This application is the U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/JP2017/003046, filed on Jan. 27, 2017, which claims the benefit of Japanese Application No. 2016-016537, filed on Jan. 29, 2016, Japanese Application No. 2016 103887, filed on May 25, 2016, Japanese Application No. 2016-132357, filed on Jul. 4, 2016 the entire contents of each are hereby incorporated by reference.
The present invention relates to an ejection member for ejecting a foaming content into a desired formed shape and an aerosol product using the ejection member.
As an ejection member for controlling an ejection shape of a foaming content, for example, Patent Documents 1 and 2 can be exemplified. The ejection member described in Patent Document 1 has a spatula-shaped nozzle and is configured to eject a foaming content in a band shape. The ejection member described in Patent Document 2 is provided with a cup-shaped side wall and a cup-shaped control portion provided at the center of the side wall, and is configured to eject a forming content along the inner peripheral surface of the side wall and the outer peripheral surface of the control portion to thereby eject the foaming content while forming into a cylindrical shape.
Patent Document 1: Japanese Examined Patent Publication No. 4499257
Patent Document 2: Japanese Unexamined Patent Application Publication No. 2013-240759
In the meantime, the ejection material (foam) ejected from the ejection member described in Patent Documents 1 and 2 has a relatively simple shape and is not necessarily excellent in design properties. Under the circumstances, it is conceivable to provide a plurality of ejection holes in the ejection member to create an ejection material having high design properties imitating a flower, an animal, a character, or the like.
However, simply providing a plurality of ejection holes causes adhesion of the ejection materials ejected from the respective ejection holes, which makes it difficult to obtain a desired shape.
Under the circumstances, the present invention aims to provide an ejection member capable of obtaining foam molded into a desired shape by suppressing adhesion between ejection materials, and to provide an aerosol product using the ejection member.
An ejection member according to the present invention is an ejection member 20, 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20J to be connected to an aerosol container 10, 40, 41, 50 filled with a foaming content, including a body provided with an expansion chamber E for encouraging foaming of the foaming content C1, C2 from the aerosol container 10, 40, 41, 50, and a plurality of nozzles 22c rising from the body and configured to eject the foaming content C1, C2 in the expansion chamber E to an outside, wherein the expansion chamber E is provided with an introduction port 21e for introducing the foaming content C1, C2 from the aerosol container 10, 40, 41, 50 and a delivery port 22b for delivering the foaming content C1, C2 to a nozzle 22c side, the nozzles 22c each have a slit-shaped ejection port 22d, a communication path that communicates the ejection port 22d with the delivery port 22b has a slit-shaped slit portion 22e, and a length L1 of the slit portion 22e in an ejection direction is greater than a slit width W1 of the ejection port 22d.
The slit portion 22e is preferable formed in a tapered shape that narrows toward the ejection direction. Alternatively, the slit portion 22e is preferably formed in a tapered shape that expands toward the ejection direction.
A baffle 21f, 23a, 27, 71 is preferably provided opposing to the delivery port 22b with a gap therebetween.
A tip end surface of the nozzle 22c is preferably inclined with respect to the ejection direction. It is preferable that an outer surface of the nozzle 22c be formed in a tapered shape that narrows toward a tip end and that a tapered surface continuously extends to the ejection port 22d.
The nozzles 22c are preferably different in height from each other.
The ejection port 22d is preferably curved in a direction orthogonal to the ejection direction.
The plurality of nozzles 22c is preferably spirally arranged.
The nozzles 22c preferably decrease in height sequentially toward a center.
A gap S is preferably provided between radially adjacent nozzles 22c, 22c.
The slit width W1 of the ejection port 22d is preferably non-uniform.
The communication path is preferably curved or inclined toward an inside.
A cut 22g is preferably provided at a tip end of the nozzle 22c along the ejection direction.
The nozzle 22c preferably protrudes toward an expansion chamber E side.
The nozzle 22c lower in height among the plurality of nozzles 22c preferably protrudes toward the expansion chamber E side.
It is preferable that the expansion chamber E be partitioned into partitioned spaces 30, 31, 80, 81 and that the introduction port 21e, 71a and the delivery port 22b be provided in each of the partitioned spaces.
It is preferable that a drain hole 21h be provided in the expansion chamber E. In addition, it is preferable to provide a closing member 90 configured to close the drain hole 21h when in use and open the drain hole 21h when not in use.
It is preferable that the expansion chamber E be formed only when in an inverted state.
It is preferable that a central axis 100 of a substrate portion 22a which is a foundation of the plurality of nozzles 22c be shifted from a central axis 101 of a connecting portion 21a to be connected to a stem 12a of the aerosol container 10.
An aerosol product according to the present invention includes an aerosol container 10, 40, 41, 50 filled with a foaming content C1, C2, and the ejection member 2020A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20J of the present invention attached to the aerosol container.
Since the ejection member of the present invention has an expansion chamber, the foaming content will foam in the expansion chamber, which makes it possible to suppress additional foaming of the foaming content (ejection material) ejected to the outside from the nozzle. Further, since the nozzle has a slit-shaped ejection port, the communication path that communicates this ejection port with the delivery port has a slit-shaped slit portion, and the length of the slit portion in the ejection direction is greater than the slit width of the ejection port, the foaming content will be ejected from the ejection port so as to be molded into a slit-shape in the slit portion and pushed up, and therefore the foam shape is less likely to collapse. Therefore, it is possible to suppress adhesion between ejection materials ejected from different nozzles, which makes it easy to obtain foam molded into a desired shape. Further, since the surface area of the ejection material increases, it is easy to diffuse the active ingredients contained in the content.
In cases where the slit portion is formed in a tapered shape that narrows toward the ejection direction, the foaming content once expanded in the expansion chamber will be ejected from the nozzle in such a way that it is gradually compressed, and therefore the shape of the foam is less likely deformed. For this reason, it is possible to suppress adhesion between ejection materials ejected from different nozzles, which makes it easy to obtain foam molded into a desired shape.
When the slit portion is formed in a tapered shape that expands toward the ejection direction, the resistance at the slit portion is suppressed, and therefore the foaming content in the expansion chamber is more easily ejected to the outside from the nozzle.
When a baffle opposing to the introduction port with a gap therebetween is provided, it is possible to suppress ejecting of the content not foamed sufficiently. As a result, additional foaming after ejection can be suppressed, which can suppress adhesion between ejection materials.
When the tip end of the nozzle is inclined with respect to the ejection direction, the ejection material ejected to an object such as a palm can be easily separated from the nozzle, which makes it possible to apply the ejection material on an object and suppress collapse of the shape of the ejection material.
When the outer surface of the nozzle is formed in a tapered surface that narrows toward the tip end and the tapered surface is continuous to the ejection port, the tip end of the nozzle becomes thinner, which facilitates separation of the ejection material from the nozzle (foam separation).
Also when the nozzles are different in height from each other, the ejection material ejected to an object such as a palm can be easily separated from the nozzle, which makes it possible to apply the ejection material on an object and suppress collapse of the shape of the ejection material.
When the ejection port is curved in a direction orthogonal to the ejection direction, since the ejection material rises in a curved manner, the ejection material itself becomes easier to stand by itself as compared with the case in which the ejection material is simply ejected in a form of a flat plate. Therefore, it is possible to suppress adhesion between ejection materials, which in turn can obtain an ejection material excellent in design properties using a curved shape.
When a plurality of nozzles is spirally arranged, foam can be formed in a substantially concentric circular shape, which in turn can obtain an ejection material having excellent design properties.
Furthermore, when the nozzles decrease in height toward the center, the ejection material is molded in a predetermined shape also in the height direction so that the center rises, and therefore it is more excellent in design properties. Further, since the heights of the nozzles are different, the ejection material ejected to an object such as a palm can be easily separated from the nozzle.
When a gaps is formed between adjacent nozzles in the radial direction, adhesion between ejection materials can be suppressed, which makes it easy to create an air gap between ejection materials.
When the slit width of the ejection port is non-uniform, the ejection amount and the speed of the ejection material ejected from the ejection port can be adjusted, which can form foam different in height in the ejection direction.
When the communication path is curved or inclined inwardly, the upper end of the ejection material ejected to an object such as, e.g., a palm can be inclined toward the outside, so that the ejection material opened outward as a whole can be obtained.
When a cut is provided at a tip end of the nozzle along the ejection direction, a streak can be made on the surface of the ejection material.
When the nozzle protrudes toward an expansion chamber side, the length of the slit portion in the ejection direction can be increased. For this reason, it is possible to make the shape of the ejection material ejected from the nozzle is less likely to collapse, which makes it easier to obtain an ejection material of a desired shape.
When a nozzle lower in height among the plurality of nozzles protrudes toward the expansion chamber side, it is possible to suppress collapse of the shape of the ejection material ejected from the nozzle whose height is low while exerting the effect that the ejection material can be easily separated from the nozzle, which in turn can obtain a better shaped ejection material.
When the expansion chamber is partitioned into partitioned spaces and the introduction port and the delivery port are provided in each of the partitioned spaces, by communicating aerosol containers different in content with respective introduction ports, it is possible to eject different kinds of contents at the same time.
When a drain hole is provided in the expansion chamber, even if water enters the expansion chamber when rinsing the ejection member for example, drainage can be easily performed. When a closing member configured to close the drain hole when in use and open the drain hole when not in use, there occurs no leakage of the content from the drain hole when in use.
When the expansion chamber is formed only when in an inverted state, no expansion chamber is formed in the upright position, that is, when not in use, so that no water will accumulate in the expansion chamber.
When a central axis of a substrate portion which is a foundation of the plurality of nozzles is shifted from a central axis of a connecting portion to be connected to a stem of the aerosol container, in a state in which the ejection member is attached to the aerosol container, the overhang of the ejection member from the aerosol container on the side opposite to the shifted direction can be reduced. Therefore, when operating the ejection member with an index finger or a middle finger while holding the aerosol container with a thumb, a ring finger, and a little finger, the warping of the index finger or the middle finger can be suppressed, so the ejection member can be easily operated.
Next, aerosol products of the present invention will be described in detail based on the drawings. As shown in
First, the aerosol container 10 will be described. The aerosol container 10 is configured by attaching a valve assembly 12 to a bottomed cylindrical container 11, and an effervescent content (aerosol composition) consisting of a concentrate and a liquefied gas is filled therein. The concentrate and the liquefied gas are emulsified by a surfactant in the aerosol container 10. When they are ejected to the outside, the liquefied gas is vaporized and the concentrate foams into foam. Such content is preferable such that the concentrate is 60 to 97 mass %, the liquefied gas is 3 to 40 mass %, more preferably the concentrate is 70 to 95 mass % and the liquefied gas is 5 to 30 mass %. When the liquefied gas is less than 3 mass %, the foam to be formed becomes watery, resulting in deteriorated formability and shape retainability of the foam. When the liquefied gas is more than 40 mass %, the density of the foam to be formed is small, resulting in deteriorated shape retainability of the foam. Further, foaming tends to continue even after being ejected, and therefore the shape of the molded foam tends to collapse. Note that for the purpose of improving the separation of foam from the ejection member 20 (the nozzle 22c to be described later) or adjusting the foam quality by increasing the momentum of ejection, a compressed gas, such as, e.g., a carbon dioxide gas, a nitrous oxide, and nitrogen, may be added.
As the concentrate, it is preferable to use a solution in which a surfactant is added to a solvent for the purpose of forming foam. As such a surfactant, a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a silicone type surfactant, an amino acid surfactant, or the like are preferably used. Further, an anionic surfactant, an amino acid surfactant, or the like may be added as it is possible to form good quality foam having hardness and elasticity which is easily molded into a predetermined shape by the ejection member 20 (slit portion 22e which will be described later). Further, a water-soluble polymer, such as, e.g., a cationic polymer, gelatin, and hydroxyethyl cellulose, may be added. Further, for the content, as an active component, a fragrance component such as a perfume, a deodorizing component, a bactericidal component, a cleaning component, a moisturizing component, an insecticidal component, a pest repellent component, etc., are arbitrarily contained. The hardness of the foam is preferably 300 to 3,000 (mN), particularly preferably 400 to 2,500 (mN). The hardness of the foam can be measured as follows: foam is ejected from an aerosol product adjusted to 25° C. to a bottomed cylindrical cup (inner diameter: 32 mm, depth: 27 mm) to fill the cup with the foam; and the foam is compressed with a disc of a diameter of 30 mm at a speed of 60 (mm/min) by applying a load to the foam in the cup. The hardness is the value (breaking point) when the load greatly changes with respect to the compression amount due to the rupture of the foam. When the hardness of the foam itself is smaller than 300 (mN), there is a tendency that it is difficult to be molded into a predetermined shape even though it passes through the slit portion 22e, and when it is larger than 3,000 (mN), there is a tendency that it is less likely to be formed into a delicate shape.
Further, as a property of foam which gives a cushioning feeling and a glutinous feeling when applied to a skin, the elasticity of foam at 25° C. is adjusted to 300 to 2,000 (N/mm), and preferably 400 to 1,500 (N/mm). When the elasticity is less than 300 (N/mm), the foam becomes less likely to give a cushioning feeling. On the other hand, when the elasticity exceeds 2,000 (N/mm), the foam becomes less likely to spread and stretch. The elasticity of the foam can be measured in the same manner as the hardness as follows: foam is ejected from an aerosol product adjusted to 25° C. to a bottomed cylindrical cup (inner diameter: 32 mm, depth: 27 mm) to fill the cup with the foam; and the foam is compressed with a disc of a diameter of 30 mm at a speed of 60 (mm/min) by applying a load to the foam in the cup. The elasticity is the value of the repulsive force receiving from the foam.
Next, the ejection member 20 will be described. The ejection member 20 is composed of a base portion 21 to be attached to a stem 12a of the aerosol container 10 and a nozzle portion 22 to be mounted on the base portion 21. Note that a quantitative unit capable of supplying a constant amount of a foaming content to an expansion chamber E may be provided between the stem 12a and the base portion 21. This makes it easier to mold foam into a stable shape.
A cylindrical connecting portion 21a to be connected to the stem 12a is provided at a lower position of the base portion 21. A cylindrical cover portion 21b is provided so as to cover the outer periphery of the connecting portion 21a. From the cover portion 21b, a flange portion 21c extends outward in the radial direction. It should be noted that this flange portion 21c functions as a finger hook for pushing the ejection member 20 downward when operating the stem 12a of the aerosol container 10.
At the upper portion of the base portion 21, a shallow cup-shaped body 21d is provided. When the upper portion of the cup-shaped body 21d is covered with a substrate portion 22a of the nozzle portion 22 which will be described later, the expansion chamber E is formed inside thereof. In this state, it can be said that the body having the expansion chamber E is formed by the base portion 21 and the substrate portion 22a of the nozzle portion 22. The volume V of the expansion chamber E is preferably set so that the value of the volume V (unit: ml) of the expansion chamber E/the maximum cross-sectional area Amax (unit: cm2) of the expansion chamber E is 0.1 to 1. For example, when the diameter of the expansion chamber is 3 cm, the cross-sectional area of the horizontal cross-section is approximately 7.07 cm2, so the volume V is preferably 0.7 to 7 ml. When the value of V/Amax is smaller than 0.1, foaming of the content in the expansion chamber E becomes insufficient, resulting in foaming even after the ejection, which causes easy collapse of the shape. When the value of V/Amax is larger than 1, foam is continuously ejected from the nozzle portion 22 even after the ejection material is adhered to an object, and therefore the foam is likely to adhere to the nozzle portion 22. Further, the content is likely to remain in the expansion chamber E.
Further, the ejection rate (ejection speed) D of the foaming content to be supplied to the expansion chamber E is preferably 0.5 to 2 (ml/sec). Note that this ejection amount is obtained by measuring the weight (g/sec) of the foaming content ejected from the stem of the aerosol container stem per second and converting the liquid density of the foaming content into a volume assuming that the foaming content ejected from the stem is in a liquid state. In particular, when the volume of the expansion chamber E is V (unit: ml), it is preferable to set so that DN is 0.05 to 0.5. For example, when the volume of the expansion chamber E is 4 ml, the ejection rate is preferably 0.2 to 2 (ml/sec). When the D/V is less than 0.05, the outer peripheral portion of foam tends to become small and therefore it becomes difficult to mold into a desired shape. When it is larger than 0.5, the foaming content will be ejected through the ejection port in a state in which the foaming content is not sufficiently foamed in the expansion chamber. Thus, the shape of the foam tends to easily collapse.
At the bottom portion of the cup-shaped body 21d, an introduction port 21e is provided. The introduction port 21e is communicated with the connecting portion 21a and configured to introduce the content from the aerosol container 10 into the expansion chamber E. A disc-shaped baffle 21f is provided opposing to the introduction port 21e to block the introduction port 21e with a gap therebetween. This baffle 21f has a diameter larger than the diameter of the introduction port 21e and is attached to the cup-shaped body 21d by three ribs 21g radially provided in a plan view (see
The nozzle portion 22 is composed of a disk-shaped substrate portion 22a and a plurality of nozzles 22c protruding upward from the substrate portion 22a.
As shown in
Further, the length L1 of the slit portion 22e in the ejection direction (vertical direction) is larger than the slit width (width in the lateral direction) W1 of the ejection port 22d, preferably twice or more, more preferably 3 times or more the slit width W1. The slit width W1 described here denotes the narrowest width at the slit portion 22e, and the length L1 of each nozzle is larger than the respective slit widths W1. Note that the communication path of the substrate portion 22a is formed in a shape in which a tip end of a cone is cut out in order to adjust the supply amount from the expansion chamber E to the nozzle 22c. However, it may be formed in a cylindrical shape. In the slit width direction (the short direction of the slit), It seems that the taper of the discharge port 22d extends downward by the communication path of the substrate portion 22a. In the longitudinal direction of the slit, as shown in
The length L1 of the slit portion 22e in the ejection direction (vertical direction) is preferably, for example, 2 to 30 mm, more preferably 3 to 25 mm. When the length L1 is shorter than 2 mm, there is a tendency that it becomes difficult to form foam along the shape of the slit portion 22e. When it exceeds 30 mm, there is a tendency that foam is continuously ejected from the ejection port 22d for a while even after stopping the ejection operation, making it difficult to separate from the nozzle 22c.
Further, the slit width (width in the lateral direction) W1 of the ejection port 22d is preferably 0.1 to 3 mm, more preferably 0.2 to 2 mm. When the slit width W1 is narrower than 0.1 mm, the strength of the molded foam is small, and there is a tendency that it is difficult to maintain the molded shape. While, when it is wider than 3 mm, there is a tendency that foam becomes difficult to be formed into a thin plate shape and therefore it is difficult to form foam having excellent design properties. Furthermore, the width W2 of the slit portion 22e in the longitudinal direction is preferably 2 to 30 mm, more preferably 3 to 25 mm. When the width W2 in the longitudinal direction is narrower than 2 mm, there is a tendency that the strength of the molded foam is small and therefore it is difficult to maintain the molded shape. While, when it is wider than 30 mm, there is a tendency that it is difficult to form foam having excellent design properties.
Further, the nozzles 22c having the aforementioned configuration are arranged in a spiral shape so as to spread counterclockwise from the center of the disc-shaped substrate portion 22a.
The heights of nozzles 22c are different as shown in
When the ejection member 20 having the aforementioned configuration is attached to the stem 12a of the aerosol container 10 and the ejection member 20 is pressed downward (the stem 12a is operated), the content ejected from the stem 12a is first introduced into the expansion chamber E from the introduction port 21e. The content introduced into the expansion chamber E initially flows upward along the stem 12a, but collides with the baffle 21f to change the flow in the lateral direction. Further, vaporization of the liquefied gas in the content is accelerated by the impact due to the collision and the vaporized gas is released into the expansion chamber E, resulting in easy foaming in the expansion chamber E.
This content which flowed in the lateral direction and radially spread will foam sufficiently before reaching the delivery port 22b positioned at the upper portion of the expansion chamber E. For this reason, the content not foamed sufficiently will not be ejected to the outside from the nozzle 22c while maintaining the ejection momentum from the aerosol container 10. The fully foamed content flows into the nozzle 22c from the delivery port 22b and is ejected to the outside from the ejection port 22d of the nozzle 22c. At this time, since the slit portion 22e has a curved slit-shape and is formed in a tapered shape that narrows toward the ejection direction, the foamed content will advance through the slit portion 22e so as to be compressed gradually. Since the length L1 of the slit portion 22e in the ejection direction is made to be larger than the slit width W1 of the ejection port 22d, the foamed content is ejected from the ejection port 22d in a manner as to be extruded while being molded into a slit-shape, whereby the ejection direction (the axial direction of the nozzle 22c) is stabilized. As a result, adhesion between ejection materials (foam) ejected upward (in the axial direction) of the nozzle 22c is suppressed, which makes it possible to form the ejection material in a desired shape.
A method of using the aerosol product is as follows. That is, the ejection port 22d of the nozzle is directed to an object such as a palm of a hand. In this state, the ejection operation is carried about 1 cm apart, and the nozzle 22c is slowly moved away from the object while ejecting the ejection material in a state in which the ejection material is adhered to the object. With this operation, the initially ejected foam adheres to the object, and the lastly ejected foam forms the top portion. For example, according to the ejection member 20 of this embodiment, as shown in
Further, the heights of the nozzles 22c gradually decrease toward the center, and the tip end surface of each nozzle 22c is also inclined with respect to the ejection direction. For this reason, when foam is ejected to an object such as a palm, the difference between the area of the foam adhering to the object and the area of the foam adhering to the tip end surface of the nozzle becomes large, which facilitates separation of the foam from the nozzle and enhances the shape retainability of the foam molded by the nozzle without losing the shape.
The aerosol product of the present invention which forms an ejection material as described above is suitably used as, for example, a space product, such as, e.g., a fragrance, a deodorant, a fungicide, and a pest repellent, and a human body product, such as, a moisturizer, a cleanser such as a facial cleanser, and a bath additive.
Further, as shown in
By providing a gap S between nozzles 22c and 22c arranged adjacent in the radial direction, adhesion between the ejection materials can be further suppressed. Therefore, it is easy to form petals and the appearance becomes excellent. In addition, when water is applied to the aerosol product 1, the water sometimes enters between the nozzle 22c and the nozzle 22c. However, by providing the gap S so as to communicate with the outside, the gap S functions as a drainage path, which facilitates drainage of the water.
Further, in order to reduce the amount of water to be accumulated, the space between the nozzles 22c and 22c may be filled or the top surface of the substrate portion 22a may be lifted up to the vicinity of the tip end of the nozzle 22c to reduce the volume between the nozzles 22c and 22c. At this time, as shown in
In the aerosol product 2 having the aforementioned configuration, when the ejection member 20A is pushed downward, the contents are introduced from the respective aerosol containers 40 and 41 into the expansion chamber E. However, the expansion chamber E is partitioned by the partition member 23, and therefore the contents do not mix with each other. Accordingly, when the colors of contents are different from each other, it is possible to form ejection materials of different colors on the left and right, which further enhances the design properties. Note that in the drawing, the reference numeral “23a” denotes a protruding portion which functions as a baffle.
The double aerosol container 50 is configured to accommodate a flexible inner container 52 in an outer container 51 and fill a content C1 and a content C2 between the outer container 51 and the inner container 52 and in the inner container 52, respectively, to eject each content C1, C2 without mixing them. Thus, a two-liquid ejecting valve assembly 60 is provided. This two-liquid ejecting valve assembly 60 is configured as follows. That is, as indicated by the solid arrow in
This embodiment is also different from the above-described embodiments in that the partition member 70 is formed in a cylindrical shape. This partition member 70 is provided with a partition wall 71 which partitions the cylindrical inner space in the up and down spaces. Of the inner space, the lower space is communicated with the space on the outer peripheral side (the substrate portion 21 side) via an outlet hole 71b provided in the side surface of the partition member 70, and these two spaces form a first space 80. This first space 80 is communicated with the space between the outer container 51 and the inner container 52 when the outer stem 64 is connected to the introduction port 21e of the substrate portion 22a. Further, the upper side space of the inner space is a second space which communicates with the inner container 52 when the inner stem 65 is connected to an introduction port 71a of the partition wall 71.
The ejection member 20B of this embodiment is provided with a connection cylinder 24 on the lower side and is attached to the double aerosol container 50 by fitting the connection cylinder 24 to a flange portion 51b of the double aerosol container 50. The connection cylinder 24 and the base portion 21 are connected to each other at only one portion. When a finger hook 26 provided on the opposite side of the connecting portion 25 is pushed downward, the base portion 21 rotates with the connecting portion 25 functioning as a fulcrum to operate the double stem 63.
When the double stem 63 is operated, the first content C1 is introduced into the first space 80 via the outer stem 64. The introduced first content C1 changes its flow by the partition wall 71 functioning as a baffle, flows out of the outlet hole 71b to the outer periphery side, and is ejected to the outside from the ejection port 22d of the nozzle 22c via the delivery port 22b. On the other hand, the second content C2 is introduced into the second space 81 via the inner stem 65. The introduced second content C2 changes its flow by a protruding surface 27 which protrudes downward from the lower surface of the substrate portion 22a and functions as a baffle, and is sufficiently foamed. Then, the foamed second content is ejected to the outside from the ejection port 22d of the nozzle 22c via the delivery port 22b.
In the aerosol product 3 having the above-described configuration, the partition member 70 is formed in a cylindrical shape. Therefore, the first content C1 is ejected from the nozzles 22c provided outside the partition member 70 among the plurality of nozzles 22c, and the second content C2 is ejected from the nozzles 22c provided inside the partition member 70. Accordingly, when the first content C1 and the second content C2 are different in color, it is possible to form an ejection material different in color between the central portion and the outer peripheral portion, which further enhances the design properties.
For the purpose of suppressing adhesion between ejection materials, as shown in
As shown in
Each of the nozzles 22c is inclined inward. Along the contour of the nozzle 22c, the communication path in the nozzle 22c is also inclined inward. The slit width W1 of the ejection port (communication path) 22d is the widest at the center portion in a plan view, and gradually narrows toward the end portions. The tip end surface of the nozzle 22c is inclined so that the center is highest and the height decreases toward the end portions. The outer nozzle 22c is provided with cuts 22g for communicating the communication path with the outside at the tip end of the outer peripheral wall along the ejection direction. At the center of the substrate portion 22a, a cylindrical nozzle 22h for forming an imitation “pistil” is separately provided. This nozzle 22h is also provided with a cut 22i at the tip end thereof.
In the ejection member 20D configured as described above, since the nozzle 22c is inclined inward, by moving the nozzle 22c away from the object while ejecting the ejection material in a state in which the ejection material is adhered to the object, the ejection material ejected from the nozzle 22c spreads outward. As a result, a state as if a flower is opened can be obtained. Further, the slit width W1 at the center of the ejection port 22d (and the communication path) is wider than that at the end portions, and the tip end surface of the nozzle 22c is inclined so that the center becomes the highest (i.e., the center is sharp). Therefore, by moving the ejection member away from the object in a state in which the ejection material is adhered to the object, the foam at the center portion follows the nozzle 22c longer than the foam at the end portions (i.e., the foam at the central portion is pulled up). As a result, an ejection material with a pointed central portion can be obtained. Therefore, with the ejection member 20D, an ejection material formed in a shape imitating a lily flower as a whole can be obtained. Further, since the cuts 22g are provided at the tip end of the nozzle 22c, streaks (ridge lines) protruding outward along the cuts 22g are formed on the ejection material. Besides the function of improving the appearance, the streaks also exert the function of increasing the stiffness of the foam in the vertical direction.
The portion having substantially the same configuration as the ejection member 20 is allotted by the same reference numeral, and the detailed description thereof will be omitted.
By making the nozzle 22c long in the vertical direction by projecting the nozzle 22c toward the expansion chamber E side as described above, the length L1 of the slit portion 22e in the ejection direction becomes long. Therefore, additional foaming of the ejection material can be suppressed. For this reason, it becomes easy to control the shape (thickness) of the ejection material, which in turn can suppress collapse of the foam near the center of the substrate portion 22a and adhesion between the foam. Thus, it is possible to obtain a more well-formed foam. Further, the protruding length L2 of the nozzle 22c from the upper surface of the substrate portion 22a is not changed. Therefore, the configuration in which the heights of the nozzles 22c gradually decrease toward the center is maintained, which can still exert the effects that foam detachment (foam separation) from the tip end of the nozzle 22c is good and foam is formed in a three-dimensional shape.
In order to uniform the state of foam to be ejected from each nozzle 22c, it is preferable to adjust the protruding length L3 of the nozzle 22c toward the expansion chamber E side so that the length L1 of the slit portion 22e is equalized. However, when the length L1 of the slit portion 22e in the ejection direction is short, there is a tendency that thick foam is obtained, and when the length L1 is long, there is a tendency that thin foam is obtained. Therefore, the length L3 may be appropriately changed according to a desired shape. For example, in order to change the thickness of foam with one nozzle 22c, the protruding length L3 from the lower surface is shortened according to the protruding length L2 from the upper surface which becomes shorter as it advances toward the center of the substrate portion 22a. In cases where it is not desired to change the thickness, the protruding length L3 from the lower surface may be made longer so as to compensate for the decrease of the protruding length L2 from the upper surface.
Further, in this embodiment, since the nozzle 22c is extended to the expansion chamber E side, the delivery port 22b is close to the introduction port 21e as compared with the other embodiments. Therefore, a protruding surface 27 is provided so as to be positioned closer to the introduction port 21e than the delivery port 22b which is nearest to the introduction port 21e to thereby function as a baffle. Since the other configuration is substantially the same as that of the ejection member 20C shown in
However, if the drain hole 21h is open when in use (at the time of ejecting the content), the content in the expansion chamber E leaks out from the drain hole 21h. Under the circumstances, the drainage mechanism of this ejection member 20F is provided with a closing member 90 which closes the drain hole 21h when in use and opens the drain hole 21h when not in use, that is, when the nozzle portion 22 and the base portion 21 are not depressed (not be inclined). As shown in
When not in use, the closing member 90 does not come into contact with the lower surface of the base portion 21 and is in a state in which there is a gap between the closing member 90 and the drain hole 21h, which does not prevent draining from the drain hole 21h. Water flows down toward the closing member 90 arranged below, but the inner peripheral surface of the insertion hole 90a of the closing member 90 is in contact with the outer peripheral surface of the connecting portion 21a of the base portion 21, and therefore it does not flow into the stem 12a side.
When in use, the closing member 90 comes into contact with the lower surface of the approaching (inclining) base portion 21 to close the drain hole 21h. Therefore, the content in the expansion chamber E will not leak from the drain hole 21h. Note that
By the way, in this ejection member 20F, the upper surface (the expansion chamber E side surface) of the cup-shaped body 21d of the base portion 21 is formed in a mortar shape. With this, the content collided with the protruding surface 27 and extended in the lateral direction flows smoothly to the outer nozzles 22c. Therefore, the content can be ejected uniformly from all of the plurality of nozzles 22c provided from the center of the substrate portion 22a toward the outside. Further, the fact that the lower ends of the nozzles 22c protruding into the expansion chamber E are connected with each other and no recess is formed on the lower surface of the nozzle portion 22 also helps smooth flow of the content. For example, when the lower surface of the nozzle portion 22 is formed in a conical shape, the content flow becomes smoother.
Further, the ejection member 20F is provided with an annular shoulder cover 28 to be fitted to the upper end of the aerosol container 10, and the base portion 21 is connected to the shoulder cover 28 via the hinge 28a. Therefore, as shown in
The tip end surface of the nozzle 22c is inclined so as to descend toward the center of the substrate portion 22a. For this reason, the detachment of the foam from the nozzle 22c is excellent. Further, the slit portion 22e of the nozzle 22c has approximately the same width (the short direction W1 and the longitudinal direction W2) from the delivery port 22b to the ejection port 22d. The portion having substantially the same configuration as the other ejection members is allotted by the same reference numeral, and the detailed description thereof will be omitted.
When in use, inverting the aerosol product 5 (pointing down the nozzle 22c) causes the nozzle portion 22 to descend downward by its own weight (sliding away from the base portion 21), so that an expansion chamber E is formed. The nozzle portion 22 is provided with an engaging protrusion 22k formed so as to extend the substrate portion 22a radially outward and a cover portion material 91 provided with an engaging piece 91a to be engaged with the engaging protrusion 22k is attached to the rising wall 21i, so that the nozzle portion 22 never falls off. Further, on the inner surface of the rising wall 21i, a longitudinal groove 21j is provided along the engaging protrusion 22k to allow only the sliding movement of the nozzle portion 22 and restrain the rotation.
In the ejection member 20G having the above-described configuration, in the upright state, that is, in the unused state, the expansion chamber E is not formed. For this reason, there is no concern that water will accumulate in the expansion chamber E even when water is applied. Further, by sliding the nozzle portion 22 toward the base portion 21 side after the use, the content remained in the expansion chamber E can be discharged, so cleaning can be performed easily. When forming the expansion chamber E, the ejection pressure of the content may be used other than the own weight of the nozzle portion 22. The portion having substantially the same configuration as the other ejection members is allotted by the same reference numeral, and the detailed description thereof will be omitted.
Further, in this ejection member 20H, the central axis 100 (the central axis of the spirally aligned nozzles 22c) of the substrate portion 22a that is a foundation of the plurality of nozzles 22c is offset from the central axis 101 of the connecting portion 21a to be connected to the stem 12a of the aerosol container 10. Describing specifically, the base portion 21 is supported by the shoulder cover 28 via the hinge 28a, and the central axis 100 of the substrate portion 22a is shifted toward the hinge 28a side with respect to the central axis 101 of the connecting portion 21a. Note that the central axis 101 of the connecting portion 21a is also the central axis of the aerosol container 10, the stem 12a, the shoulder cover 28, and the decorative cover 29. In this way, when the central axis 100 of the substrate portion 22a is shifted toward the hinge 28a side, it is possible to position the finger hook 26 toward the inside of the shoulder cover 28, the decorative cover 29, and the aerosol container 10 in a plan view while sufficiently securing the protruding length of the finger hook 26 extending in the horizontal direction from the opposite side of the hinge 28a. Therefore, it is not necessary to reduce the diameter of the nozzle portion 22 in order to secure the protruding length of the finger hook 26, and large foam can be obtained.
When using the aerosol product, the aerosol container 10 is usually held by a thumb, a middle finger, a ring finger, and a little finger with an index finger hooked on finger hook 26 so as to grab the aerosol container 10. At this time, since the finger hook 26 is located at a position inner than the aerosol container 10 in a plan view, the index finger does not warp, resulting in an easy operation. As for the introduction port 21e, it is shifted according to the central axis 100 of the nozzle portion 22. However, it is not always required to be shifted. In the drawing, the reference numeral “21k” positioned below the finger hook 26 denotes a shielding plate for concealing the inside of the shoulder cover 28 and for preventing the entry of water.
Further, in the same manner as in the ejection members shown in
Further, in the ejection member 20H, the outer surface of the nozzle 22c is formed in a tapered shape that becomes thinner toward the tip end (ejection direction). This tapered surface continues to the tip end of the nozzle 22c (ejection port 22d), in other words, it continues until it contacts the inner surface of the nozzle constituting the slit portion 22e. Therefore, the wall thickness at the tip end of the nozzle is very thin, in other words, it is in a pointed shape, so the foam adhesion area is small. As a result, the detachment of foam from the nozzle 22c is good. The portion having substantially the same configuration as the other ejection members is allotted by the same reference numeral, and the detailed description thereof will be omitted.
Although representative embodiments of the present invention are described above, the present invention is not limited to the aforementioned embodiments, and it is possible to carry out while making various modifications within the scope of the present invention. For example, in cases where the introduction port 21e and the delivery port 22b of the expansion chamber E are sufficiently far away from each other, or in cases where there is no delivery port 22b on the extended line of the stem 12a, it is not always necessary to provide a baffle. Further, the structures disclosed in the aforementioned embodiments may be combined as appropriate. That is, the feature that the length L1 of the slit portion in the ejection direction is larger than the slit width W1 of the ejection port is common to all ejection members, but configurations that are not common may be combined as appropriate. For example, the slit width W1 of the communication path of each of the ejection members 20C, 20D, 20E, 20F, and 20G shown in
Number | Date | Country | Kind |
---|---|---|---|
2016-016537 | Jan 2016 | JP | national |
2016-103887 | May 2016 | JP | national |
2016-132357 | Jul 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/003046 | 1/27/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/131197 | 8/3/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5813785 | Baudin et al. | Sep 1998 | A |
20100062096 | Clauwaert | Mar 2010 | A1 |
20130175305 | Ohshima | Jul 2013 | A1 |
20130206869 | Ravazzoni | Aug 2013 | A1 |
20160302624 | Little | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
103097261 | May 2013 | CN |
H02-045161 | Mar 1990 | JP |
09183469 | Jul 1997 | JP |
H09-183469 | Jul 1997 | JP |
2006-325981 | Dec 2006 | JP |
2006325981 | Dec 2006 | JP |
2008-001381 | Jan 2008 | JP |
4499257 | Jul 2010 | JP |
2013-240759 | Dec 2013 | JP |
2014-234186 | Dec 2014 | JP |
2014234186 | Dec 2014 | JP |
2016-010919 | Jan 2016 | JP |
2016010919 | Jan 2016 | JP |
2016-540695 | Dec 2016 | JP |
2005048966 | Jun 2005 | WO |
Entry |
---|
Search Report issued in corresponding International Patent Application No. PCT/JP2017/003046, dated Mar. 21, 2017. |
First Office Action issued in Chinese Application No. 201780008567.5, dated Jul. 19, 2019, with English translation. |
The Extended European Search Report dated Sep. 2, 2019 for the related European Patent Application No. 17744427.0. |
Number | Date | Country | |
---|---|---|---|
20190047777 A1 | Feb 2019 | US |