The present application is related to co-pending application, Ser. No. 11/111,735, filed Apr. 22, 2005, entitled “Pack URI Scheme to Identify and Reference Parts of a Package”.
Not applicable.
The present invention relates generally to relationship management. Specifically, a system and method are provided to discover relationships between resources by referring to a relationship data structure.
Currently, documents such as, web pages, images and movies are generally encoded in two types of encoding including content-specific and application-specific encoding. A document may include relationship information that defines a relation between the document and another document. The relationship information is encoded in the content-specific or application-specific encoding of the document.
A decoder must know how the document is encoded to extract the relationship information. The decoder extracts the relationship information within a document by decoding the entire document and extracting the relationship information. The relationship information will not be extracted when the decoder does not understand the encoding of the document.
A problem is created when the decoder attempts to view or update the relationship information in a secure document that is encrypted or digitally signed. If the secure document is encrypted, the decoder will be unable to decode the secure document and extract the relationship information in the document because the decoder does not know how the secure document and the relationship information are encoded. Moreover, when the secure document is digitally signed the decoder will be able to decode the secure document and extract the relationship information. However, decoding the document and extracting the relationship information may invalidate the digital signature because decoding the document and extracting the relationship information may change a document attribute tracking a date the document was last accessed.
Therefore, for at least the foregoing reasons, a method to quickly discover internal and external relationships of a document without decoding the document is needed.
These and other problems, in the art, are solved by providing a relationship data structure that enables discovery of one or more relationships between a source resource and one or more target resources, without decoding the source or target resources.
A relationship data structure is stored on a computer-readable medium and describes one or more relationships between the source resource and the one or more target resources. Each relationship of the relationship data structure comprises identification information to uniquely identify a relationship between the source resource and a target resource of the one or more target resources, target information to specify a location of the target resource, and type information to define the semantics of the relationship between the source and the target resource.
Also, a relationship data structure is associated with a source resource to enable a method to describe a plurality of relationships between a source resource and a plurality of target resources, the plurality of relationships being encoded in a format independent of a source resource's or target resource's encoding. The method to describe the plurality of relationships includes selecting a namespace that defines a relationship schema, populating the relationship data structure based on the plurality of relationships and the relationship schema, and storing the plurality of relationships in the relationship data structure.
Moreover, a relationship data structure enables a method to discover one or more relationships between a source resource and one or more target resources. To discover the one or more relationships, a location of the source resource is determined. Subsequently, the location of the source resource is employed to ascertain whether a relationship data structure is associated with the source resource. If the relationship data structure is associated with the source resource, the one or more relationships are decoded in accordance with a relationship schema, and the one or more decoded relationships are displayed.
Accordingly, a relationship data structure provides access to relationships between a source resource and a plurality of target resources without decoding the source or target resources. The relationship data structure facilitates faster communication with disparate systems because the relationships are faster to resolve and may be stored in a content-neutral format.
Additional advantages and novel features will be set forth in the description which follows and in part may become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention.
The present invention is described in detail below with reference to the attached figures, wherein:
An embodiment of the present invention utilizes a relationship data structure to discover one or more relationships between a source resource and one or more target resources. The source and target resources may be packages addressable using a pack protocol as described in “Pack URI Scheme to Identify and Reference Parts of a Package.” The relationship data structure is associated with the source resource and is stored in a content-neutral format.
The present invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The present invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The present invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
With reference to
Computer 110 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 110.
The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation,
The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110, although only a memory storage device 181 has been illustrated in
When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
With reference to
The source resource 211 may be a file such as, for example, an image, a web page, a document, a video or a package similar to package 210. The source resource 211 is related to the target resources 213-215 and 221. Although not shown, the source resource 211 may also be related to a target resource contained in a package that is relative to package 210. The source resource 211 is associated with the relationship resource 212. The source resource 211 is a resource from which a relationship originates.
The target resources 213-215 and 221 may be files such as, for example, image files, web pages, documents, videos or packages similar to package 210. The target resources 213-215 are local resources with respect to source resource 211, whereas the target resource 221 is an external resource stored on the remote computer 180, accessible via network 230. The target resource 221 is stored in a database 220 on the remote computer 180. The target resources 213-215 and 221 are resources where the relationship terminates. However, the target resources 213-215 and 221 may take on characteristics associated with the source resource when the target resource is associated with a relationship resource similar to the relationship resource 212.
The relationship resource 212 stores information indicating that the source resource 211 is related to target resources 213-215 and 221. This information is called relationship information and may be used to construct a resource hierarchy or to provide metadata about the source resource 211. Further detail of the relationship resource 212 is disclosed below with reference to
A relationship tag 320 defines a single relationship between the source resource and a target resource of the plurality of target resources. A plurality of relationship tags 320 may be nested within the relationships tag 310. The relationship tag 320 includes an identification element 325, a type element 326, a target element 327 and a targetBase element 328.
The identification element 325 uniquely identifies the relationship within the relationships tag 310. The identification element 325 cannot change and must be a valid identifier, such as an extensible Markup Language (XML) identifier. The validity of the identifier is verified according to the schema specified by the namespace element 315, such as, for example, a XML schema.
The type element 326 may be constrained to a range of values specified by the namespace element 315 or by an application program. The type element 326 further defines the semantics of the relationship. For example, the type element 326 may define whether a source resource requires or needs the target resource.
Similar to the type element 326, the targetBase element 328 further defines the semantics of the relationship between the source resource and the target resource. The targetBase element 328 may define whether the target resource is internal, local, relative or external.
The target element 327 defines the location of the target resource. The location may be an address identifier such as a Pack Uniform Resource Identifier (URI), an absolute Uniform Resource Locator (URL), or a relative URL. A Pack URI is an addressing scheme utilized to reference a package. The Pack URI addressing scheme enables requests for an entire package or for a particular resource contained in the package. A detailed description of the Pack URI addressing scheme is disclosed in a co-pending application entitled “Pack URI Scheme to Identify and Reference Parts of a Package,” which has been incorporated by reference.
Therefore, the relationship data structure 310 enables a user to discover and describe relationships to target resources that are local, within the package, external, target resources that a located at an absolute position, outside the package, on a different computer, and relative, target resource that are located at a position relative to the package. Moreover, the relationship data structure 310 provides a location to store source resource metadata. The metadata information includes annotations and descriptive data, such as print or display data.
If the relationship data structure does not exist, in step S440 a relationship data structure is instantiated and associated with the source resource. The relationship data structure may be associated with the source resource by creating a container, such as, a folder, at a location relative to the location of the source resource. Subsequently, the relationship data structure is stored in the container. In an embodiment of the present invention, if the source resource is located at, for example, /content/spine.xml, the relationship data structure would be instantiated at /content/_rels/ and named “spine.xml.rels.” To adhere to this naming convention the relationship data structure may be stored in a sub-container, referred to as “_rels,” located at the location of the source resource, and the name of the relationship data structure would be the name of the source resource concatenated with “.rels.” Using a similar naming convention to associate all relationship data structures with all source resources would allow efficient access to the relationship data structures based on the location of the source resources.
After the relationship data structure is instantiated, the relationship data structure is populated with relationship information, such as, for example, identification, target or type information. This relationship information is then stored, in step 460, to allow subsequent retrieval of the relationship information.
In response to a user or application relationship request to decode the relationship data structure, step S510, a check is made to ascertain whether the source resource is associated with the relationship data structure, in step S520. If the source resource is not associated with a relationship data structure, the relationship data structure is not decoded. One the other hand, if the relationship data structure exists the namespace for the data structure is determined, in step S530. Then, in step S540, a decoder or reader decodes the relationships. After decoding, the one or more relationships may be displayed in step S550. In an alternate embodiment the decoding of the relationship utilizes the schema and semantic specified by the namespace element 315.
Accordingly, a source resource related to a plurality of target resources will have a plurality of relationships that will be discovered according to the method described above. Additionally, embodiments of the present invention enable a decoder to decode the plurality of relationships associated with the source resource without decoding the source resource. The decoder can decode relationships when the content encoding of the plurality of relationships are in a format different from the source or target resources encoding. Thus, a relationship between secure or encrypted source and target resources can be determined without breaching the security of the secure or encrypted source and target resources.
The foregoing descriptions of the invention are illustrative, and modifications in configuration and implementation will occur to persons skilled in the art. For instance, while the present invention has generally been described with relation to
Number | Name | Date | Kind |
---|---|---|---|
5291583 | Bapat | Mar 1994 | A |
6028279 | Suryan | Feb 2000 | A |
6108783 | Krawczyk et al. | Aug 2000 | A |
6233606 | Dujari | May 2001 | B1 |
6266682 | LaMarca et al. | Jul 2001 | B1 |
6275829 | Anglulo | Aug 2001 | B1 |
6442554 | Reddy et al. | Aug 2002 | B1 |
6462756 | Hansen et al. | Oct 2002 | B1 |
6549773 | Linden et al. | Apr 2003 | B1 |
6581062 | Draper et al. | Jun 2003 | B1 |
6591260 | Schwarzhoff et al. | Jul 2003 | B1 |
6691119 | Lippert et al. | Feb 2004 | B1 |
6766329 | Nicholson | Jul 2004 | B1 |
6804677 | Shadmon et al. | Oct 2004 | B2 |
6944658 | Schneider | Sep 2005 | B1 |
7010568 | Schneider et al. | Mar 2006 | B1 |
7010580 | Fu et al. | Mar 2006 | B1 |
7310646 | Rangadass | Dec 2007 | B2 |
20020062320 | Shimojima et al. | May 2002 | A1 |
20020165872 | Meltzer et al. | Nov 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030112792 | Cranor et al. | Jun 2003 | A1 |
20030126128 | Watson | Jul 2003 | A1 |
20030182305 | Balva et al. | Sep 2003 | A1 |
20030204529 | Hertling et al. | Oct 2003 | A1 |
20030204670 | Holt et al. | Oct 2003 | A1 |
20040098461 | Dennis | May 2004 | A1 |
20040230900 | Relyea | Nov 2004 | A1 |
20040250246 | Veselov et al. | Dec 2004 | A1 |
20050021541 | Rangadass et al. | Jan 2005 | A1 |
20050050068 | Vaschillo et al. | Mar 2005 | A1 |
20050074018 | Zintel et al. | Apr 2005 | A1 |
20050076296 | Lee et al. | Apr 2005 | A1 |
20050091575 | Relyea | Apr 2005 | A1 |
20050091576 | Relyea | Apr 2005 | A1 |
20050108628 | Grambihler | May 2005 | A1 |
20050154976 | Nelson | Jul 2005 | A1 |
20050188203 | Bhaskaran | Aug 2005 | A1 |
20050273704 | Dunietz | Dec 2005 | A1 |
20060004854 | Okunseinde et al. | Jan 2006 | A1 |
20060010374 | Corrington | Jan 2006 | A1 |
20060265640 | Albornoz | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
1126387 | Aug 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20060242184 A1 | Oct 2006 | US |