Efficient square-root free 2 symbol max-log receiver

Information

  • Patent Grant
  • 8767888
  • Patent Number
    8,767,888
  • Date Filed
    Thursday, March 29, 2012
    12 years ago
  • Date Issued
    Tuesday, July 1, 2014
    10 years ago
Abstract
The present invention employs a look up table based implementation for the metric computations which eliminate redundancy and substantially reduce the number of multiplications. Moreover, inventive method exploits the fact that the un-normalized constellation symbols are complex integers so that the product of a real-number and an un-normalized constellation symbol can be implemented by only additions. The inventive method also enables a greater efficiency for whitening colored noise prior to demodulation, one of which involves no square-root operation. The invention results in less complexity, faster operation, lower power consumption, without sacrificing performance.
Description
BACKGROUND

The present invention relates to wireless communications and, more particularly, to an efficient square-root free 2 symbol max-log receiver.


In several communication scenarios the following receiver (demodulator) design problem is ubiquitous. Consider a received signal vector z that has 2 complex-valued elements and can be expressed as:

z=Hs+n  (Equation)


where, s is the transmit symbol vector having 2 complex-valued elements, each drawn from a normalized constellation. The matrix H models the channel and the vector n models the additive independent noise, assumed to have complex Gaussian elements of unit variance. Then given z and H and the constellation(s) from which the elements of s are drawn, the receiver (demodulator) design problem is to determine the optimal hard decision about s and/or the optimal soft decisions (log-likelihood ratios) about the coded bits mapped to s.


One approach to solving the above problem, the brute-force way, to determine either the hard or soft decisions is to list out all possibilities of s and compute associated metrics. This method has a very high complexity which scales as O(M2), where M is the constellation size and is considered to be impractical. A better approach was consequently developed in U.S. patent application Ser. No. 11/857,269, inventors: Prasad et al., entitled “Max_Log Receiver For Multiple Input Multiple output (MIMO) Systems”. In this technique, the demodulator involves twice linearly transforming the received signal vector to obtain new transformed vectors that can be modeled as in the above Equation, but where the transformed channel matrices have a triangular structure. The transformed vectors are then used for metric computations after exploiting the induced triangular structure in the transformed channel matrices. Determining the matrices used for these two linear transformations as well as the elements of the resulting transformed channel matrices involves square-root operations that are costly to implement.


Accordingly, there is a need for an efficient square-root free 2 symbol max-log receiver.


SUMMARY

A method for a square-root free 2 symbol max-log receiver includes obtaining linear transformations of a received two stream signal and a channel matrix without implementing square-root operations, listing out all possibilities for a first symbol of the received two stream signal, building look-up-tables needed for computing first metrics associated with all possibilities for a first symbol of the two stream signal, determining a second symbol of the two stream signal for each the first symbol listed out, evaluating said first metrics for each the first symbol and second symbol pair using the look up tables, listing out all possibilities for the second symbol 2, building look-up-tables needed for computing second metrics associated with all possibilities for a second symbol of said received two stream signal, determining a first symbol for each choice of the second symbol listed out, evaluating the second metrics for each the second symbol and first symbol pair using the look up tables, determining an exact max-log log likelihood ratio for each coded bit using the second metrics; and decoding a least one codeword in the two stream signal using the determined exact max-log log likelihood ratios for all bits.


These and other features and advantages will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.





BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following description of preferred embodiments with reference to the following figures wherein:



FIG. 1 is a diagram of an exemplary system schematic in which the present inventive principles can be practiced.



FIG. 2 is a block diagram of a receiver configuration in accordance with the invention.



FIG. 3 is a flow diagram for an efficient square-root free 2 symbol max-log receiver, in accordance with the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring now in detail to the figures in which like numerals represent the same or similar elements and initially to FIG. 1, is a diagram of an exemplary system schematic in which the present inventive principles can be practiced. A destination receiver 10 receives signals of interest 11, 12 as well as interfering signals. This invention improves upon the prior method noted above by employing a new way of linear transformations and metric computations that are square-root free.


The present invention employs a look up table based implementation for the metric computations which eliminate redundancy and substantially reduce the number of multiplications. Moreover, inventive method exploits the fact that the un-normalized constellation symbols are complex integers so that the product of a real-number and an un-normalized constellation symbol can be implemented by only additions. The inventive method also enables a greater efficiency for whitening colored noise prior to demodulation, one of which involves no square-root operation. The invention results in less complexity, faster operation, lower power consumption, without sacrificing performance


Referring now to FIG. 2, the block diagram shows a receiver configuration in accordance with the invention. The block 20 coupled to receive antennas 1 . . . Nr provides base-band converted output to the inventive efficient modulator 21 that is influenced by a channel and interference covariance matrix estimator 22. The key ingredients of the present invention are square-root free operation and look-up table based implementation.


Detailed Process


Signal Model:






z
=



H


[




E

(
0
)




0




0



E

(
1
)





]




[




x

(
0
)







x

(
1
)





]


+

[




n

(
0
)







n

(
1
)





]








z
=




H


[




E

(
0
)




0




0



E

(
1
)





]



x

+
n

=



H
_


x

+
n






Equation 1: Rx Signal Model for Spatial Multiplexing

Where H is effective channel matrix of size Nr×2, Nr being the number of receive antennas, n˜Nc(0,I) and x is a vector of un-normalized QAM symbols. E(0), E(1) are normalizing factors such that E(0)x(0), E(1)x(1) have unit average energy. Thus, x(0), x(1) are un-normalized QAM symbols.


Given


Received vector z,


Estimate {tilde over (H)}=[{tilde over (h)}0, {tilde over (h)}1] of effective channel matrix H


Using QR decomposition, {tilde over (H)} can be factored as

{tilde over (H)}=QR  Equation 2

Where Q is Nr×2 semi-unitary matrix i.e. QHQ=I and R is 2×2 upper triangular matrix that can be expanded as






R
=

[




r

0
,
0





r

0
,
1






0



r

1
,
1





]






Square-Root Free Operation


Referring now to the flow diagram of FIG. 3 showing an efficient square-root free 2 symbol max-log receiver, in accordance with the invention, the square-root free linear transformations of the received signal and the channel matrix 100 is obtained as described below.


Obtain








Q
~

=

Q


[




1
/

r

0
,
0





0




0



1
/

r

1
,
1






]



,







r



0
,
1


=


r

0
,
1


/

r

0
,
0









and





θ
=


r

1
,
1

2

/

r

0
,
0

2







Upon multiplying received vector z with {tilde over (Q)}H we have
















z
~

=




Q
~

H


z

=




Q
~

H



(

QRx
+
n

)


=



R
~


x

+

n
~












z
~

=


[





z
~


(
0
)








z
~


(
1
)





]

=




[



1




r

0
,
1


/

r

0
,
0







0


1



]



[




x

(
0
)







x

(
1
)





]


+

n
~


=


[





x

(
0
)


+



r



0
,
1




x

(
1
)









x

(
1
)





]

+

[





n
~


(
0
)








n
~


(
1
)





]










Equation





3







Note that since QHQ=I=>ñ˜Nc(0, diag{1/r0,02, 1/r1,12}).


To implement the inventive procedure, the term {tilde over (Q)}, {hacek over (r)}0,1, r1,12 and θ needs to be determined. Also note that r1,12 and θ are both real and positive valued, whereas {hacek over (r)}0,1 is complex valued. The computation of these quantities is described in the following. Note that no square-root operations are involved.


Obtaining {tilde over (Q)},{hacek over (r)}0,1, r1,12 and θ via a modified QR decomposition (For any Nr≧2), use {tilde over (H)} in the following steps

    • Step 1: Consider {tilde over (H)}=[{tilde over (h)}0, {tilde over (h)}1] and obtain

      α={tilde over (h)}0H{tilde over (h)}1
    • Step 2: Obtain δ=∥{tilde over (h)}02 and first column of {tilde over (Q)}=[{tilde over (q)}0, {tilde over (q)}1] as

      {tilde over (q)}0={tilde over (h)}0
    • Step 3: Obtain the vector {tilde over (v)}={tilde over (h)}1−α{tilde over (q)}0; and r1,12=∥{tilde over (v)}∥2 and the second column of {tilde over (Q)}=[{tilde over (q)}0,{tilde over (q)}1] as

      {tilde over (q)}1={tilde over (v)}/r1,12
    • Step 4: Obtain {hacek over (r)}0,1 as

      {hacek over (r)}0,1=α/δ
    • Step 5: Obtain θ as

      θ=r1,12/δ.


Referring now to FIG. 3 and blocks 103 and 106, the following are denoted:

    • K(v) as number of symbols in modulation constellation applied to layer v. K(v) has value 4,16 and 64 if modulation is QPSK, 16QAM and 64QAM respectively
    • S(v) as the set containing K(v) modulation symbols in the modulation constellation applied to layer v.
    • B(v) as a number of bits per modulation symbol applied to layer v. B(v) has value 2, 4 and 6 if modulation is QPSK, 16QAM and 64QAM respectively


The soft bit k:k=0, 1, . . . B(v)−1, correspond to transmitted symbol x(v): v=0, 1 are generated using max-log approximation of LLR as follows:










L


(

b

k
,
v


)






min


c
j



S

k
,
v
,
0









(


z
~

-


R
~



c
j



)

H



[




r

0
,
0

2



0




0



r

1
,
1

2




]




(


z
~

-


R
~



c
j



)



-


min


c
j



S

k
,
v
,
1









(


z
~

-


R
~



c
j



)

H



[




r

0
,
0

2



0




0



r

1
,
1

2




]




(


z
~

-


R
~



c
j



)








Equation





4








Where

    • Vector cj=[cj(0), cj(1)]T with each element cj(v) being a complex symbol in the modulation constellation applied to layer v.
    • Sk,v,1 and Sk,v,0 denote the set containing all possible vector cj such that bit k of element cj(v) is equal to 1 and 0 respectively.


      For example, if QPSK is used on layer v=0 and 16QAM is used on layer v=1 then
    • Sk,0,1 and Sk,0,0 each contains 2×16=32 vectors
    • Sk,1,1 and Sk,1,0 each contains 8×4=32 vectors


Since full computation according to Equation 4 results in undesirably high complexity, further simplification is needed and is explained below. Note that the following simplification results in no loss of optimality when compared to (Equation 4). In other words, the soft bits generated below are identical respectively to the ones generated using (Equation 4).


Considering soft bit calculation for the second layer (i.e. v=1), following steps are performed


Step 1: for each cj(1)εS(1):j=0, 1, . . . , K(1)−1,

    • Compute dj(1)=θ|{tilde over (z)}(1)−cj(1)|2 (see Equation 3)
    • Compute soft estimate {tilde over (z)}(0)−{hacek over (r)}0,1cj(1) (see Equation 3) and then select a symbol ĉj(0)εS(0) that is closest to {tilde over (z)}(0)−{hacek over (r)}0,1cj(1)
    • Compute dj(0)=|{tilde over (z)}(0)−ĉj(0)−{hacek over (r)}0,1cj(1)|2
    • Compute total distance djTOTAL=dj(0)+dj(1)


Step 2:

    • Determine









d
^


(
1
)


=


min


c
j

(
1
)




S

(
1
)






{

d
j
TOTAL

}



,







c
^

j

(
1
)


=



arg





min



c
j

(
1
)




S

(
1
)






{

d
j
TOTAL

}








and note that ĉj(1)εS(1) is the symbol of layer−1 in the maximum likelihood (ML) decision. Let {circumflex over (b)}k,1: k=0, 1, . . . , B(1)−1 be the bit-label of ĉj(1)εS(1)

    • Compute each soft bit L(bk,1): k=0, 1, . . . , B(1)−1 as











L


(

b

k
,
1


)


=




r

0
,
0

2

(



d
^


(
1
)


-


min


d
m
TOTAL



D
k
1





d
m
TOTAL



)






if







b
^


k
,
1



=
0







or








L


(

b

k
,
1


)


=




r

0
,
0

2

(



min


d
m
TOTAL



D
k
0





d
m
TOTAL


-


d
^


(
1
)



)






if







b
^


k
,
1



=
1


;





Equation





5

b









    • Where Dk1 and Dk0 denotes the set containing all distances djTOTAL correspond to cj(1) that has that bit k equal to 1 and 0 respectively.





Considering soft bit calculation for the first layer (i.e. v=0), following steps are performed

    • Step A: Swapping of symbol vector x and estimate of effective channel matrix {tilde over (H)} as







x


=

[




x

(
1
)







x

(
0
)





]






and







H
~



=

[



h
~

1

,


h
~

0


]







    • Step B: Perform QR decomposition as shown in Equation 2 (using {tilde over (H)}′ instead of {tilde over (H)}) and multiply receive vector with {tilde over (Q)}H as shown in Equation 3

    • Step 1 and Step 2 are similar to description above with appropriate swapping i.e. S(1), S(0), K(1), B(1), L(bk,1) being replaced by S(0), S(1), K(0), B(0), L(bk,0) respectively.





Attention is now directed to Look-Up-Table (LUT) based metric computations denoted in blocks 102 and 105 of FIG. 3. In this section we simplify the computations involved in determining dj(0), dj(1). This is particularly important when at least one of the two constellations is 64 QAM. The key ideas we use are the following:

    • 1. We look at the max-log LLR expression and after expanding dj(0), dj(1), we drop the terms that do not influence the LLR.
    • 2. In the model in (Equation 1) we pull out normalizing factors so that the modulation symbols are from un-normalized QAM constellations which contain integers. Then we can use the fact that the product of an integer and a real number can be obtained using just additions.
    • 3. We also form LUTs containing common terms that mostly depend only on the channel coefficients. The entries of these LUTs are repeatedly accessed while computing all dj(0), dj(1) and multiplications are avoided.


Consider the step: Compute dj(1)=θ|{tilde over (z)}(1)−cj(1)|2


Note that we can expand it as

dj(1)=θ|{tilde over (z)}(1)|2+θ(cj,R(1))2+θ(cj,I(1))2−2{tilde over (z)}R(1)cj,R(1)θ−2{tilde over (z)}I(1)cj,I(1)θ  (Equation 10)


From (Equation 4b), we can conclude that computing (Equation 10) instead as

dj(1)=θ(cj,R(1))2+θ(cj,I(1))2−2{tilde over (z)}R(1)cj,R(1)θ−2{tilde over (z)}I(1)cj,I(1)θ  (Equation 11)

results in no loss of max-log LLR optimality. Then since cj(1) belongs to the un-normalized QAM constellation S(1)=SR(1)+iSI(1), where SR(1), SI(1) are both identical un-normalized PAM constellations of size M(1)=√{square root over (K(1))} and given by {−(M(1)−1), −(M(1)−3), . . . , −1, 1, . . . , (M(1)−3), (M(1)−1)}. Then in a one dimensional (1-D) LUT of length M(1)/2 we can pre-compute and store {(M(1)−1)2θ, (M(1)−3)2θ, . . . , θ}. Note that since the product of any positive integer and any real number can be determined only by additions, this 1-D LUT can be determined only by additions and needs to be updated only if θ changes. Each cj,R(1) and cj,I(1) should then index the appropriate entry of this LUT via a pre-defined mapping rule to obtain (cj,R(1))2θ and (cj,I(1))2θ, respectively. Further, two other 1-D LUTs containing {2(M(1)−1){tilde over (z)}R(1)θ,2(M(1)−3){tilde over (z)}R(1)θ, . . . , 2{tilde over (z)}R(1)θ} and {2(M(1)−1){tilde over (z)}I(1)θ,2(M(1)−3){tilde over (z)}I(1)θ, . . . , 2{tilde over (z)}I(1)θ}, respectively, can be generated via only addition operations, once the two terms {tilde over (z)}R(1)θ,{tilde over (z)}I(1)θ are computed. Then all possibilities of the terms −2{tilde over (z)}R(1)cj,R(1)θ−2{tilde over (z)}I(1)cj,I(1)θ can be determined using these two 1-D LUTs by accessing the proper entries followed by a negation if needed. Alternatively, once the two terms {tilde over (z)}R(1)θ,{tilde over (z)}I(1)θ are computed, each −2{tilde over (z)}R(1)cj,R(1)θ−2{tilde over (z)}I(1)cj,I(1)θ can be directly computed using additions. As a result, all {dj(1)} can be computed with only 2 real multiplications.


Next, consider the computation of

dj(0)=|{tilde over (z)}(0)−ĉj(0)−{hacek over (r)}0,1cj(1)|2=({tilde over (z)}R(0)−ĉj,R(0)−{hacek over (r)}0,1,Rcj,R(1)+{hacek over (r)}0,1,Icj,I(1))2+({tilde over (z)}I(0)−ĉj,I(0)−{hacek over (r)}0,1,Icj,R(1)−{hacek over (r)}0,1,Rcj,I(1))2  (Equation 12)


Consider the first term in (Equation 12) which is ({tilde over (z)}R(0)−ĉj,R(0)−{hacek over (r)}0,1,Rcj,R(1)+{hacek over (r)}0,1,Icj,I(1))2. Suppose that we have computed via simple quantizing the terms {{tilde over (z)}R(0)−ĉj,R(0)−{hacek over (r)}0,1,Rcj,R(1)+{hacek over (r)}0,1,Icj,I(1)} for all cj(1)=cj,R(1)+icj,I(1). Note that there are K(1) such terms and our objective is to compute the squares of these terms as efficiently as possible. The obvious method would entail K(1) real multiplications. Here we propose an LUT based efficient method and to illustrate, we consider 64 QAM so that cj,R(1) and cj,I(1) each belong to the set {−7, −5, . . . , −1, 1, . . . , 5, 7}. Then, suppose that for any fixed cj1(1)=aR−i7, we have computed the term w=γR,j−ĉj1,R(0)−7{hacek over (r)}0,1,I and w2, where γR,j={tilde over (z)}R(0)−{hacek over (r)}0,1,RaR. Moreover, suppose that for any cj2(1)=aR+iq, q={−5, −3, . . . , 7} we have determined u=γR,j−ĉj2,R(0)+q{hacek over (r)}0,1,I. Then letting {circumflex over (d)}=ĉj2,R(0)−ĉj1,R(0) we see that u2 can be expanded as

u2=w2+2(7+q)w{hacek over (r)}0,1,I−2{circumflex over (d)}w+{circumflex over (d)}2+((7+q){hacek over (r)}0,1,I)2−2{circumflex over (d)}(7+q){hacek over (r)}0,1,I  (Equation 13)


Note in (Equation 13) that if w2, {hacek over (r)}0,1,I, ({hacek over (r)}0,1,I)2, w{hacek over (r)}0,1,I are available then u2 can be determined via only addition (or subtraction which can be considered equivalent to an addition) operations since {circumflex over (d)} is an integer and the product of an integer, say 3, and a real number, say x, is equal to x+x+x.


To efficiently determine any such u2, we construct a 2-D LUT which for a given pair {circumflex over (d)}, q yields {circumflex over (d)}2+((7+q){hacek over (r)}0,1,I)2−2{circumflex over (d)}(7+q){hacek over (r)}0,1,I. Since all possible {circumflex over (d)}, q are integer pairs, this 2-D LUT can be constructed using only addition operations and needs to be updated only if {hacek over (r)}0,1,I changes. Furthermore, for a given pair w, w{hacek over (r)}0,1,I the quantities {2(7+q)w{hacek over (r)}0,1,I} and {2{circumflex over (d)}w} can either be directly computed using additions or can be recursively updated (again using additions) as q is varied from −5 to 7 in steps of 2. Thus, for a given {hacek over (r)}0,1,I, ({hacek over (r)}0,1,I)2 only two real multiplications (i.e., those needed to compute w2, w{hacek over (r)}0,1,I) are required to determine all {({tilde over (z)}R(0)−ĉj,R(0)−{hacek over (r)}0,1,Rcj,R(1)+{hacek over (r)}0,1,Icj,I(1))2}, cj,R(1)=aR, cj,R(1)=q for any fixed aR as q is varied from −5 to 7 in steps of 2. It can be similarly shown that given {hacek over (r)}0,1,R, ({hacek over (r)}0,1,R)2 only one more additional real multiplication (needed to compute w{hacek over (r)}0,1,R) is required to determine all {({tilde over (z)}R(0)−ĉj,R(0)−{hacek over (r)}0,1,Rcj,R(1)+{hacek over (r)}0,1,Icj,I(1))2}, cj,R(1)=aR, cj,I(1)=q for any fixed aR as q is varied from −5 to 7 in steps of 2. Thus, all {({tilde over (z)}R(0)−ĉj,R(0)−{hacek over (r)}0,1,Rcj,R(1)+{hacek over (r)}0,1,Icj,I(1))2} for all cj(1) can be determined with 10 real multiplications. Similarly all possibilities of the second term in (Equation 12) which are {({tilde over (z)}I(0)−ĉj,I(0)−{hacek over (r)}0,1,Icj,R(1)+{hacek over (r)}0,1,Rcj,I(1))2} be determined with 10 real multiplications. Consequently all {d0(1)} can be computed with only 20 real multiplications.


Detailed Implementation (for 2 RX)


1.1 Second Layer Processing


Set






    • v=0

    • SA=S(1)

    • SB=S(0)

    • KA=K(1)

    • BA=B(1)

      Then perform processing as described in subsections below.


      After completing processing in 1.1.4, assign L(bk,1)=L(bk)





1.1.1 Process Received Input










z
~

=


[





z
~


(
0
)








z
~


(
1
)





]

=



Q
~

H


z






Equation





6








Obtain {hacek over (r)}0,1, r1,12 and θ.


1.1.2 Distance Calculation 1


For each cjAεSA:j=0, 1, . . . , KA−1,


Step 1: Compute

djA=θ|{tilde over (z)}(1)−cjA|2  Equation 7

Note that the computation in Equation 15 can be simplified using LUT as described above


Step 2: Compute the soft estimate

{tilde over (c)}jB={tilde over (z)}(0)−{hacek over (r)}0,1cjA  Equation 8


and compute ĉjB which is the symbol in SB closest to a {tilde over (c)}jB via quantization.


1.1.2 Distance Calculation 2


Step 1: Compute

djB=|{hacek over (z)}(0)−ĉjB−{hacek over (r)}0,1cjA|2:j=0,1, . . . , KA−1  Equation 9

Note that the computation in Equation 17 can be significantly simplified using LUTs as described above


Step 2: Compute

djTOTAL=djB+djA:j=0,1, . . . , KA−1  Equation 10

    • Determine









d
^

TOTAL

=


min


j
=
0

,
1
,









,


K
A

-
1





{

d
j
TOTAL

}



,






j
^

=



arg





min



j
=
0

,
1
,









,


K
A

-
1





{

d
j
TOTAL

}








and let {circumflex over (b)}k:k=0, 1, . . . , BA−1 be the bit-label of cĵ(A).


Soft Bit Calculation


Compute each soft bit L(bk): k=0, 1, . . . , BA−1 as











L


(

b
k

)


=




r

0
,
0

2

(



d
^

TOTAL

-


min


d
m
TOTAL



D
k
1





d
m
TOTAL



)






if







b
^

k


=
0







or







L


(

b
k

)


=




r

0
,
0

2

(



min


d
m
TOTAL



D
k
0





d
m
TOTAL


-


d
^

TOTAL


)






if







b
^

k


=
1






Equation





11








Where Dk1 and Dk0 denotes the set containing all distances djTOTAL correspond to cjA that has bit k equal to 1 and 0 respectively.


First Layer Processing


There is pre-processing step which involve swapping of symbol vector x and estimate of effective channel matrix {tilde over (H)} to obtain as vector x′ and matrix {tilde over (H)}′ as follow












x


=

[




x

(
1
)







x

(
0
)





]


;









H
~



=

[





h
~


1
,
1






h
~


1
,
0








h
~


0
,
1






h
~


0
,
0





]






Equation





20








Set

    • v=1
    • SA=S(0)
    • SB=S(1)
    • KA=K(0)
    • BA=B(0)

      Then perform processing as described in subsections below.


      After completing processing in 1.2.4, assign L(bk,0)=L(bk).


Computations Via QR Decomposition


As described before with {tilde over (H)} being replaced by {tilde over (H)}′. Note that some computations made for deriving the first QR decomposition can be re-used.


Process received input: As in 1.1.1 with x being replaced by x′.


Distance Calculation 1: As in 1.1.2.


Distance calculation 2: As in [0037].


Soft bit calculation: As in 1.1.4


Noise-Whitening


Consider the received signal model at UE of interest having index 0 and let UE with index 1 be the co-scheduled user.










y
0

=





H
0



V
0



x
0


+


H
0



V
1



x
1


+

n
0









=







H
~

0



x
0


+



H
^

0



x
1


+


n
0



y
0





C

2
×
1




,


n
0



C

2
×
1



,











H
0



C

2
×
4



,


V
k



C

4
×
2



,


x
k



C

2
×
1
















H
~

0



C

2
×
2



,



H
^

0



C

2
×
2











Assuming that UE-0 can estimate {tilde over (H)}0, Ĥ0, we will derive the whitening process. The whitening process can be done using a Cholesky decomposition of the noise-plus-interference covariance matrix.


In particular, we compute the covariance matrix as C=E[(Ĥ0x1+n0)(Ĥ0x1+n0)*]=I+Ĥ0Ĥ0* where we have assumed E[x1x1*]=E[n0n0*]=I. Note that if we have estimated Ĥ0 we can use it to compute C or we can determine C using covariance estimation. We can then determine the Cholesky decomposition of C as C=LL* where L is a lower or upper triangular matrix with positive diagonal elements. We then determine L−1 and L−1y0 which can be expanded as z0=L−1y0=L−1{tilde over (H)}0x0+ñ and note that E[ññ*]=I. We can use the two-symbol demodulator derived above on z0 with L−1{tilde over (H)}0 being the effective channel matrix.


In the special case when C is a 2×2 matrix we can obtain the following closed form expressions: Let






C
=

[



a


c




b


d



]






and note that since C is positive definite we must have a>0, d>0 and b=c*. Let L be lower triangular with positive diagonal elements. Then we can determine elements of L as







L
=

[




l
11



0





l
21




l
22




]


,






l
11

=

a


,






l
21

=

b
/

l
11



,






l
22

=



d
-




l
21



2



.







The inverse of L can now be computed as







L

-
1


=


[




1
/

l
11




0






-

l
21


/

(


l
11



l
22


)





1
/

l
22





]

.





Square-Root Free Noise-Whitening


Consider again the received signal model:

y0={tilde over (H)}0x00
E[ñ0ñ0*]=C  (Equation 21)

and suppose






C
=

[



a


c




b


d



]






is a 2×2 positive definite matrix. Note that







C

-
1


=



1

ad
-
bc




[



d



-
c






-
b



a



]


.






Then obtain the following variation of the Cholesky decomposition: Acustom character{tilde over (H)}0*C−1H0={tilde over (L)}D{tilde over (L)}* where letting






A
=

[



e



f
*





f


h



]






we now have








L
~

=

[



1


0






l


21



1



]


,





D
=

[




l
11
2



0




0



l
22
2




]


,






l
11
2

=
e

,







l


21

=

f
/
e


,






l
22
2

=

h
-





f


2

e

.







Next, we transform the received signal in (Equation 21) as z0=D−1{tilde over (L)}−1{tilde over (H)}0*C−1y0 and note that z0 can be expanded as z0={tilde over (L)}*x0+{circumflex over (n)}0











E


[



n
^

0




n
^

0
*


]


=

[




1
/

l
11
2




0




0



1
/

l
22
2





]


,







L
~

*

=

[



1




l


21
*





0


1



]






(

Equation





22

)







Note that z0 modeled as in (Equation 22) is precisely the form which allows for square-root-free implementation of two-symbol demodulator derived above (please see Equation 3).


From the above it can be seen that the present invention is advantageous in that it employs a new way of linear transformations and metric computations that are square-root free. The invention employs a look up table based implementation for the metric computations which eliminate redundancy and substantially reduce the number of multiplications. Moreover, inventive method exploits the fact that the un-normalized constellation symbols are complex integers so that the product of a real-number and an un-normalized constellation symbol can be implemented by only additions. The inventive method also enables a greater efficiency for whitening colored noise prior to demodulation, one of which involves no square-root operation. The invention results in less complexity, faster operation, lower power consumption, without sacrificing performance


Having described preferred embodiments of a system and method (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments disclosed which are within the scope of the invention as outlined by the appended claims Having thus described aspects of the invention, with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.

Claims
  • 1. A method for a square-root free 2 symbol max-log receiver comprising: i) obtaining linear transformations of a received two stream signal and a channel matrix without implementing square-root operations;ii) listing out all possibilities for a first symbol of the received two stream signal;iii) building look-up tables needed for computing first metrics associated with all possibilities for a first symbol of the two stream signal;iv) determining a second symbol of the two stream signal for each said first symbol listed out;v) evaluating said first metrics for each said first symbol and second symbol pair using said look-up tables;vi) listing out all possibilities for said second symbol;vii) building look-up tables needed for computing second metrics associated with all possibilities for a second symbol of said received two stream signal;viii) determining a first symbol for each choice of said second symbol listed out;ix) evaluating said second metrics for each said second symbol and first symbol pair using the look-up tables;x) determining an exact max-log log likelihood ratio for each coded bit using said second metrics; andxi) decoding at least one codeword in the two stream signal using the determined exact max-log log likelihood ratios for all bits.
  • 2. The method of claim 1, wherein said step i) obtaining linear transformations of a received signal comprises: obtaining
  • 3. The method of claim 2, wherein said step i) obtaining linear transformations of a received signal comprises: multiplying a received vector z with {tilde over (Q)}H giving {tilde over (z)}={tilde over (Q)}Hz={tilde over (Q)}H(QRx+n)={tilde over (R)}x+ñ, where z~=[z~(0)z~(1)]=[1r0,1/r0,001]⁡[x(0)x(1)]+n~=[x(0)+r⋓0,1⁢x(1)x(1)]+[n~(0)n~(1)],⁢andQHQ=I with ñ˜Nc(0,diag{1/r0,02,1/r1,12}).
  • 4. The method of claim 1, wherein said step i) obtaining linear transformations of a received signal comprises: obtaining {tilde over (Q)}, {hacek over (r)}0,1, r1,12 and θ via a modified QR decomposition for any Nr≧2;using the channel matrix {tilde over (H)};considering {tilde over (H)}=[{tilde over (h)}0, {tilde over (h)}1]; andobtaining α={tilde over (h)}0H{tilde over (h)}1.
  • 5. The method of claim 1, wherein said step i) obtaining linear transformations of a received signal comprises: {tilde over (Q)}, {hacek over (r)}0,1, r1,12 and θ via a modified QR decomposition for any Nr≧2;using the channel matrix {tilde over (H)}=[{tilde over (h)}0, {tilde over (h)}1]; andobtaining δ=∥{tilde over (h)}0∥2 and a first column of {tilde over (Q)}=[{tilde over (q)}0, {tilde over (q)}1] as {tilde over (q)}0={tilde over (h)}0/δ.
  • 6. The method of claim 1, wherein said step i) obtaining linear transformations of a received signal comprises: obtaining {tilde over (Q)}, {hacek over (r)}0,1, r1,12 and θ via a modified QR decomposition for any Nr≧2;using the channel matrix {tilde over (H)}=[{tilde over (h)}0, {tilde over (h)}1]; andobtaining a vector {tilde over (v)}={tilde over (h)}1−α{tilde over (q)}0, where α={tilde over (h)}0H{tilde over (h)}1, r1,12=∥{tilde over (v)}∥2, and a second column of {tilde over (Q)}=[{tilde over (q)}0,{tilde over (q)}1] as {tilde over (q)}1={tilde over (v)}/r1,12.
  • 7. The method of claim 1, wherein said step i) obtaining linear transformations of a received signal comprises: obtaining {tilde over (Q)}, {hacek over (r)}0,1, r1,12 and θ via a modified QR decomposition for any Nr≧2;using the channel matrix {tilde over (H)}=[{tilde over (h)}0, {tilde over (h)}1]; andobtaining {hacek over (r)}0,1 as {hacek over (r)}0,1=α/δ, where α={tilde over (h)}0H{tilde over (h)}1 and δ=∥{tilde over (h)}0∥2.
  • 8. The method of claim 1, wherein said step i) obtaining linear transformations of a received signal comprises: obtaining {tilde over (Q)}, {hacek over (r)}0,1, r1,12 and θ via a modified QR decomposition for any Nr≧2;using the channel matrix {tilde over (H)}=[{tilde over (h)}0, {tilde over (h)}1]; andobtaining θ as θ=r1,12/δ, where δ=∥{tilde over (h)}0∥2.
  • 9. The method of claim 1, wherein said step iv), v) or viii), ix) comprises: generating a soft bit k:k=0, 1, . . . B(v)−1, corresponding to transmitted symbol x(v):v=0,1 using max-log approximation of a likelihood ratio (LLR) as follows:
  • 10. The method of claim 1, wherein said step iv), v) or viii), ix) comprises: generating a soft bit k:k=0, 1, . . . B(v)−1, corresponding to transmitted symbol x(v):v=0,1 using max-log approximation of a likelihood ratio (LLR),wherein a vector cj=[cj(0), cj(1)]T with each element cj(v) is a complex symbol in a modulation constellation applied to layer v, and Sk,v,1 and Sk,v,0 denote a set containing all possible vector cj such that bit k of element cj(v) is equal to 1 and 0 respectively.
  • 11. The method of claim 1, wherein said step iv), v) or viii), ix) comprises: considering soft bit calculation for a second layer where v=1;performing for each cj(1)εS(1):j=0, 1, . . . , K(1)−1; andcomputing dj(1)=θ|{tilde over (z)}(1)−cj(1)|2.
  • 12. The method of claim 1, wherein said step iv), v) or viii), ix) comprises: considering soft bit calculation for a second layer where v=1;performing for each cj(1)εS(1):j=0, 1, . . . , K(1)−1; andcomputing soft estimate {tilde over (z)}(0)−{hacek over (r)}0,1cj(1), andselecting a symbol ĉj(0)εS(0) that is closest to {tilde over (z)}(0)−{hacek over (r)}0,1cj(1).
  • 13. The method of claim 1, wherein said step iv), v) or viii), ix) comprises: considering soft bit calculation for a second layer where v=1;performing for each cj(1)εS(1):j=0, 1, . . . , K(1)−1; and computing dj(0)=|{tilde over (z)}(0)−ĉj(0)−{hacek over (r)}0,1cj(1)|2.
  • 14. The method of claim 1, wherein said step iv), v) or viii), ix) comprises: considering soft bit calculation for a second layer where v=1;performing for each cj(1)εS(1):j=0, 1, . . . , K(1)−1; and computing total distance djTOTAL=dj(0)+dj(1).
  • 15. The method of claim 1, wherein said step iv), v) or viii), ix) comprises: a) determining
  • 16. The method of claim 1, wherein said step iii) or vii) comprises: looking at a max-log likelihood ratio (LLR) expression; andafter expanding dj(0), dj(1), dropping the terms that do not influence the LLR.
  • 17. The method of claim 1, wherein said step iii) or vii) comprises: pulling out normalizing factors so that modulation symbols are from un-normalized quadrature amplitude modulation (QAM) constellations which contain integers.
  • 18. The method of claim 1, wherein said step iii) or vii) comprises: forming LUT: containing common terms that depend on a channel coefficient,wherein entries of the look-up tables (LUTs) are repeatedly accessed while computing all dj(0), dj(1), and multiplications are avoided.
  • 19. The method of claim 1, wherein said step iii) or vii) comprises: computing dj(1)=θ(cj,R(1))2+θ(cj,I(1))2−2{tilde over (z)}R(1)cj,R(1)θ−2{tilde over (z)}I(1)cj,I(1)θ.
  • 20. The method of claim 1, wherein said step iii) or vii) comprises: computing dj(1)=θ|{tilde over (z)}(1)−cj(1)|2,where all {d0(1)} can be computed with only 20 real multiplications.
RELATED APPLICATION INFORMATION

This application claims priority to provisional application Ser. No. 61/469,240 filed on Mar. 30, 2011, the contents thereof are incorporated herein by reference.

US Referenced Citations (3)
Number Name Date Kind
5778341 Zeljkovic Jul 1998 A
7443908 Simoni et al. Oct 2008 B2
7734990 Maru Jun 2010 B2
Related Publications (1)
Number Date Country
20120250804 A1 Oct 2012 US
Provisional Applications (1)
Number Date Country
61469240 Mar 2011 US