertical U shaped top to the elongated tube that provides a pathway for the volatile vapor removed from the solid-liquid slurry; providing a vacuum at the first end of the elongated tube to drive the flow of volatized vapor in a counter-current flow in the hollow pipe of the elongated tube; providing an exit from the hollow pipe of the elongated tube for removing the liquid of the solid-liquid slurry. Furthermore the method provides for feeding the solids from the waste drop from the elongated tube pass through a long auger discharge where they are conveyed by an internal screw conveyor and finally exist the overall device through a final waste drop.
This disclosure further describes a solar powered device with a first end and a second end for efficient removal of volatile liquids from industrial solid-liquid slurries including at least: a solid-liquid slurry fill tank and a feed tube with an internal powered auger that feeds the solid-liquid slurry upward into an elongated tube including at least: a screw conveyor or auger inside the elongated tube; a first end of the elongated tube including at least a feed port for a solid-liquid slurry; a second end of the elongated tube including at least a waste drop for removal of the solids material from the elongated tube after its liquids have been removed; wherein the elongated tube is centered in a parabolic solar trough that impinges solar energy onto the elongated tube to volatilize the volatile liquid from the contained slurry into a vapor; wherein the elongated tube is not perfectly round but is topped with an enclosed vapor chamber that provides a pathway for the volatile vapor removed from the solid-liquid slurry as the slurry travels through the elongated tube; wherein the first end of the solar powered device also includes at least a vacuum system including at least a vacuum pump connected to a distillate tank that collects the distillate removed from the slurry and gives the volatile vapor removed from the slurry a flow direction toward the first end of the solar powered device while lowering the boiling point of the liquid in the slurry; and wherein the solids removed through the waste drop from the second end of the elongated tube pass through a long auger discharge where they are conveyed by an internal screw conveyor and finally exist the overall device through a final waste drop.
The disclosure also describes a method for utilizing solar power for efficient removal of volatile materials such as water from industrial slurries including at least: providing a solid-liquid slurry fill tank and a feed tube with an internal powered auger that feeds the solid-liquid slurry upward into an elongated tube including at least: a screw conveyor or auger inside the elongated tube; providing a first end of the elongated tube including at least a feed port for a solid-liquid slurry; providing a second end of the elongated tube including at least a waste drop for removal of the solids material from the elongated tube after its liquids have been removed; wherein the elongated tube is centered in a parabolic solar trough that impinges solar energy onto the elongated tube to volatilize the volatile liquid from the contained slurry into a vapor; providing an enclosed vapor chamber over the top of the elongated tube that provides a pathway for the volatile vapor removed from the solid-liquid slurry as the slurry travels through the elongated tube; providing on the first end of the solar powered device a vacuum system including at least a vacuum pump connected to a distillate tank that collects the distillate removed from the slurry and gives the volatile vapor removed from the slurry a flow direction toward the first end of the solar powered device while lowering the boiling point of the liquid in the slurry; and providing for the solids removed through the waste drop from the second end of the elongated tube pass through a long auger discharge where they are conveyed by an internal screw conveyor and finally exist the overall device through a final waste drop.
Referring now to
As the slurry is being conveyed the hollow elongated tube 20 is heated by solar impingement from the parabolic solar trough, volatilizing the liquid in the slurry as it is being conveyed from the slurry fill end to the waste discharge end. The elongated tube 20 is not completely round in that it has an enclosed vertical U-shaped or V-shaped “hen house” top 210 along the top. As the liquid is being volatilized from the slurry while traveling down the elongated tube 20 the volatile liquid (steam in the case of water) it is collected overhead in the “Hen House” or vertical structure 210 on top. This vapor is redirected back counter-currently via pipe 220 and is returned through a hollow pipe 254 that is internal to the screw conveyor or auger 256, thus releasing its heat of vaporization as it condenses back within the hollow pipe 254 via heat conduction, creating a multi-effect/multi-flash system before the resulting removed volatile liquid is removed from the system at the far end through pipe 240.
A vacuum (not shown) is applied at the first end 230 of the system to give the volatile vapor a flow direction and to lower the boiling point of the liquid. Although not shown in the figures, maintenance of the vacuum is aided by a controller that controls the level of slurry in the slurry fill 30 as the system runs.
The conveying flights of the screw conveyor 256 are mounted on the hollow pipe 254 that also serves to pass recycled volatiles back toward the slurry feed entrance in a counter-current flow to exchange heat via heat conduction through hollow pipe 254 with the entering slurry.
As shown previously in
The process is controlled by the screw conveyor speed. So that, if one wants to dry the material more, the screw conveyor speed is less, or if the desire is to remove less liquids, the screw speed is increased. The screw conveyor speed is controlled by a chain driven sprocket wheel 270 (
Referring now to
In a given particular application there could be one such elongated tube and for larger applications there could be multiple of these tubes aligned within multiple solar troughs.
Turning now to
Still looking at
As the slurry is being conveyed through the hollow elongated tube 508 it is heated by solar impingement from the parabolic solar trough 15 (
The vacuum pump 50 is applied at the first end of the system to give the volatile vapor a flow direction toward the first end of the system and to lower the boiling point of the liquid. Although not shown in the figures, maintenance of the vacuum is aided by a controller that controls the level of slurry in the slurry fill port 505 (
The conveying flights of the screw conveyor 525 are mounted on a pipe 532 running through elongated tube 508.
As shown previously in
The removal process is controlled by the screw conveyor speed of the screw conveyor 525 in the elongated tube 508. So that, if one wants to dry the material more, the screw conveyor speed is less, or if the desire is to remove less liquids, the screw speed is increased. The screw conveyor speed of the elongated tube 508 can be controlled by chain driven sprocket wheel 95.
The use of parabolic solar troughs has obvious advantages related to energy savings. It should be noted though that there are applications in which 24-hour power is needed and the concepts exemplified here could use other sources such as gas or electric heaters to heat the elongated tube when solar impingement is not available. The system described would work in the same way in providing efficient removal of liquids from solid-liquid slurries.
This disclosure has been described with reference to specific details of particular embodiments. It is not intended that such detailed be regarded as limitations upon the scope of the invention except insofar as and to the extent that they are included in the eventual claims.
This application is a Continuation-in-Part of U.S. application Ser. No. 17/174,413 filed Feb. 12, 2021. The aforementioned application is hereby incorporated by reference in its entirety into the present application to the extent consistent with the present application.
Number | Date | Country | |
---|---|---|---|
Parent | 17174413 | Feb 2021 | US |
Child | 18064254 | US |