This application claims priority to Great Britain Patent Application No. 1506979.2, filed Apr. 23, 2015, which is incorporated herein by reference in its entirety.
The present disclosure pertains to an exhaust gas recirculation (“EGR”) valve assembly, an internal combustion engine including the EGR valve assembly and a car including the internal combustion engine.
According to conventional EGR systems, it is known to recirculate exhaust gas from an internal combustion engine into an intake gas flow of the engine. The exhaust gas flow can be variably controlled by a movable exhaust gas flap arranged within an exhaust gas passage of an EGR valve assembly.
In order to induce a variable pressure drop within the intake gas flow allowing recirculation of the exhaust gas, there is provided a movable intake gas flap within an intake gas passage of the EGR valve assembly. The intake gas flap may induce a disturbance within the intake gas flow, which disadvantageously may deteriorate the performance of the internal combustion engine. In particular, formation of water condensate may disadvantageously be increased which in particular may impair a compressor of a turbocharger.
In one aspect the present disclosure provides improved performance of an internal combustion engine with an EGR system. An EGR (“Exhaust Gas Recirculation”) valve assembly includes an intake gas, in particular intake air, passage, an exhaust gas passage and an outlet passage. According to one embodiment the passages are formed within or by a housing respectively. The valve assembly includes a movable intake gas flap for, in particular continuously and/or variably, changing or adjusting an effective cross section of the intake gas passage respectively. In other words, the intake gas flap is movable or adjustable respectively between a most-open or fully open position providing a maximum open cross section of the intake gas passage, and a most-closed or fully restricted position providing a minimum open cross section of the intake gas passage. According to one embodiment the intake gas flap is arranged within the intake gas passage. The intake gas passage and/or intake gas flap may have an at least substantially, elliptical, in particular circular, cross section.
According to one embodiment the assembly includes a movable exhaust gas flap for continuously and/or variably changing or adjusting an effective cross section of the exhaust gas passage respectively. In other words the exhaust gas flap is movable or adjustable respectively between a most-open or fully open position providing a maximum open cross section of the exhaust gas passage, and a most-closed or fully closed position providing a minimum open cross section of the exhaust gas passage, in particular at least substantially closing the exhaust gas passage. According to one embodiment the exhaust gas flap is arranged within the exhaust gas passage. The exhaust gas passage and/or exhaust gas flap may have a substantially elliptical or circular cross section.
According to one aspect of the present disclosure the intake gas flap includes a channel, in particular through-hole, connecting an inlet port on an upstream-side surface of the flap with an outlet port on a downstream-side surface of the flap. The intake gas flap may include a plurality of channels, in particular through-holes, for example, at least two or four or six channels, connecting a plurality of inlet ports on the upstream-side surface with a plurality of outlet ports on the downstream-side surface.
According to one embodiment such channels may advantageously reduce a disturbance within the intake gas passage induced by the intake gas flap, thereby improving performance of an internal combustion engine with an EGR system including the EGR valve assembly. According to one embodiment such channels may in particular advantageously reduce formation of water condensate downstream of the intake gas flap.
According to one embodiment, each of the channels have a slot or elongated cross section respectively. According to one embodiment such slotted intake gas flap reduces advantageously disturbance within the intake gas passage. According to one embodiment the slots are orientated at least substantially parallel with one another. According to one embodiment such parallel slotted intake gas flap further reduces disturbance within the intake gas passage.
According to one embodiment, the channels extend within or inside a portion or region (e.g., diameter) of an intake cross section. For example, the portion or region respectively may be at least 10%, in particular at least 25%, in particular at least 50%, in particular at least 75% of the cross section. According to one embodiment such minimum length reduces disturbance within the intake gas passage.
Additionally or alternatively the channels extend within or inside a portion of an intake cross section, in particular diameter, or region of the intake gas flap respectively. The portion or region respectively is at most 90%, in particular at most 75%, in particular at most 50%, in particular at most 25% of the cross section, in particular diameter. According to one embodiment such maximum length reduces disturbance within the intake gas passage.
Additionally or alternatively the channels extend within or inside a portion of an intake cross section, in particular diameter, or region of the intake gas flap respectively. The portion or region excludes or does not include respectively an exhaust gas intake passage-side end of at least 10%, in particular of at least 25%, in particular of at least 50%, of the cross section, in particular diameter. In other words, the channels do not extend into an exhaust gas intake passage-side region of the intake gas flap which is at least 10% or 25% or 50% of the cross section, in particular diameter, of the flap. Yet in other words an exhaust gas intake passage-side region of at least 10% or 25% or 50% of the flap (cross section, in particular diameter) may be free of channels. According to one embodiment such restriction reduces disturbance within the intake gas passage.
Additionally or alternatively the channels extend within or inside a portion of an intake cross section, in particular diameter, or region of the intake gas flap respectively. The portion or region excludes or does not include respectively an exhaust gas intake passage-opposed end of at least 10%, in particular of at least 25%, in particular of at least 50%, of the cross section, in particular diameter. In other words one or more, in particular all channels do not extend into an exhaust gas intake passage-opposed region of the intake gas flap which is at least 10% or 25% or 50% of the cross section, in particular diameter of the flap. Yet in other words an exhaust gas intake passage-opposed region of at least 10% or 25% or 50% of the flap may be free of channels. According to one embodiment such restriction improves mixture between intake and exhaust gas downstream of the intake gas flap and/or reduces the disturbance created by the flap into the intake air.
According to one embodiment the channels have a minimum cross section of at least 0.1%, in particular at least 0.5%, in particular at least 1% minimum cross section of the intake gas flap. Additionally or alternatively the channels have a minimum cross section of at most 10%, in particular at most 5%, in particular at most 1% minimum cross section of the intake gas flap. According to one embodiment such minimum and/or maximum channel cross section reduces disturbance within the intake gas passage.
According to one embodiment, the intake gas flap is hinged rotatably around a rotational axis. According to one embodiment this allows compact and/or simple construction, actuation and/or sealing. According to another embodiment the intake gas flap is slidably along a sliding axis.
According to one embodiment, an angle between the rotational axis and a longitudinal axis of the intake gas passage is within 80° and 100°, and may in particular be at least substantially 90°. In other words the rotational axis may be at least substantially parallel to across section of the intake gas passage. According to one embodiment, an angle between the rotational axis and a longitudinal axis of the exhaust gas passage branching into the intake gas passage may also be within 80° and 100°, and in particular at least substantially 90°. In other words the rotational axis may be at least substantially parallel to an intake gas passage-side end of the exhaust gas passage. According to one embodiment such orientation of the rotational axis reduces disturbance within the intake gas passage.
According to one embodiment the slots of the intake gas flap are orientated at least substantially perpendicular or parallel to the rotational axis of the intake gas flap. According to one embodiment such slotted intake gas flap improves mixture between intake and exhaust gas downstream of the intake gas flap and/or reduces the disturbance created by the flap into the intake air.
According to one embodiment, the intake and exhaust gas flap are coupled with one another, and are preferably mechanically coupled. The flaps may in particular be coupled such that an increase of an effective cross section of the exhaust gas passage by (further) opening the exhaust gas flap decreases an effective cross section of the intake gas passage by (further) closing the intake gas flap. Due to such coupling, the intake and exhaust gas flap may be arranged near to one another. Then a disturbance induced by the intake gas flap in particular may impair mixture and/or flow of the exhaust gas and/or intake and exhaust gas mixture. Thus, reducing such disturbance by an intake gas flap as described herein may in particular be advantageous with such coupled intake and exhaust gas flaps. Such EGR valve assembly with coupled intake and exhaust gas flaps may also be called a 3-way EGR valve.
According to one embodiment the EGR valve assembly includes an actuator for moving or adjusting the intake gas flap respectively. The actuator may actuate the intake gas flap and/or the exhaust gas flap coupled thereto mechanically, hydraulically, pneumatically and/or electromotorically and/or -magnetically and/or may be controlled mechanically, hydraulically, pneumatically and/or electrically.
According to one aspect of the present disclosure an internal combustion engine for a vehicle, in particular a passenger car, includes an EGR valve assembly as described herein such that an intake gas passage communicates with or is flow-connected to an intake gas conduct, respectively, and/or an exhaust gas passage communicates with or is flow-connected to an exhaust conduct respectively. The engine may in particular be a Diesel or Otto engine. According to one embodiment the internal combustion engine includes a compressor (for) compressing intake gas and in particular a turbocharger with the compressor and a turbine (adapted to be) driven by exhaust gas of the internal combustion engine for driving the compressor. According to one embodiment the exhaust conduct is downstream of the turbine. Additionally or alternatively the outlet passage of the EGR valve assembly may in particular be upstream of the compressor. In other words the EGR valve assembly may be a so-called low-pressure exhaust gas recirculation valve (assembly) (“LP-EGR”). An intake gas flap as described herein may in particular be advantageous at such LP-EGR system.
In another embodiment the compressor may be driven by a separately, in particular electrically, actuated drive, i.e. may be in particular a so-called mechanical or electrical compressor. According to one embodiment the outlet passage of the EGR valve assembly may in particular be upstream of such compressor as well.
The present disclosure will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements.
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description.
As can be seen in the sectional view of
Intake and exhaust gas flap 5, 6 are coupled with one another mechanically as it is indicated schematically by way of example by a dashed line in
As illustrated in
In the exemplary embodiment shown in
In another alternative embodiment the portion d may be symmetrically to cross section, in particular diameter, D and be around 70-90% of cross section, in particular diameter, D for example. Additionally or alternatively channels 8 may be orientated at least substantially parallel to rotational axis R.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims and their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
1506979.2 | Apr 2015 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3938330 | Nakajima | Feb 1976 | A |
3960177 | Baumann | Jun 1976 | A |
4259935 | Watanabe | Apr 1981 | A |
5465756 | Royalty | Nov 1995 | A |
6076499 | Klumpp | Jun 2000 | A |
6299130 | Yew et al. | Oct 2001 | B1 |
6824119 | Conley | Nov 2004 | B2 |
7520273 | Freitag | Apr 2009 | B2 |
7617678 | Joergl | Nov 2009 | B2 |
8196404 | Onishi | Jun 2012 | B2 |
8220443 | Murata | Jul 2012 | B2 |
8453446 | Onishi | Jun 2013 | B2 |
8701637 | Elsasser | Apr 2014 | B2 |
9032931 | De Almeida et al. | May 2015 | B2 |
20080216802 | Hamadani et al. | Sep 2008 | A1 |
20110030342 | Herges | Feb 2011 | A1 |
20160281651 | Hashimoto | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
102004021212 | Nov 2005 | DE |
102006017148 | Oct 2007 | DE |
102011079742 | Jan 2013 | DE |
102012110590 | May 2014 | DE |
2412960 | Feb 2012 | EP |
2000008970 | Jan 2000 | JP |
20120015553 | Feb 2012 | KR |
Entry |
---|
Great Britain Patent Office, Great Britain Search Report for Great Britain Application No. GB1506979.2, dated Oct. 12, 2015. |
Number | Date | Country | |
---|---|---|---|
20160312746 A1 | Oct 2016 | US |