The present invention relates to internal combustion engines, and more specifically to exhaust gas recirculation (EGR) systems for such engines.
Exhaust gas recirculation has been employed since the mid 70's for air-breathing, spark ignition gasoline engines and since the early 2000's for heavy duty diesel engines. The purpose of EGR is to increase the nitrogen gas content in the combustible mixture to reduce combustion temperatures and accordingly the production of oxides of nitrogen which are considered to have harmful affect on the environment. A typical system involves a valve that allows a predetermined proportion of the exhaust gases to be directed to a mixer somewhere in the air inlet of the engine. Typically, a flow meter is incorporated in the system to more precisely control the flow of EGR relative to the air delivered to the inlet of the engine.
A problem with systems of this type is that internal combustion engines having multiple reciprocating pistons connected to a common exhaust manifold do not produce smooth uniform exhaust discharge, but rather a series of pulses that occur when the individual exhaust valve or valves are opened. Accordingly, the exhaust flow taken off for EGR is not a steady state stream but a series of pulses. When these pulses are directed to the engine air inlet they can be out of phase with the opening of the intake valves and cause an imbalance in the percentage of EGR between cylinders of the engine. Further, venturi flow meters operating on the Bernoulli Principle can have variations in results because of the pulsed rather than steady state flow through the meter.
Accordingly, a need exists in the art to provide relatively consistent and predictable EGR flow.
In one aspect, the invention involves a pulse attenuator for EGR flow including a main flow path and a branch passage connected to the main flow path and having a predetermined length and being reconnected to the main flow path. The length is selected to attenuate pulses within the main flow path.
In another aspect, the invention involves an engine system including an air breathing multi-cylinder reciprocating internal combustion engine having a common exhaust for products of combustion in pulses. EGR flow is directed from the exhaust to the air inlet of the engine. An EGR pulse attenuator is interposed in the EGR flow and includes a main flow path and at least one branch passage connected to the main flow path and having a predetermined length and being reconnected to the main flow path such that pulses are attenuated.
In yet another aspect of the invention, it includes a method having the steps of operating a reciprocating air breathing internal combustion engine having an exhaust for pulsed products of combustion. A predetermined proportion of the pulsed exhaust is directed from the exhaust. The directed portion is passed through a main flow path and a branch flow path having a predetermined length and reconnected to the main flow path so that pulses are attenuated. Finally, the EGR flow is mixed with inlet air for use by the internal combustion engine.
Referring to
Although many engines have a turbocharger 16, it is not always necessary for operation of the inventive pulse attenuator. The turbocharger 16 has a turbine 24 that receives products of combustion and discharges them through a line 26 past an EGR valve 30 to the ambient A. The EGR valve 30 is adapted to open up an EGR line 32 extending to a mixer 36 where the EGR gases are appropriately mixed with ambient air A passing through inlet 20 to a compressor 18 driven by turbine 24 through an appropriate shaft 22. A flow meter 34 may be placed in EGR line 32 for control purposes. The output of compressor 18 is passed through a line 17 which typically incorporates an intercooler 19 and then connects with intake 12 to provide combustion air to engine 10 at a pressure level higher than ambient.
In order to attenuate the pulses in the EGR flow, a pulse attenuator 38 embodying the present invention is incorporated in line 32. The pulse attenuator 38 may take a number of forms, the first of which is shown in
Pulse attenuator 38 in
The EGR pulse attenuator illustrated in
A first branch passage 92 connects with convergent section 84 and may be tubular in form and having axially extending portions 94, 96, 98, 100 and 102. These axial portions are interconnected by generally 90° bends and 180° bends of the pipe. Branch passage 92 terminates with an end cap 104.
A second branch passage 106 also connects with the convergent section 84. Branch passage 106 has axial portions 108, 110 and 112 all extending generally parallel to the longitudinal axis a of the main flow passage 80. The axial portions 108, 110 and 112 are interconnected by various curved sections and branch passage 106f terminates with an end cap 114.
The principle of operation of the branch passages 92 and 106 is the same as those for
The operation of the pulse attenuators causes the flow through the EGR line 32 to be smooth thus enabling a reduction in the variation of cylinder to cylinder EGR percentage and a more simplified and accurate operating mode for the flow meter 34. The effect on the mass flow rate through the EGR path is shown in
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
4981368 | Smith | Jan 1991 | A |
5408978 | Davis | Apr 1995 | A |
5800059 | Cooke et al. | Sep 1998 | A |
6425382 | Marthaler et al. | Jul 2002 | B1 |
6633646 | Hwang | Oct 2003 | B1 |
6698194 | Blair et al. | Mar 2004 | B2 |
6799423 | Piekarski | Oct 2004 | B2 |
6811302 | Fleischli et al. | Nov 2004 | B2 |
6945235 | Bertilsson et al. | Sep 2005 | B1 |
7090048 | Albertson et al. | Aug 2006 | B2 |
7140357 | Wei et al. | Nov 2006 | B2 |
7357125 | Kolavennu | Apr 2008 | B2 |
20050016792 | Graefenstein | Jan 2005 | A1 |
20050279569 | Harris | Dec 2005 | A1 |
20060162466 | Wargo et al. | Jul 2006 | A1 |
20080134678 | Noelle et al. | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090139216 A1 | Jun 2009 | US |