a is a schematic representation of a prior art cryo-probe.
b represents the features of the present work.
The context of the present work is conveniently described with the aid of
A superconducting magnet cryostat 10 includes a bore 11. A probe cryostat 20 has a similar outer annular geometry coaxial with bore 11 and central coaxial bore defining a bore 82 shown in
One of skill in the art recognizes that the typical NMR probe includes a decoupler coil as well as the transmit/ receive coil more closely coupled to the sample. In practice, the decoupler coil sustains a far greater RF power and contributes limiting thermal properties in cryo-probe operation. It is not necessary for the purposes of this description to distinguish among these coils.
In
Improved cryo-pumping is alternately obtained through the cold plate surfaces 95 which are cooled through an independent cold plate heat exchanger 96. Cold plate(s) 95 are preferably the coldest surface(s) at T0 K in the cryo-probe and remain thermally stable through the independent operation of the cold plate heat exchanger 96 at T0 K. Preferably the cold plate(s) 95 are disposed in close proximity to the cold head 70 maintained at a (higher) design temperature T1 K in order to better condense the gasses liberated from the cold head and/or surfaces of RF coil 71 by heat pulses. The cold plate(s) 95 are here illustrated as annular, to accommodate the cold head centrally, but it is a straight forward variation to form this cryopumping surface as a surface of appropriate shape and orientation for cryopumping any particular source of emitted gasses and in close proximity to surfaces subject to RF heating where cryo-pumped gasses may be liberated.
It is a straightforward variation of the wholly independent cold plate heat exchanger embodiment to recognize that the outflow coolant from conduit 94′ is warmed somewhat from the cold plate temperature T0 K and can be, by design appropriate for inflow to cold head heat exchanger 78, thus serializing the coolant circuit. For such case, coolant return conduit 94′ is converted schematically (104) to comprise the supply conduit 84 of heat exchanger 78.
A wide variety of RF shields appear in an NMR probe: to shield the sample from RF coil leads; to shield the RF coil from agradient coil; to shield the cold currents from warm structures, etc. One example is the use of a floating RF shield in an RF probe to reduce irradiation of a sample from the leads to the RF coil 71, as taught in the U.S. Pat. No. 5,192,911, commonly assigned. One variant of the present work, as shown in
A second variant allows electrical connection of the RF shield 95 to probe and preamplifier 102 to provide for a shield at RF ground. Standoff 105 is therefore not required. Here, undesired thermal transport over the ground connection (from temperature To to a circuit board 102 (housing signal conditioning circuits) at T1 is minimal or insignificant through appropriate thermal design.
Although this invention has been described with reference to particular embodiments and examples, other modifications and variations will occur to those skilled in the art in view of the above teachings. It should be understood that, within the scope of the appended claims, this invention may be practiced otherwise than as specifically described.
This application is related to the U.S. patent application entitled “NMR Cryogenic Probe” by inventors Alexander M. J. Hudson and Atholl Gibson, which application is filed concurrently with the present application and assigned to the assignee of the present application.