Effortless entry system and method

Information

  • Patent Grant
  • 6825752
  • Patent Number
    6,825,752
  • Date Filed
    Wednesday, June 6, 2001
    23 years ago
  • Date Issued
    Tuesday, November 30, 2004
    20 years ago
Abstract
The vehicle port control system has a capaciflective sensor, a port, a lock securing the port, and a control unit. The capaciflective sensor senses the presence of objects a predetermined distance from the vehicle port. The sensor communicates its readings to the control unit, which controls the actuation of the lock.
Description




BACKGROUND OF THE INVENTION




This invention relates to a method and system for passive vehicle entry that automatically locks and unlocks a vehicle port.




Many vehicles employ remote entry systems that permit a vehicle operator to lock and unlock the doors and trunk of the vehicle. Such systems usually comprise a transmitter located in a key device, say a key fob, and a receiver located in the vehicle. Upon activation by the driver, the key device fob transmits a key code to the receiver. A control unit then compares the key code to a security code to determine whether the key code matches the security code. In the event of a match, the control unit locks or unlocks the vehicle.




Such systems require the driver to manually activate the transmitter, providing less convenience of operation. When the driver's hands are occupied, such as when carrying bags, the driver must free his hands to lock and unlock the vehicle. This limitation is undesirable.




Passive systems do exist that permit the driver to lock and unlock the vehicle without activating the transmitter within a key fob. Such systems use capacity sensors located in a car's door handle that communicate with a control unit in the car. When the control unit senses the presence of the hand lifting the handle, the control unit sends a challenge to a key device carried by the individual to determine whether the individual is authorized to unlock the door. The key device responds to the challenge by transmitting a key code. The control unit determines whether the key code is, in fact, the correct code. If so, the control unit unlocks the vehicle automatically.




Current capacitive systems essentially work as touch sensors. As a consequence, the vehicle security system has very limited time to respond to the touch of the operator and unlock the vehicle port, say car door. Sometimes the operator may touch and lift the handle so quickly that the system will have not authorized entry prior to the handle hitting the end of its path of travel. In such an instance, the authorized operator will have tugged the handle without automatic actuation of the vehicle lock.




A need therefore exists for a passive entry system that provides greater advanced notice to the vehicle security system of the operator's intention to unlock the vehicle door.




SUMMARY OF THE INVENTION




The invention comprises a port control system that employs a capaciflective sensor to detect the presence of objects at a greater range than current capacitance sensors. Such sensors provide improved advanced notice to vehicle security systems of the approach of a vehicle operator toward a vehicle door or trunk, thereby permitting the security system to check the operator for entry authorization even prior to touching the door or trunk latch. Thus, the current system is transparent to the operator, who may seamlessly and smoothly open the vehicle port without any delay caused by security clearance.




The vehicle port control system comprises a capaciflective sensor, a lock securing a port such as a door or trunk, and a control unit. The capaciflective sensor is set to sense for objects, such a human hand, at a predetermined distance from the door or trunk. Such sensors may be set to detect for the presence of objects from six to eight centimeters from the vehicle latch, significantly improving on the range of current sensors. The system may also include an electronic key device, such as a key fob.




Once an object is detected within the range of the capaciflective sensor, the control unit determines whether the operator is authorized for entry. If so, the control unit actuates the lock. The control unit may determine authorization by requesting a key code from the key fob. In response to this challenge, the key fob then transmits this code to the control unit, which then compares the key code to an unlocking code. If there is a match, the control unit unlocks the lock. The request for the key code may occur when the object is sensed within the range of the sensor.




The invention may also be combined with other vehicle subsystems such as a power vehicle seat system, the vehicle sound system, or air conditioning system. The control unit may then set these systems to the personal setting of the particular operator.




To avoid actuating any lock before the operator truly intends to open the vehicle port, the system may also be combined with a latch sensor. Movement of the latch signifies to the control unit that it should unlock the vehicle port. Prior to this actuation by the operator, the system remains on standby with authorization already cleared. The latch sensor may be an infrared sensor.




The system may also be set to “tune out” rain, snow, and other environmental conditions that may otherwise trigger the invention to commence searching for proper authorization. The system accomplishes this task by comparing the signal from the capaciflective sensor with a predetermined threshold. This threshold may be attuned to trigger the search for authorization upon detection of a person or a portion of the person within the range of the capaciflective sensor.











BRIEF DESCRIPTION OF THE DRAWINGS




The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:





FIG. 1

shows a capacitance touch sensor as known in the art.





FIG. 2

illustrates a capaciflective sensor as known in the art.





FIG. 3

illustrates an embodiment of the invention, employing the capaciflective sensor of

FIG. 2

with a vehicle port and lock system.





FIG. 4

shows the invention in its environment in a vehicle.





FIG. 5

shows the invention of

FIG. 5

with a lock actuated.





FIG. 6

illustrates various locations for the placement of an antenna that may be employed with the invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Current passive entry systems employ capacitance or “touch” sensors. As illustrated in

FIG. 1

, such a sensor


9


has sense element


10


spaced a distance from shielded metal surface


14


, such as the car door panel. Sense element


10


, a conductive surface, is charged to create an electric potential between sense element


10


and shield metal surface


14


. Electric field


18


is created between the two surfaces. A dielectric material, such as air or other insulator, exists between the two surfaces. If the dielectric remains constant, the capacitance also remains constant. If the dielectric changes, the capacitance also changes. In capacitive proximity sensors, the two surfaces or electrodes are coupled together and integrated in a high frequency oscillator. As an object enters the electric field, thereby increasing capacitance, oscillation begins. When the amplitude is sufficiently high, the object is detected as a “touch”. This “touch” is then read by a control system as an indication of the operator's intent to open a port such as a door.




The present invention employs a capaciflective sensor as known in the art and illustrated in FIG.


2


. Like capacitance sensor


9


, capaciflective sensor


20


employs sense element


22


, a conductive surface, and shielded metal surface


26


, another conductive surface such as a car door panel. A voltage difference exists between the two surfaces. However, in addition to these two surfaces, capaciflective sensor


20


has actively shielded layer


30


positioned between the two surfaces. Actively shielded layer


30


is a conductor having a voltage about the same as the voltage of sense element


22


. As a consequence, actively shield layer


30


causes electric field


34


to extend from sense element


22


and around actively shield layer


30


ultimately to shield metal surface


26


, which acts as ground. Objects in electric field


34


will change the field, causing a change in the dielectric constant and capacitance, which may be read as the presence of an object. This type of sensor is known but has not been used in connection with port locking systems.





FIG. 3

illustrates the invention, a vehicle port control system. As described above, capaciflective sensor


20


senses object


38


, such as a hand, predetermined distance X away from shield metal surface


26


, a vehicle port such as a door panel or trunk. Capaciflective sensor circuit


40


may comprise operational amplifier


42


in conjunction with resistor


46


. Operational amplifier


42


is used to maintain about the same voltage between sense element


22


and actively shielded layer


30


thereby propagating electric field


34


. As known, the presence of object


38


, such a hand, causes the electric field to change and alters the capacitance of capaciflective sensor


20


.




This change in capacitance may be determined in the following manner. Capaciflective sensor


20


and resistor form an RC circuit with a frequency of 1/RC. This frequency changes with the change in capacitance. Operational amplifier


42


outputs signal


50


, which has a frequency related to 1/RC. Signal


50


is then communicated to control unit


54


.




Control unit


54


compares the detected frequency with a predetermined threshold. For a particular size of capaciflective sensor and particular surrounding environment, the frequency of capaciflective sensor circuit


40


is more or less constant. Hence, the predetermined threshold is preferably calculated as the difference between the particular environmental condition's frequency and the frequency when a user is near the sensor. The predetermined threshold may be set in the software and hence can be changed, thereby making the range of detection adjustable from a maximum value (which is limited by the sensor construction) to a minimum value (at distance=0 such that the proximity sensor is now a touch sensor). Frequency counter and comparator circuit


42


within control unit


54


assists in comparing the frequency of signal


50


from capaciflective sensor circuit


40


with this predetermined threshold. The sampling is done in milliseconds. The software counts the number of waves every millisecond and compares the detected frequency with the predetermined threshold.




The moment the frequency of the capaciflective sensor circuit


40


dips below the predetermined threshold, control unit


54


responds by searching for vehicle entry authorization. Essentially, control unit


54


concludes the detection of the object as an intention of an operator to actuate lock


60


, such as an electronic solenoid lock, and transmits a challenge signal to determine whether the operator is authorized to operate the vehicle. As known, electronic key device


64


, such as a key fob or electronic badge within the vicinity of the challenge signal, responds to the challenge signal through a transponder and transmits a key code to control unit


54


. If key code matches a security code stored by control unit


54


, it may unlock vehicle then. It is preferable, however, that control unit


54


determines whether the port is already open by position sensor


66


. Moreover, control unit


54


may also seek to determine whether operator has moved latch


68


to further indicate the operator's intention to enter the vehicle. The latch may be a door handle or a trunk release. If the port is closed and latch


68


has been moved, then at this moment, control unit


54


may actuate lock


60


. Movement of latch


68


may be detected by a latch sensor such as an infrared sensor.




The invention may also be combined with vehicle subsystem


69


such as a power vehicle seat system, the vehicle sound system, or air conditioning system. The control unit may then set these systems to the personal setting of the particular operator. In this way, the invention may tailor the vehicle environment to suit the particular needs of the authorized operator.




Capaciflective sensor


20


may comprise a two-sided copper printed circuit board that has two electrically separated conducting sides: one side may function as sense element


22


while the other side may serve as actively shielded layer


30


. It is very important that the two layers remain electrically insulated from each other.




Another approach involves forming a piece of plastic to the shape and contour of the door handwell and then coating both sides with conductive paint. Conductive epoxy is used to affix two leads, one for the shield and the other for the sense plate. This structure fits into the door handle.




Still, a capaciflective sensor may also be formed by masking tape serving as a base for the actively shielded layer with another layer of masking tape on the shield serving as the insulating layer. The surface of the insulating layer may be sprayed with conductive paint to form the sensing element.




To a degree, the detection range of sensor


20


may be adjusted by increasing and decreasing the size the sense element


22


and actively shield layer


30


. Increasing the size generally increases the range while decreasing the size decreases the range. Because the sensor's range depends on the size of the sensing element, calibration must be done to limit the range of detection to the 6-8 cm region to avoid excessive high power challenge signal transmissions from the vehicle, which will drain the vehicle's battery.





FIG. 4

shows the invention in its environment. Vehicle


70


has port


80


and trunk


84


. It is preferable to locate capaciflective sensor


20


about a latch, such as a door handle or trunk release, because movement of the operator's hand in this direction will generally evince an intention to unlock and open the vehicle port. Here, capaciflective sensor


72


A takes the form of a door latch while capaciflective sensor


72


B takes the form of a trunk latch. Both sensors


72


A and


72


B communicate with control unit


54


, which itself controls lock


60


and lock


76


. Object


88


, such as a hand, is outside predetermined distance X, which results in no action by control unit


54


.




As shown in

FIG. 5

, when object


88


enters predetermined distance X as detected by capaciflective sensor


72


A, then control unit


54


responds to presence of object


88


. As described above, control unit


54


may request a key code from the operator by sending an electronic challenge to electronic key device


92


, which may or may not be within predetermined distance X. If control unit


54


determines key code matches a security code, then control unit


54


actuates lock


60


as seen in FIG.


6


. Electronic lock


76


securing trunk


84


may be actuated in the same manner. As shown in

FIG. 6

, electronic key device


92


may transmit a key code to control unit


54


through an antenna placed on port, such as on side view mirror


96


, latch


100


, door panel


104


, side door panel


108


, or lower edge of door panel


112


.




The aforementioned description is exemplary rather then limiting. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed. However, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. Hence, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For this reason the following claims should be studied to determine the true scope and content of this invention.



Claims
  • 1. A vehicle port control system comprising:a capaciflective sensor for generating an electric field for sensing an object a predetermined distance about a vehicle port; a lock for securing the port; a latch for controlling opening and closing of said port; and a control unit in communication with said capaciflective sensor, said control unit for controlling the actuation of said lock; wherein said latch includes a sensor in communication with said control unit, said sensor for detecting movement of said latch.
  • 2. The vehicle port control system of claim 1 wherein said sensor is an infrared sensor.
  • 3. A vehicle port control system comprising:a vehicle port; a capaciflective sensor for generating an electric field for sensing an object a predetermined distance about said port; a latch controlling opening and closing of said port; and a control unit in communication with said capaciflective sensor, said control unit for comparing a signal from said capaciflective sensor with a predetermined threshold; wherein said latch includes a sensor in communication with said control unit, said sensor for detecting movement of said latch.
  • 4. A method of port control comprising the steps of:establishing a voltage on a first surface; establishing about the same voltage on a second surface spaced from the first surface; establishing a lower voltage on a third surface spaced from the second surface, thereby propagating an electric field from the first surface, around the second surface, and to the third surface; sensing changes in the electric field caused by the presence of an object in the electric field; generating an electric signal based on the changes in the electric field; comparing the electric signal to a predetermined threshold; and controlling a port based on the comparison.
  • 5. A vehicle port control system comprising:a capaciflective sensor for generating an electric field for sensing an object a predetermined distance about a vehicle port; a lock for securing the port; and a control unit in communication with said capaciflective sensor, said control unit for controlling the actuation of said lock; wherein said capaciflective sensor comprises a first surface, a second surface and a third surface, said first surface having a first voltage about the same as a second voltage on said second surface, said third surface having a third voltage lower than said first surface.
  • 6. The vehicle port control system of claim 5 wherein said second surface is spaced between said first surface and said third surface.
  • 7. A vehicle port control system comprising:a capaciflective sensor for generating an electric field for sensing an object a predetermined distance about a vehicle port; a lock for securing the port; and a control unit in communication with said capaciflective sensor, said control unit for controlling the actuation of said lock; wherein said capaciflective sensor is oriented to direct the electric field away from said lock.
Parent Case Info

This application claims priority to Provisional Patent Application Ser. No. 60/211,068 filed on Jun. 13, 2000 and Provisional Patent Application Ser. No. 60/213,003 filed on Jun. 21, 2000.

US Referenced Citations (6)
Number Name Date Kind
5379033 Fujii et al. Jan 1995 A
5726581 Vranish Mar 1998 A
5770997 Kleinberg et al. Jun 1998 A
5929769 Garnault Jul 1999 A
6079738 Lotito et al. Jun 2000 A
6236333 King May 2001 B1
Foreign Referenced Citations (5)
Number Date Country
40 06 119 Aug 1991 DE
0 518 836 Dec 1992 EP
0 823 520 Feb 1998 EP
0 897 835 Feb 1999 EP
0 955 431 Nov 1999 EP
Non-Patent Literature Citations (4)
Entry
European Search Report completed May 19, 2003.
International Search Report dated Dec. 21, 2000.
U.S. Provisional application Ser. No. 09/638,487, filed Aug. 14, 2000, entitled “Remote Keyless Entry System with Advanced Activation Features.”
U.S. Provisional application Ser. No. 09/874,598, filed Jun. 5, 2001, entitled “Automatic Port Operation.”
Provisional Applications (2)
Number Date Country
60/213003 Jun 2000 US
60/211068 Jun 2000 US