The present disclosure relates generally to electronically controlled fuel systems, and more particularly to an efficient wave form for controlling the operation of solenoids in fuel injectors and/or pumps of a fuel system.
Today's electronically controlled fuel systems typically include numerous electrical actuators whose activation is controlled by an electronic controller. For instance, fuel injectors may include one or more electrical actuators to control injection timing and/or injection quantity. In common rail fuel systems, an electronically controlled pump or other actuator may control pressure in a common rail that supplies pressurized fuel to a bank of fuel injectors. While both piezo and solenoids are known for use as electrical actuators in fuel systems, solenoids continue to dominate in most applications. Over the years, there has been a continuous effort to improve actuator performance through various solenoid design strategies, pressure control strategies, mass property improvements, control wave forms and other considerations in an effort to improve consistency, robustness and speed, as well as other performance characteristics.
Co-owned U.S. Pat. No. 4,922,878 teaches a typical wave form control strategy for energizing a solenoid of a fuel injector to perform an injection event. The '878 patent teaches an electronic controller that has the ability to briefly apply a substantially higher voltage to the solenoid circuit to initiate movement of an armature of the solenoid to commence an injection event. For instance, this higher voltage may be supplied by capacitors that are continuously charged from system voltage “battery” between injection events. In order to hasten the time delay between initially applying a voltage to the solenoid circuit and the time at which the armature actually starts moving, the conventional wisdom has been to maintain the elevated voltage across solenoid circuit until the solenoid armature begins moving from its initial air gap position toward its final air gap position. During this initial period, current in the solenoid circuit is controlled to have a saw tooth pattern by the electronic controller maintaining current between a minimum and a maximum current by opening the circuit when the maximum circuit is reached, then closing the circuit at the minimum current, and repeating this process during what is commonly referred to as the pull-in duration. At the end of the pull-in duration, the controller may then drop to a battery voltage and a lower tier average current since less energy is needed to continue movement of the armature, and maybe even less energy needed to hold the armature at its final air gap position. These lower tiered current levels after the pull-in duration are often referred to as hold-in current levels.
As is well known in the art, movement of the solenoid armature changes a pressure configuration within the fuel injector causing a fuel injection event to occur. When it comes time to end the injection event, the circuit is opened, current decays and a bias (e.g. spring) moves the armature back toward its initial air gap position to again change a pressure condition within the fuel injector and end the injection event. While this type of wave form control strategy has worked well for many years, there are continued efforts being made to decrease hardware requirements and reduce power/energy requirements without compromising performance.
The present disclosure is directed toward one or more of the problems set forth above.
In one aspect, a method of operating a fuel system for an engine includes energizing a solenoid of the fuel system and then later deenergizing the solenoid. The energizing step includes applying a boost voltage from an electronic controller across a solenoid coil circuit, and changing from the boost voltage to a reduced voltage responsive to a current in the solenoid coil circuit reaching a trigger current.
In another aspect, an electronic controller for a fuel system of an engine includes a processor, a memory in communication with the processor, a solenoid coil circuit port, a battery port and a driver circuit that includes a boost power source. A solenoid actuation algorithm that is stored on the memory and executable by the processor is configured to electrically connect the solenoid coil circuit port to the driver circuit to provide a boost voltage, then electrically disconnect the solenoid coil circuit port from the driver circuit responsive to a current through the solenoid coil circuit port reaching a trigger current, and then electrically connecting the solenoid coil circuit port to the battery port.
In still another aspect, a method of operating a solenoid of a fuel injector for an engine includes applying a boost voltage from an electronic controller across a solenoid coil circuit. The solenoid coil current is compared to a predetermined trigger current. Voltage in the solenoid coil circuit is changed from the boost voltage to a reduced voltage responsive to a current in the solenoid coil circuit reaching the trigger current.
Referring to
Electronic controller 30 is of a well known structure, in that it includes a processor 31 that is configured to execute programmable code stored on memory 32. Electronic controller 30 also includes a driver circuit 33 that includes a boost power source 34, and electronic controller 30 is also electrically connected to a battery 50 via battery port 36. When executing code stored on memory 32, processor 31 can electrically connect solenoid circuit ports 38 and/or pump circuit port 39 to either driver circuit 33 for an elevated boost voltage, or electrically connect the same to battery 50 for a reduced voltage on the respective solenoid coil circuits 22 and/or pump circuit 26. Boost power source 34 may include one or more capacitors that may be continuously charged with electrical energy from battery 50, but are capable of being discharged through driver circuit 33 to provide an elevated boost voltage that may be many times greater than the voltage associated with battery 50. For instance, battery voltage may be on the order of 12 volts, whereas the boost voltage may be on the order of 100 volts. Although the boost voltage will always be greater than the battery voltage, those skilled in the art will appreciate that the magnitude of the boost voltage is a matter of design choice taking into account known considerations including cost and performance, among other considerations. Although the present disclosure is illustrated in the context of a common rail fuel system for a compression ignition engine, those skilled in the art will appreciate that the concepts of the present disclosure may also apply to any electronically controlled fuel system (e.g. cam actuated fuel injectors) for any type of engine (e.g., spark ignited, gaseous fuel, heavy fuel, etc.)
Those skilled in the art will appreciate that solenoids utilized in both fuel injectors and pumps for electronically controlled fuel systems include well known features in common to all. For instance, a solenoid includes a stationary stator that assists in channeling magnetic flux generated by a solenoid coil to move an armature from an initial air gap position to a final air gap position. For instance, fuel injectors 15 might be equipped with a direct operated check in which the armature movement serves to allow a coupled valve member to move to connect and disconnect a pressure control chamber to drain to allow a needle valve member to open and close to perform an injection event in a well known manner. On the otherhand, in the case of pump, the movement of the solenoid armature may close a spill valve associated with the pumping chamber to displace a controlled fraction of a pump displacement to the high pressure common rail while spilling another fraction of the displacement back to tank at a low pressure.
The present disclosure recognizes that acceptable performance that meets the rigorous demands of today's fuel systems can be achieved with a lesser hardware requirement associated with the driver circuit 33 utilizing the efficient control wave form of the present disclosure. The present disclosure teaches the use of a relatively brief but high boost voltage to initiate current in the solenoid coil and then drop to battery voltage and modulate to maintain a high current level in the solenoid during the so called pull-in duration. The high boost current value should speed up the force rise at the beginning of an event to overcome other forces, such as a spring pre-load. Quickly dropping to battery voltage may lead to a relatively slower start of motion for the armature, but the higher current level achieved with battery voltage can result in armature travel times comparable to prior art wave forms that rely upon boost voltage during the entire pull in duration. The present disclosure recognizes that a major cost and performance driver is the power/energy demands of the driver circuit 33 and its associated boost power source 34. Whereas the power/energy drawn directly from battery 50 during a majority of a solenoid actuation event is of little concern. The wave form of the present disclosure relies upon substantially less boost power/energy than that associated with the prior art, and also eliminates so called current chops to control current while the boost voltage is applied.
Referring now to
When query 88 determines that the end of the pull-in duration 71 has been achieved, the hold-in duration 72 is initiated by disconnecting solenoid coil circuit 22 from battery voltage at box 92. When this occurs, the solenoid coil current 64 predictably decays as shown in
Referring now to
The efficient wave form for actuating solenoids according to the present disclosure finds general applicability in any high speed application that utilizes a solenoid. The present disclosure finds specific application in fuel systems generally, and especially to solenoids utilized to control fuel injection events in fuel injectors and possibly pumping events, such as in some high pressure pumps associated with common rail systems.
Although the disclosed strategy is taught as the electronic controller 30 monitoring a solenoid current level 64 in comparing the same to a trigger current 65, those skilled in the art will appreciate that the wave form of the present disclosure could be carried out by monitoring a duration of the boost voltage 60 only, with or without accompanying monitoring of the solenoid current level 64. In other words, lab experiments could correlate a boost period duration 70 with a trigger current level 65 so that duration could be monitored in place of current level and achieve similar results. However, in all cases of the present disclosure, their should be no current chop during the boost period 70 while operating on boost voltage 60 from the driver circuit 33. Instead, all of the current chop associated with the solenoid control wave form of the present disclosure occurs on battery voltage 60. The waveform of the present disclosure allows for comparable performance with regard to solenoid actuation, but achieves this comparable performance with a substantial lesser expenditure of power/energy during the boost period 70. As such, the wave form of the present disclosure relaxes demands upon the hardware associated with the boost power source 34 and the drive circuit 33 to potentially reduce costs while achieving performance levels comparable to the prior art wave forms.
It should be understood that the above description is intended for illustrative purposes only, and is not intended to limit the scope of the present disclosure in any way. Thus, those skilled in the art will appreciate that other aspects of the disclosure can be obtained from a study of the drawings, the disclosure and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4729056 | Edwards et al. | Mar 1988 | A |
4922878 | Shinogle et al. | May 1990 | A |
5430601 | Burcham | Jul 1995 | A |
6031707 | Meyer | Feb 2000 | A |
6102004 | Cowden et al. | Aug 2000 | A |
6167869 | Martin et al. | Jan 2001 | B1 |
6760212 | Cheever, Jr. et al. | Jul 2004 | B2 |
6880530 | Oyama et al. | Apr 2005 | B2 |
7143641 | Palazzolo et al. | Dec 2006 | B2 |
7154729 | Tanzawa et al. | Dec 2006 | B2 |
7784445 | Takahashi et al. | Aug 2010 | B2 |
8018216 | Kakehi | Sep 2011 | B2 |
8081498 | Mayuzumi et al. | Dec 2011 | B2 |
20020005187 | Herzog et al. | Jan 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20120067329 A1 | Mar 2012 | US |