The present disclosure relates to air conditioning circuits for automobile vehicles.
Air conditioning circuits for automobile vehicles commonly provide distinct components for each of a condenser, a phase separator, a compressor, an evaporator, and an ejector if present. Ejectors may provide a more efficient operation than traditional systems lacking an ejector, but are not widely used. The piping and arrangement constraints to connect the multiple components and a compressor, and for controlling flow, require complex arrangements that are not easily configured in the engine compartment. Known air conditioning ejector systems include one or more evaporators together with the ejector in a single combined unit, however, system piping and arrangement complexities remain as issues.
Thus, while current air conditioning circuits for automobile vehicles achieve their intended purpose, there is a need for a more efficient and improved system and method for housing components and arranging air conditioning circuits for automobile vehicles.
According to several aspects, an automobile vehicle refrigeration system may combine an ejector, a valve, a dryer, and a receiver inside a container, together defining an ejector-receiver. An internal heat exchanger (IHX) device is positioned within the container. The IHX device (
In another aspect of the present disclosure, an inner wall of the IHX device and an outer wall of the receiver and dryer are positioned within the device defining a heat exchange cavity, the heat exchange cavity receiving the refrigerant as a refrigerant gas fed from an evaporator (
In another aspect of the present disclosure, an ejector feed line is positioned in the container providing communication for flow of the refrigerant between the cavity of the IHX device and an inlet of the ejector.
In another aspect of the present disclosure, a bypass line contains a throttling valve in communication with the ejector feed line and the ejector allowing a portion of a refrigerant liquid in the ejector feed line to cause a swirl in the inlet of the ejector.
In another aspect of the present disclosure, a refrigerant phase separator function is positioned within the container in communication with the ejector and receiving the refrigerant discharged from the ejector for separation into each of a refrigerant gas and a refrigerant liquid.
In another aspect of the present disclosure, the refrigerant phase separator includes: a gas outlet line in communication with an inlet of a compressor positioned external to the container to transfer the refrigerant gas to the compressor; and a liquid discharge line transferring the refrigerant liquid to an evaporator positioned external to the container, the liquid discharge line having a throttling valve positioned within the container.
In another aspect of the present disclosure, a condenser outlet line directs flow of the refrigerant from a phase separation condenser positioned external to the container, to flow into the receiver and dryer. A receiver and dryer line positioned within the container is in communication between the condenser and an ejector inlet.
In another aspect of the present disclosure, a refrigerant phase separator is positioned within the canister of the heat exchanger, the refrigerant phase separator receiving refrigerant discharged from the ejector.
In another aspect of the present disclosure, a discharge line is in communication with the ejector directing a discharge from the ejector into the IHX device. A liquid discharge line is in communication with the IHX device directing the refrigerant in liquid phase discharged from the heat exchanger canister into an evaporator positioned external to the container, the liquid discharge line having a throttling valve positioned in the IHX device.
In another aspect of the present disclosure, a gas outlet line extending from the IHX device directs refrigerant in a gas phase into an inlet of a compressor positioned external to the container. A condenser return line directs flow of the refrigerant from a phase separation condenser positioned external to the container into the receiver and dryer integrated heat exchanger.
According to several aspects, an automobile vehicle refrigeration system combined ejector valve and receiver includes a container. A heat exchanger device is positioned within the container. A receiver and dryer is located entirely within the container and is positioned at least partially within the heat exchanger device defining a cavity between the receiver and dryer and the heat exchanger device to receive a refrigerant. An ejector is positioned within the container in communication with the heat exchanger device, the ejector receiving the refrigerant after discharge from the cavity. A refrigerant phase separator is positioned within the container used to separate the refrigerant into each of a gas and a liquid.
In another aspect of the present disclosure, a cold gas inlet line is connected to the container, wherein the refrigerant as the gas is fed from an evaporator positioned external to the container into the cold gas inlet line.
In another aspect of the present disclosure, the refrigerant phase separator is in communication with the ejector, the refrigerant phase separator receiving the refrigerant after discharge from the ejector.
In another aspect of the present disclosure, an ejector aspirated inlet line connects the cavity to the ejector, the ejector aspirated inlet line receiving the refrigerant after discharge from the cavity for flow into the ejector.
In another aspect of the present disclosure, a bypass line containing a throttling valve is in communication with the ejector feed line and the ejector allowing a portion of the refrigerant in the ejector feed line to bypass an inlet of the ejector.
In another aspect of the present disclosure, the refrigerant phase separator is positioned entirely within the heat exchanger device.
In another aspect of the present disclosure, a discharge line is in communication with the ejector directing a discharge of the refrigerant from the ejector into the heat exchanger device for flow into the refrigerant phase separator.
According to several aspects, an automobile vehicle refrigeration system combined ejector-receiver includes a container. An internal heat exchanger (IHX) is positioned entirely within the container. The IHX includes a canister. A receiver and dryer is located entirely within the container and is positioned at least partially within the canister defining a cavity between the receiver and dryer and the canister to receive a refrigerant. An ejector is positioned within the container. An ejector feed line is in communication with the IHX, the ejector feed line receiving the refrigerant after discharge from the receiver and dryer for flow into the ejector. A refrigerant phase separator function is positioned within the container. The refrigerant phase separator receives the refrigerant after discharge from the ejector for separation into each of a refrigerant gas and a refrigerant liquid.
In another aspect of the present disclosure, a refrigerant gas outlet line is in communication with the refrigerant phase separator to transfer the refrigerant gas outside of the container. A refrigerant liquid discharge line is in communication with the refrigerant phase separator to transfer the refrigerant liquid outside of the container, the refrigerant liquid discharge line having a throttling valve positioned within the container.
In another aspect of the present disclosure, a liquid refrigerant discharge line is included for transferring the liquid refrigerant out of the container, the liquid refrigerant discharge line having an electronically regulated throttling valve positioned within the container.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
Referring to
Referring to
Referring to
The cold gas within the heat exchanger device 50 flows through the device cavity 61 and is warmed by contact with the outer wall 60. The outer wall 60 isolates hot high pressure refrigerant liquid in the receiver and dryer 52 received from the phase separation condenser 42 described in reference to
An ejector discharge line 72 communicates refrigerant from the ejector 54 to the phase separator 56. The phase separator 56 receives the refrigerant and separates the refrigerant into each of a gas and a liquid phase. Refrigerant as a gas is discharged from the phase separator 56 via a gas outlet line 74 and is returned to an inlet of the compressor 14′ shown in
A condenser outlet line 84 directs flow from the phase separation condenser 42 shown in
Referring to
A refrigerant in the form of a cold gas is fed from the evaporator 46 shown in
Refrigerant in a liquid phase is discharged from the heat exchanger device 98 via a liquid refrigerant discharge line 116 into the evaporator 46 shown in
An automobile vehicle refrigeration system combined ejector valve and receiver of the present disclosure offers several advantages. These include the inclusion of each of an ejector, a device defining a heat exchanger, and a receiver and dryer all within a single container. A refrigerant phase separator can also be included within the container to further improve efficiency. This provides a compact package of these components and their piping to integrate the components into an efficient ejector air conditioning circuit for a production vehicle. Inlet and outlet piping connection locations to the container can be maintained between different internal arrangement aspects of the receivers.
The description of the present disclosure is merely exemplary in nature and variations that do not depart from the gist of the present disclosure are intended to be within the scope of the present disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
RE30285 | Babington | May 1980 | E |
5490397 | Kitamura | Feb 1996 | A |
5553457 | Reznikov | Sep 1996 | A |
6579351 | Fisk | Jun 2003 | B2 |
7569095 | Vanderstraeten | Aug 2009 | B2 |
7832229 | Nakamura | Nov 2010 | B2 |
8201415 | Nakamura | Jun 2012 | B2 |
8216335 | Scott | Jul 2012 | B2 |
8534093 | Sugiura | Sep 2013 | B2 |
20040031596 | Nishida | Feb 2004 | A1 |
20040134171 | Scott | Jul 2004 | A1 |
20050188717 | Aikawa | Sep 2005 | A1 |
20060130661 | Dean | Jun 2006 | A1 |
20060254308 | Yokoyama | Nov 2006 | A1 |
20070000262 | Ikegami | Jan 2007 | A1 |
20070119207 | Oshitani | May 2007 | A1 |
20070261433 | Mikita | Nov 2007 | A1 |
20080098757 | Takeuchi | May 2008 | A1 |
20080202121 | Nagel | Aug 2008 | A1 |
20100162751 | Nishijima | Jul 2010 | A1 |
20100199716 | Murakami | Aug 2010 | A1 |
20110005268 | Oshitani | Jan 2011 | A1 |
20110120182 | Haussmann | May 2011 | A1 |
20120151948 | Ogata | Jun 2012 | A1 |
20170211850 | Fukushima | Jul 2017 | A1 |
20180291911 | Ward | Oct 2018 | A1 |
20180361068 | Fabricius | Dec 2018 | A1 |
20180369483 | Olesen | Dec 2018 | A1 |
20190178541 | Bozeman | Jun 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20190178541 A1 | Jun 2019 | US |