The present invention relates to an elastic alignment assembly for aligning mated components, as well as a method of reducing positional variation for components of a matable assembly.
Currently, components which are to be mated together in a manufacturing process are subject to positional variation based on the mating arrangements between the components. One common arrangement includes components mutually located with respect to each other by 2-way and/or 4-way male alignment features; typically undersized structures which are received into corresponding oversized female alignment features, such as apertures in the form of holes and/or slots. Alternatively, adhesives or welding processes may be employed to mate parts. Irrespective of the precise mating method, there is a clearance between at least a portion of the alignment features which is predetermined to match anticipated size and positional variation tolerances of the mating features as a result of manufacturing (or fabrication) variances. As a result, occurrence of significant positional variation between the mated components, which contributes to the presence of undesirably large and varying gaps and otherwise poor fit, is possible. Additional undesirable effects may include squeaking and rattling of the mated components, for example.
In one exemplary embodiment, an elastic alignment assembly for aligning mated components includes a first component having a first engagement surface. Also included is a second component having a second engagement surface, the second component configured to be mated with the first component. Further included is at least one receiving feature formed in at least one of the first engagement surface and the second engagement surface. Yet further included is at least one protrusion comprising a first sidewall and a second sidewall, the at least one protrusion extending away from at least one of the first engagement surface and the second engagement surface, the at least one protrusion formed of an elastically deformable material to elastically deform at a first interface and a second interface upon contact with the at least one receiving feature, wherein the first interface is located proximate the first sidewall and the at least one receiving feature, and wherein the second interface is located proximate the second sidewall and the at least one receiving feature.
In another exemplary embodiment, a method of reducing positional variation of a matable assembly is provided. The method includes inserting at least one protrusion of a first component into at least one receiving feature of a second component, wherein the at least one protrusion comprises a protrusion width and the at least one receiving feature comprises a receiving feature width. The method also includes contacting a first sidewall and a second sidewall of the at least one protrusion with the at least one receiving feature. The method further includes elastically deforming at least one of the first sidewall and the second sidewall upon contacting the at least one receiving feature, wherein the elastic deforming is facilitated by a recess formed in the at least one protrusion between the first sidewall and the second sidewall. The method yet further includes performing an elastic averaging of the elastic deformation over the first sidewall and the second sidewall, wherein upon reaching a fully engaged position of the at least one protrusion a fitted alignment between the first component and the second component is established.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
Referring to
Although illustrated in a specific geometry, the first component 12 and the second component 14 may be configured in countless geometries. Irrespective of the precise geometry of the first component 12 and the second component 14, the second component 14 is configured to align with and fittingly mate with the first component 12, which will be described in detail below. In an alternative embodiment, rather than two components comprising the matable assembly 10, additional layers or components may be included.
The first component 12 includes a first surface 16 and a second surface 18, which may also be referred to as a first engagement surface, that are typically substantially planar surfaces spaced from one another and arranged in planes relatively parallel to each other. In an alternative embodiment, the first surface 16 and the second surface 18 are curvilinear, rather than relatively planar and are merely spaced from one another. Regardless of the precise geometry of the first surface 16 and the second surface 18, the first surface 16 and the second surface 18 are connected along a perimeter of the first component 12 by at least one perimeter wall 20. In the illustrated embodiment, the at least one perimeter wall 20 includes a plurality of segments or individual walls, but is referred to herein as the at least one perimeter wall 20.
The second component 14 includes a third surface 22, which may also be referred to as a second engagement surface, and a fourth surface 24, that are typically substantially planar surfaces spaced from one another and arranged in planes relatively parallel to each other. Also similar to the first component 12, it is contemplated that the third surface 22 and the fourth surface 24 are curvilinear or include various protrusions and/or detents.
Generally and schematically illustrated is an elastic alignment assembly 30 that is used in conjunction with the matable assembly 10. It is to be appreciated that the elastic alignment assembly 30 is to be employed for providing a self-aligning relationship between components, such as the first component 12 and the second component 14, to each other, while also assisting in securely mating the components to each other. The elastic alignment assembly 30 is integrally formed with, or operatively coupled to, the second surface 18 (i.e., first engagement surface) and the third surface 22 (i.e., second engagement surface). As shown, a portion of the elastic alignment assembly 30 extends from the second surface 18 of the first component 12 toward the third surface 22 of the second component 14 and may span a portion of the second surface 18 or an entire dimension (e.g., length, width, height, etc.) of the second surface 18. Similarly, another portion of the elastic alignment assembly 30 extends from the third surface 22 of the second component 14 toward the second surface 18 of the first component 12 and may span a portion of the third surface 22 or an entire dimension (e.g., length, width, height, etc.) of the third surface 22.
Referring now to
As shown in the illustrated embodiment, the protrusion 32 includes a first sidewall 38 and a second sidewall 40 extending from a first end 42 proximate the second surface 18 to a second end 44 located distally from the first end 42. In an exemplary embodiment, the first sidewall 38 comprises a first portion 46 extending from the first end 42 to an intermediate location 48 of the first sidewall 38 in an orientation relatively perpendicular to the second surface 18. The first sidewall 38 also includes a second portion 50 extending from the intermediate location 48 to the second end 44 of the first sidewall 38. The second portion 50 is disposed at an angle to the first portion 46, and more specifically at an angle that tapers inwardly toward the second sidewall 40, or towards a center axis 51. The second sidewall 40 comprises a third portion 52 extending from the first end 42 of the protrusion 32 to an intermediate location 54 of the second sidewall 40 in an orientation relatively perpendicular to the second surface 18. The second sidewall 40 also includes a fourth portion 56 extending from the intermediate location 54 of the second sidewall 40 to the second end 44 of the second sidewall 40. The fourth portion 56 is disposed at an angle to the third portion 52, and more specifically at an angle that tapers inwardly toward the first sidewall 38. Extending longitudinally through the protrusion 32 is a recess 58 disposed at the second end 44 of the protrusion 32 between the first sidewall 38 and the second sidewall 40. The recess 58 extends axially from the second end 44 toward the first end 42 of the protrusion 32, terminating intermediate of the first and second ends 42, 44, respectively.
The elastic alignment assembly 30 also comprises a receiving feature 60 extending into the third surface 22 of the second component 14. The receiving feature 60 may be integrally formed with or operatively coupled to the second component 14 and may be formed of various geometries. In one embodiment, the receiving feature 60 is a trough extending in a longitudinally extended manner across an entire span of the third surface 22. The direction in which the receiving feature 60 extends may include the first direction 34 and/or the second direction 36. As described above, the receiving feature 60 may be disposed in various locations along the third surface 22 and may be of various shapes, including the trough noted above or apertures, for example. Multiple embodiments of the receiving feature 60 are contemplated that are suitable for receiving a protrusion 32 of the first component 12, including longitudinally extending or spatially located receiving features.
In the illustrated embodiment of the receiving feature 60 (
The protrusion 32 of the first component 12 is positioned and engaged with the receiving feature 60 of the second component 14 upon translation of the first component 12 toward the base wall 68. The first sidewall 38 and the second sidewall 40 of the protrusion 32 engage the first wall 62 and the second wall 64, respectively, at a position spaced from the base wall 68 within the receiving feature 60. Subsequent translation of the protrusion 32 toward the base wall 68 results in an elastic deformation at a first interface 70 between the first sidewall 38 and the first wall 62, as well as at a second interface 72 between the second sidewall 40 and the second wall 64. Depending on the positional variance of the features of the first component 12 and the second component 14, elastic deformation of one or both of the first sidewall 38 and the second sidewall 40 may occur in response to resistance imposed on the first sidewall 38 and the second sidewall 40 by the receiving feature 60. An elastically deformed condition is illustrated in
Any suitable elastically deformable material may be used for the protrusion 32. More specifically, elastically deformable material is disposed proximate, or integral to, the first sidewall 38 and the second sidewall 40. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS), such as an ABS acrylic. The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The material, or materials, may be selected to provide a predetermined elastic response characteristic of the protrusion 32. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.
The precise position where engagement between the first sidewall 38 and the second sidewall 40 and the receiving feature 60 occurs will vary depending on positional variance imposed by manufacturing factors. Due to the elastically deformable properties of the elastic material comprising the protrusion 32, the criticality of the initial location of engagement is reduced. Further insertion of the protrusion 32 into the receiving feature 60 toward the base wall 68 ultimately leads to a fully engaged position of the protrusion 32, as illustrated in
Irrespective of the precise location of the fully engaged position, a tight, fitted engagement between the protrusion 32 and the receiving feature 60 is achieved by frictional forces present at the interfaces of the first sidewall 38 and the second sidewall 40 with the first wall 62 and the second wall 64, respectively. Such a condition is ensured by sizing a protrusion width 76 to be larger than a receiving feature width 78. The protrusion width 76 is defined by the distance between the first sidewall 38 and the second sidewall 40, and in one embodiment is defined by the distance between the first portion 46 of the first sidewall 38 and the third portion 52 of the second sidewall 40. The receiving feature width 78 is defined by the distance between the first wall 62 and the second wall 64. The interference between the protrusion 32 and the receiving feature 60 causes elastic deformation proximate the contacted surfaces. The malleability of the materials reduces issues associated with positional variance. More particularly, in contrast to a rigid insert that typically results in gaps between the insert and receiving structure at portions around the perimeter of the insert, the protrusion 32 advantageously deforms to maintain alignment of the first component 12 and the second component 14, while also reducing or eliminating gaps associated with manufacturing challenges.
While contemplated that sufficient friction forces may be imposed at the interfaces of the protrusion 32 and the receiving feature 60 to align and retain the first component 12 to the second component 14, additional retaining features may be included. In such an embodiment, the first component 12 includes one or more retaining features (not illustrated), such as pins, that extend away from the second surface 18 of the first component 12 and are configured to be inserted within one or more corresponding apertures 80 of the second component 14. The retaining features are undersized relative to the one or more corresponding apertures 80 to account for positional variation associated with manufacturing processes. In operation, once the retaining features are inserted into the one or more corresponding apertures 80 and the protrusion 32 is engaged with the receiving feature 60, a heat staking process is employed to mechanically fasten the retaining features and the one or more corresponding apertures 80, and thereby fastening the first component 12 to the second component 14. Upon heat staking the retaining features, the mating process mechanically manipulates an interface between the first component 12 and the second component 14 to cause the components to tend toward misalignment, but the elastic alignment assembly 30 counteracts the tendency to misalign by elastically deforming to maintain the alignment positioning of the first component 12 relative to the second component 14. In addition to or as an alternative to heat staking, the first component 12 and the second component 14 may include various other retaining features, such as an adhesive substance or tape, for example.
Regardless of whether the first component 12 and the second component 14 are retained by only the elastic alignment assembly 30 or additional retaining features, the elastic deformation of the protrusion 32 elastically averages any positional errors of the first component 12 and the second component 14. The averaging is performed in aggregate in relation to an amount of deformation of the first sidewall 38 and the second sidewall 40. In other words, gaps that would otherwise be present due to positional errors associated with portions or segments of the first component 12 and the second component 14, particularly locating and retaining features, are eliminated by offsetting the gaps with an over-constrained condition along other portions or segments of the protrusion 32 and the receiving feature 60. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, the disclosure of which is incorporated by reference herein in its entirety.
A method of reducing positional variation of a matable assembly 100 is also provided, as illustrated in
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
Number | Name | Date | Kind |
---|---|---|---|
1219398 | Huntsman | Mar 1917 | A |
1261036 | Kerns | Apr 1918 | A |
1301302 | Nolan | Apr 1919 | A |
1556233 | Maise | Oct 1925 | A |
1819126 | Scheibe | Aug 1931 | A |
1929848 | Neely | Oct 1933 | A |
1968168 | Place | Jul 1934 | A |
1982076 | Spahn | Nov 1934 | A |
2006525 | Thal | Jul 1935 | A |
2267558 | Birger et al. | Dec 1941 | A |
2275103 | Gooch et al. | Mar 1942 | A |
2275900 | Hall | Mar 1942 | A |
2385180 | Allen | Sep 1945 | A |
2482488 | Franc | Sep 1949 | A |
2560530 | Burdick | Jul 1951 | A |
2612139 | Collins | Sep 1952 | A |
2688894 | Modrey | Sep 1954 | A |
2693014 | Monahan | Nov 1954 | A |
2707607 | O'Connor | May 1955 | A |
2778399 | Mroz | Jan 1957 | A |
2780128 | Rapata | Feb 1957 | A |
2862040 | Curran | Nov 1958 | A |
2902902 | Slone | Sep 1959 | A |
2946612 | Ahlgren | Jul 1960 | A |
2958230 | Haroldson | Nov 1960 | A |
3005282 | Christiansen | Oct 1961 | A |
3014563 | Bratton | Dec 1961 | A |
3087352 | Daniel | Apr 1963 | A |
3089269 | McKiernan | May 1963 | A |
3130512 | Van Buren, Jr. | Apr 1964 | A |
3152376 | Boser | Oct 1964 | A |
3168961 | Yates | Feb 1965 | A |
3169004 | Rapata | Feb 1965 | A |
3169439 | Rapata | Feb 1965 | A |
3188731 | Sweeney | Jun 1965 | A |
3194292 | Borowsky | Jul 1965 | A |
3213189 | Mitchell et al. | Oct 1965 | A |
3230592 | Hosea | Jan 1966 | A |
3233358 | Dehm | Feb 1966 | A |
3233503 | Birger | Feb 1966 | A |
3244057 | Mathison | Apr 1966 | A |
3248995 | Meyer | May 1966 | A |
3291495 | Liebig | Dec 1966 | A |
3310929 | Garvey | Mar 1967 | A |
3413752 | Perry | Dec 1968 | A |
3473283 | Meyer | Oct 1969 | A |
3531850 | Durand | Oct 1970 | A |
3551963 | Long | Jan 1971 | A |
3643968 | Horvath | Feb 1972 | A |
3680272 | Meyer | Aug 1972 | A |
3800369 | Nikolits | Apr 1974 | A |
3841044 | Brown | Oct 1974 | A |
3842565 | Brown et al. | Oct 1974 | A |
3845961 | Byrd, III | Nov 1974 | A |
3847492 | Kennicutt et al. | Nov 1974 | A |
3860209 | Strecker | Jan 1975 | A |
3895408 | Leingang | Jul 1975 | A |
3897967 | Barenyl | Aug 1975 | A |
3905570 | Nieuwveld | Sep 1975 | A |
3972550 | Boughton | Aug 1976 | A |
3988808 | Poe et al. | Nov 1976 | A |
4035874 | Liljendahl | Jul 1977 | A |
4039215 | Minhinnick | Aug 1977 | A |
4042307 | Jarvis | Aug 1977 | A |
4043585 | Yamanaka | Aug 1977 | A |
4158511 | Herbenar | Jun 1979 | A |
4169297 | Weihrauch | Oct 1979 | A |
4193588 | Doneaux | Mar 1980 | A |
4213675 | Pilhall | Jul 1980 | A |
4237573 | Weihrauch | Dec 1980 | A |
4300851 | Thelander | Nov 1981 | A |
4313609 | Clements | Feb 1982 | A |
4318208 | Borja | Mar 1982 | A |
4325574 | Umemoto et al. | Apr 1982 | A |
4363839 | Watanabe et al. | Dec 1982 | A |
4364150 | Remington | Dec 1982 | A |
4384803 | Cachia | May 1983 | A |
4394853 | Lopez-Crevillen et al. | Jul 1983 | A |
4406033 | Chisholm et al. | Sep 1983 | A |
4477142 | Cooper | Oct 1984 | A |
4481160 | Bree | Nov 1984 | A |
4527760 | Salacuse | Jul 1985 | A |
4575060 | Kitagawa | Mar 1986 | A |
4599768 | Doyle | Jul 1986 | A |
4605575 | Auld et al. | Aug 1986 | A |
4616951 | Maatela | Oct 1986 | A |
4648649 | Beal | Mar 1987 | A |
4654760 | Matheson et al. | Mar 1987 | A |
4745656 | Revlett | May 1988 | A |
4767647 | Bree | Aug 1988 | A |
4805272 | Yamaguchi | Feb 1989 | A |
4807335 | Candea | Feb 1989 | A |
4817999 | Drew | Apr 1989 | A |
4819983 | Alexander et al. | Apr 1989 | A |
4865502 | Maresch | Sep 1989 | A |
4881764 | Takahashi et al. | Nov 1989 | A |
4973212 | Jacobs | Nov 1990 | A |
4977648 | Eckerud | Dec 1990 | A |
5005265 | Muller | Apr 1991 | A |
5039267 | Wollar | Aug 1991 | A |
5139285 | Lasinski | Aug 1992 | A |
5154479 | Sautter, Jr. | Oct 1992 | A |
5165749 | Sheppard | Nov 1992 | A |
5170985 | Killworth et al. | Dec 1992 | A |
5180219 | Geddie | Jan 1993 | A |
5208507 | Jung | May 1993 | A |
5212853 | Kaneko | May 1993 | A |
5234122 | Cherng | Aug 1993 | A |
5297322 | Kraus | Mar 1994 | A |
5339491 | Sims | Aug 1994 | A |
5342139 | Hoffman | Aug 1994 | A |
5368427 | Pfaffinger | Nov 1994 | A |
5368797 | Quentin et al. | Nov 1994 | A |
5397206 | Sihon | Mar 1995 | A |
5407310 | Kassouni | Apr 1995 | A |
5446965 | Makridis | Sep 1995 | A |
5507610 | Benedetti et al. | Apr 1996 | A |
5513603 | Ang et al. | May 1996 | A |
5524786 | Skudlarek | Jun 1996 | A |
5538079 | Pawlick | Jul 1996 | A |
5556808 | Williams et al. | Sep 1996 | A |
5566840 | Waldner | Oct 1996 | A |
5575601 | Skufca | Nov 1996 | A |
5577301 | Demaagd | Nov 1996 | A |
5577779 | Dangel | Nov 1996 | A |
5580204 | Hultman | Dec 1996 | A |
5586372 | Eguchi et al. | Dec 1996 | A |
5593265 | Kizer | Jan 1997 | A |
5601453 | Horchler | Feb 1997 | A |
5629823 | Mizuta | May 1997 | A |
5634757 | Schanz | Jun 1997 | A |
5657516 | Berg et al. | Aug 1997 | A |
5667271 | Booth | Sep 1997 | A |
5670013 | Huang et al. | Sep 1997 | A |
5698276 | Mirabitur | Dec 1997 | A |
5736221 | Hardigg et al. | Apr 1998 | A |
5765942 | Shirai et al. | Jun 1998 | A |
5775860 | Meyer | Jul 1998 | A |
5795118 | Osada et al. | Aug 1998 | A |
5797170 | Akeno | Aug 1998 | A |
5797714 | Oddenino | Aug 1998 | A |
5803646 | Weihrauch | Sep 1998 | A |
5806915 | Takabatake | Sep 1998 | A |
5810535 | Fleckenstein et al. | Sep 1998 | A |
5820292 | Fremstad | Oct 1998 | A |
5846631 | Nowosiadly | Dec 1998 | A |
5934729 | Baack | Aug 1999 | A |
5941673 | Hayakawa et al. | Aug 1999 | A |
6073315 | Rasmussen | Jun 2000 | A |
6079083 | Akashi | Jun 2000 | A |
6095594 | Riddle et al. | Aug 2000 | A |
6103987 | Nordquist | Aug 2000 | A |
6109882 | Popov | Aug 2000 | A |
6164603 | Kawai | Dec 2000 | A |
6193430 | Culpepper et al. | Feb 2001 | B1 |
6199248 | Akashi | Mar 2001 | B1 |
6202962 | Snyder | Mar 2001 | B1 |
6209175 | Gershenson | Apr 2001 | B1 |
6209178 | Wiese et al. | Apr 2001 | B1 |
6254304 | Takizawa et al. | Jul 2001 | B1 |
6264869 | Notarpietro et al. | Jul 2001 | B1 |
6299478 | Jones et al. | Oct 2001 | B1 |
6321495 | Oami | Nov 2001 | B1 |
6336767 | Nordquist et al. | Jan 2002 | B1 |
6345420 | Nabeshima | Feb 2002 | B1 |
6349904 | Polad | Feb 2002 | B1 |
6351380 | Curlee | Feb 2002 | B1 |
6354815 | Svihla et al. | Mar 2002 | B1 |
6378931 | Kolluri | Apr 2002 | B1 |
6398449 | Loh | Jun 2002 | B1 |
6484370 | Kanie et al. | Nov 2002 | B2 |
6485241 | Oxford | Nov 2002 | B1 |
6523229 | Severson | Feb 2003 | B2 |
6523817 | Landry, Jr. | Feb 2003 | B1 |
6533391 | Pan | Mar 2003 | B1 |
6543979 | Iwatsuki | Apr 2003 | B2 |
6557260 | Morris | May 2003 | B1 |
6568701 | Burdack et al. | May 2003 | B1 |
6579397 | Spain et al. | Jun 2003 | B1 |
6591801 | Fonville | Jul 2003 | B1 |
6609717 | Hinson | Aug 2003 | B2 |
6637095 | Stumpf et al. | Oct 2003 | B2 |
6658698 | Chen | Dec 2003 | B2 |
6662411 | Rubenstein | Dec 2003 | B2 |
6664470 | Nagamoto | Dec 2003 | B2 |
6677065 | Blauer | Jan 2004 | B2 |
6692016 | Yokota | Feb 2004 | B2 |
6712329 | Ishigami et al. | Mar 2004 | B2 |
6746172 | Culpepper | Jun 2004 | B2 |
6757942 | Matsui | Jul 2004 | B2 |
6799758 | Fries | Oct 2004 | B2 |
6821091 | Lee | Nov 2004 | B2 |
6840969 | Kobayashi et al. | Jan 2005 | B2 |
6857676 | Kawaguchi et al. | Feb 2005 | B2 |
6857809 | Granata | Feb 2005 | B2 |
6908117 | Pickett, Jr. et al. | Jun 2005 | B1 |
6932416 | Clauson | Aug 2005 | B2 |
6948753 | Yoshida | Sep 2005 | B2 |
6951349 | Yokota | Oct 2005 | B2 |
6959954 | Brandt et al. | Nov 2005 | B2 |
6966601 | Matsumoto et al. | Nov 2005 | B2 |
6971831 | Fattori et al. | Dec 2005 | B2 |
6997487 | Kitzis | Feb 2006 | B2 |
7000941 | Yokota | Feb 2006 | B2 |
7008003 | Hirose et al. | Mar 2006 | B1 |
7014094 | Alcoe | Mar 2006 | B2 |
7017239 | Kurily et al. | Mar 2006 | B2 |
7036779 | Kawaguchi et al. | May 2006 | B2 |
7055785 | Diggle, III | Jun 2006 | B1 |
7055849 | Yokota | Jun 2006 | B2 |
7059628 | Yokota | Jun 2006 | B2 |
7073260 | Jensen | Jul 2006 | B2 |
7089998 | Crook | Aug 2006 | B2 |
7097198 | Yokota | Aug 2006 | B2 |
7121611 | Hirotani et al. | Oct 2006 | B2 |
7144183 | Lian et al. | Dec 2006 | B2 |
7172210 | Yokota | Feb 2007 | B2 |
7178855 | Catron et al. | Feb 2007 | B2 |
7198315 | Cass et al. | Apr 2007 | B2 |
7234852 | Nishizawa et al. | Jun 2007 | B2 |
7306418 | Kornblum | Dec 2007 | B2 |
7322500 | Maierholzner | Jan 2008 | B2 |
7344056 | Shelmon et al. | Mar 2008 | B2 |
7360964 | Tsuya | Apr 2008 | B2 |
7369408 | Chang | May 2008 | B2 |
7435031 | Granata | Oct 2008 | B2 |
7454105 | Yi | Nov 2008 | B2 |
7487884 | Kim | Feb 2009 | B2 |
7493716 | Brown | Feb 2009 | B2 |
7547061 | Horimatsu | Jun 2009 | B2 |
7557051 | Ryu et al. | Jul 2009 | B2 |
7568316 | Choby et al. | Aug 2009 | B2 |
7591573 | Maliar et al. | Sep 2009 | B2 |
D602349 | Andersson | Oct 2009 | S |
7614836 | Mohiuddin | Nov 2009 | B2 |
7672126 | Yeh | Mar 2010 | B2 |
7677650 | Huttenlocher | Mar 2010 | B2 |
7727667 | Sakurai | Jun 2010 | B2 |
7764853 | Yi | Jul 2010 | B2 |
7793998 | Matsui et al. | Sep 2010 | B2 |
7802831 | Isayama et al. | Sep 2010 | B2 |
7828372 | Ellison | Nov 2010 | B2 |
7862272 | Nakajima | Jan 2011 | B2 |
7869003 | Van Doren et al. | Jan 2011 | B2 |
7883137 | Bar | Feb 2011 | B2 |
7922415 | Rudduck et al. | Apr 2011 | B2 |
7946684 | Drury et al. | May 2011 | B2 |
8029222 | Nitsche | Oct 2011 | B2 |
8061861 | Paxton et al. | Nov 2011 | B2 |
8101264 | Pace et al. | Jan 2012 | B2 |
8136819 | Yoshitsune et al. | Mar 2012 | B2 |
8162375 | Gurtatowski et al. | Apr 2012 | B2 |
8203496 | Miller et al. | Jun 2012 | B2 |
8203843 | Chen | Jun 2012 | B2 |
8228640 | Woodhead et al. | Jul 2012 | B2 |
8249679 | Cui | Aug 2012 | B2 |
8261581 | Cerruti et al. | Sep 2012 | B2 |
8276961 | Kwolek | Oct 2012 | B2 |
8291553 | Moberg | Oct 2012 | B2 |
8297137 | Dole | Oct 2012 | B2 |
8297661 | Proulx et al. | Oct 2012 | B2 |
8312887 | Dunn et al. | Nov 2012 | B2 |
8371788 | Lange | Feb 2013 | B2 |
8414048 | Kwolek | Apr 2013 | B1 |
8444199 | Takeuchi et al. | May 2013 | B2 |
8572818 | Hofmann | Nov 2013 | B2 |
8619504 | Wyssbrod | Dec 2013 | B2 |
8677573 | Lee | Mar 2014 | B2 |
8695201 | Morris | Apr 2014 | B2 |
8720016 | Beaulieu | May 2014 | B2 |
8726473 | Dole | May 2014 | B2 |
8746801 | Nakata | Jun 2014 | B2 |
8826499 | Tempesta | Sep 2014 | B2 |
8833771 | Lesnau | Sep 2014 | B2 |
8833832 | Whipps | Sep 2014 | B2 |
8834058 | Woicke | Sep 2014 | B2 |
8905812 | Pai-Chen | Dec 2014 | B2 |
8910350 | Poulakis | Dec 2014 | B2 |
9003891 | Frank | Apr 2015 | B2 |
9039318 | Mantei et al. | May 2015 | B2 |
9050690 | Hammer et al. | Jun 2015 | B2 |
9061715 | Morris | Jun 2015 | B2 |
9062991 | Kanagaraj | Jun 2015 | B2 |
9067625 | Morris | Jun 2015 | B2 |
20010030414 | Yokota | Oct 2001 | A1 |
20010045757 | Kanie et al. | Nov 2001 | A1 |
20020045086 | Tsuji et al. | Apr 2002 | A1 |
20020060275 | Polad | May 2002 | A1 |
20020092598 | Jones et al. | Jul 2002 | A1 |
20020136617 | Imahigashi | Sep 2002 | A1 |
20030007831 | Lian et al. | Jan 2003 | A1 |
20030059255 | Kirchen | Mar 2003 | A1 |
20030080131 | Fukuo | May 2003 | A1 |
20030082986 | Wiens et al. | May 2003 | A1 |
20030087047 | Blauer | May 2003 | A1 |
20030108401 | Agha et al. | Jun 2003 | A1 |
20030180122 | Dobson | Sep 2003 | A1 |
20040028503 | Charles | Feb 2004 | A1 |
20040037637 | Lian et al. | Feb 2004 | A1 |
20040131896 | Blauer | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040140651 | Yokota | Jul 2004 | A1 |
20040208728 | Fattori et al. | Oct 2004 | A1 |
20040262873 | Wolf et al. | Dec 2004 | A1 |
20050016116 | Scherff | Jan 2005 | A1 |
20050031946 | Kruger et al. | Feb 2005 | A1 |
20050054229 | Tsuya | Mar 2005 | A1 |
20050082449 | Kawaguchi et al. | Apr 2005 | A1 |
20050109489 | Kobayashi | May 2005 | A1 |
20050156409 | Yokota | Jul 2005 | A1 |
20050156410 | Yokota | Jul 2005 | A1 |
20050156416 | Yokota | Jul 2005 | A1 |
20050244250 | Okada et al. | Nov 2005 | A1 |
20060092653 | Tachiiwa et al. | May 2006 | A1 |
20060102214 | Clemons | May 2006 | A1 |
20060110109 | Yu | May 2006 | A1 |
20060113755 | Yokota | Jun 2006 | A1 |
20060125286 | Horimatsu et al. | Jun 2006 | A1 |
20060141318 | MacKinnon et al. | Jun 2006 | A1 |
20060163902 | Engel | Jul 2006 | A1 |
20060170242 | Forrester et al. | Aug 2006 | A1 |
20060197356 | Catron et al. | Sep 2006 | A1 |
20060202449 | Yokota | Sep 2006 | A1 |
20060237995 | Huttenlocher | Oct 2006 | A1 |
20060249520 | DeMonte | Nov 2006 | A1 |
20060264076 | Chen | Nov 2006 | A1 |
20070034636 | Fukuo | Feb 2007 | A1 |
20070040411 | Dauvergne | Feb 2007 | A1 |
20070113483 | Hernandez | May 2007 | A1 |
20070113485 | Hernandez | May 2007 | A1 |
20070126211 | Moerke et al. | Jun 2007 | A1 |
20070137018 | Aigner et al. | Jun 2007 | A1 |
20070144659 | De La Fuente | Jun 2007 | A1 |
20070205627 | Ishiguro | Sep 2007 | A1 |
20070227942 | Hirano | Oct 2007 | A1 |
20070251055 | Gerner | Nov 2007 | A1 |
20070274777 | Winkler | Nov 2007 | A1 |
20070292205 | Duval | Dec 2007 | A1 |
20080014508 | Van Doren et al. | Jan 2008 | A1 |
20080018128 | Yamagiwa et al. | Jan 2008 | A1 |
20080073888 | Enriquez | Mar 2008 | A1 |
20080094447 | Drury | Apr 2008 | A1 |
20080128346 | Bowers | Jun 2008 | A1 |
20080217796 | Van Bruggen et al. | Sep 2008 | A1 |
20080260488 | Scroggie et al. | Oct 2008 | A1 |
20090028506 | Yi et al. | Jan 2009 | A1 |
20090072591 | Baumgartner | Mar 2009 | A1 |
20090091156 | Neubrand | Apr 2009 | A1 |
20090093111 | Buchwalter et al. | Apr 2009 | A1 |
20090126168 | Kobe et al. | May 2009 | A1 |
20090134652 | Araki | May 2009 | A1 |
20090141449 | Yeh | Jun 2009 | A1 |
20090174207 | Lota | Jul 2009 | A1 |
20090243172 | Ting et al. | Oct 2009 | A1 |
20090265896 | Beak | Oct 2009 | A1 |
20090309388 | Ellison | Dec 2009 | A1 |
20100001539 | Kikuchi et al. | Jan 2010 | A1 |
20100021267 | Nitsche | Jan 2010 | A1 |
20100061045 | Chen | Mar 2010 | A1 |
20100102538 | Paxton et al. | Apr 2010 | A1 |
20100134128 | Hobbs | Jun 2010 | A1 |
20100147355 | Shimizu et al. | Jun 2010 | A1 |
20100232171 | Cannon | Sep 2010 | A1 |
20100247034 | Yi et al. | Sep 2010 | A1 |
20100263417 | Schoenow | Oct 2010 | A1 |
20100270745 | Hurlbert et al. | Oct 2010 | A1 |
20100307848 | Hashimoto | Dec 2010 | A1 |
20110012378 | Ueno et al. | Jan 2011 | A1 |
20110036542 | Woicke | Feb 2011 | A1 |
20110076588 | Yamaura | Mar 2011 | A1 |
20110083392 | Timko | Apr 2011 | A1 |
20110103884 | Shiomoto et al. | May 2011 | A1 |
20110119875 | Iwasaki | May 2011 | A1 |
20110131918 | Glynn | Jun 2011 | A1 |
20110154645 | Morgan | Jun 2011 | A1 |
20110175376 | Whitens et al. | Jul 2011 | A1 |
20110183152 | Lanham | Jul 2011 | A1 |
20110191990 | Beaulieu | Aug 2011 | A1 |
20110207024 | Bogumil et al. | Aug 2011 | A1 |
20110239418 | Huang | Oct 2011 | A1 |
20110239865 | Huang | Oct 2011 | A1 |
20110296764 | Sawatani et al. | Dec 2011 | A1 |
20110311332 | Ishman | Dec 2011 | A1 |
20120000291 | Christoph | Jan 2012 | A1 |
20120020726 | Jan | Jan 2012 | A1 |
20120073094 | Bishop | Mar 2012 | A1 |
20120112489 | Okimoto | May 2012 | A1 |
20120115010 | Smith et al. | May 2012 | A1 |
20120240363 | Lee | Sep 2012 | A1 |
20120251226 | Liu et al. | Oct 2012 | A1 |
20120261951 | Mildner et al. | Oct 2012 | A1 |
20120301067 | Morgan | Nov 2012 | A1 |
20120311829 | Dickinson | Dec 2012 | A1 |
20120321379 | Wang et al. | Dec 2012 | A1 |
20130019454 | Colombo et al. | Jan 2013 | A1 |
20130019455 | Morris | Jan 2013 | A1 |
20130027852 | Wang | Jan 2013 | A1 |
20130055822 | Frank | Mar 2013 | A1 |
20130071181 | Herzinger et al. | Mar 2013 | A1 |
20130157015 | Morris | Jun 2013 | A1 |
20130212858 | Herzinger et al. | Aug 2013 | A1 |
20130269873 | Herzinger et al. | Oct 2013 | A1 |
20130287992 | Morris | Oct 2013 | A1 |
20140033493 | Morris et al. | Feb 2014 | A1 |
20140041176 | Morris | Feb 2014 | A1 |
20140041185 | Morris et al. | Feb 2014 | A1 |
20140041199 | Morris | Feb 2014 | A1 |
20140042704 | Polewarczyk | Feb 2014 | A1 |
20140047691 | Colombo et al. | Feb 2014 | A1 |
20140047697 | Morris | Feb 2014 | A1 |
20140080036 | Smith et al. | Mar 2014 | A1 |
20140132023 | Watanabe | May 2014 | A1 |
20140157578 | Morris et al. | Jun 2014 | A1 |
20140159412 | Morris et al. | Jun 2014 | A1 |
20140175774 | Kansteiner | Jun 2014 | A1 |
20140202628 | Sreetharan et al. | Jul 2014 | A1 |
20140208572 | Colombo et al. | Jul 2014 | A1 |
20140264206 | Morris | Sep 2014 | A1 |
20140292013 | Colombo et al. | Oct 2014 | A1 |
20140298638 | Colombo et al. | Oct 2014 | A1 |
20140298640 | Morris et al. | Oct 2014 | A1 |
20140298962 | Morris et al. | Oct 2014 | A1 |
20140300130 | Morris et al. | Oct 2014 | A1 |
20140301103 | Colombo et al. | Oct 2014 | A1 |
20140301777 | Morris et al. | Oct 2014 | A1 |
20140301778 | Morris et al. | Oct 2014 | A1 |
20150016918 | Colombo | Jan 2015 | A1 |
20150069779 | Morris et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
342302 | Sep 1976 | BE |
1036250 | Oct 1989 | CN |
1129162 | Aug 1996 | CN |
2285844 | Jul 1998 | CN |
1205285 | Jan 1999 | CN |
1328521 | Dec 2001 | CN |
1426872 | Jul 2003 | CN |
2661972 | Dec 2004 | CN |
2679409 | Feb 2005 | CN |
1670986 | Sep 2005 | CN |
100573975 | Sep 2005 | CN |
1693721 | Nov 2005 | CN |
1771399 | May 2006 | CN |
1774580 | May 2006 | CN |
1933747 | Mar 2007 | CN |
2888807 | Apr 2007 | CN |
1961157 | May 2007 | CN |
2915389 | Jun 2007 | CN |
101250964 | Apr 2008 | CN |
201259846 | Jun 2009 | CN |
201268336 | Jul 2009 | CN |
201310827 | Sep 2009 | CN |
201540513 | Aug 2010 | CN |
101821534 | Sep 2010 | CN |
101930253 | Dec 2010 | CN |
201703439 | Jan 2011 | CN |
201737062 | Feb 2011 | CN |
201792722 | Apr 2011 | CN |
201818606 | May 2011 | CN |
201890285 | Jul 2011 | CN |
102144102 | Aug 2011 | CN |
102235402 | Nov 2011 | CN |
202079532 | Dec 2011 | CN |
102313952 | Jan 2012 | CN |
202132326U | Feb 2012 | CN |
102756633 | Oct 2012 | CN |
102803753 | Nov 2012 | CN |
102869891 | Jan 2013 | CN |
202686206 | Jan 2013 | CN |
102939022 | Feb 2013 | CN |
202987018 | Jun 2013 | CN |
103201525 | Jul 2013 | CN |
1220673 | Jul 1966 | DE |
2736012 | Feb 1978 | DE |
3704190 | Dec 1987 | DE |
3711696 | Oct 1988 | DE |
3805693 | Feb 1989 | DE |
3815927 | Nov 1989 | DE |
9109276 | Jul 1991 | DE |
4002443 | Aug 1991 | DE |
4111245 | Oct 1991 | DE |
9201258 | Mar 1992 | DE |
29714892 | Oct 1997 | DE |
29800379 | May 1998 | DE |
69600357 | Dec 1998 | DE |
10234253 | Apr 2004 | DE |
102008005618 | Jul 2009 | DE |
102008047464 | Apr 2010 | DE |
102010028323 | Nov 2011 | DE |
102011050003 | Oct 2012 | DE |
102012212101 | Jul 2013 | DE |
0118796 | Sep 1984 | EP |
1132263 | Sep 2001 | EP |
1243471 | Sep 2002 | EP |
1273766 | Jan 2003 | EP |
1293384 | Mar 2003 | EP |
1384536 | Jan 2004 | EP |
1388449 | Feb 2004 | EP |
1452745 | Sep 2004 | EP |
2166235 | Mar 2010 | EP |
2450259 | May 2012 | EP |
2458454 | May 2012 | EP |
1369198 | Aug 1964 | FR |
2009941 | Feb 1970 | FR |
2750177 | Dec 1997 | FR |
2942749 | Sep 2010 | FR |
2958696 | Oct 2011 | FR |
2281950 | Mar 1995 | GB |
2000010514 | Jan 2000 | JP |
2001141154 | May 2001 | JP |
2001171554 | Jun 2001 | JP |
2005268004 | Sep 2005 | JP |
2006205918 | Aug 2006 | JP |
2008307938 | Dec 2008 | JP |
2009084844 | Apr 2009 | JP |
2009187789 | Aug 2009 | JP |
2011085174 | Apr 2011 | JP |
2012060791 | Mar 2012 | JP |
2012112533 | Jun 2012 | JP |
20030000251 | Jan 2003 | KR |
9602963 | Feb 1996 | WO |
0055517 | Mar 2000 | WO |
0132454 | Nov 2001 | WO |
2004010011 01 | Jan 2004 | WO |
2008140659 | Nov 2008 | WO |
2010105354 | Sep 2010 | WO |
2011025606 | Mar 2011 | WO |
2013191622 | Dec 2013 | WO |
Entry |
---|
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/elastic—averaging.html>. |
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo. |
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E Morris, Edward D. Groninger, and Raymond J. Chess. |
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap Member Aligning and Fastening System”, inventors: Steven E Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/012,205, filed Aug. 28, 2013, entitled “Elastically Deformable Alignment Fastener and System,” inventors: Steven E. Morris, Marc J. Tahnoose, Michael E. McGuire and Jennifer P. Lawall. |
U.S. Appl. No. 14/021,282, filed Sep. 9, 2013, entitled “Elastic Tube Alignment and Fastening System for Providing Precise Alignment and Fastening of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/031,647, filed Sep. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris, Joel Colombo, Jennifer P. Lawall, Jeffrey L. Konchan, and Steve J. Briggs. |
U.S. Appl. No. 14/038,241, filed Sep. 26, 2013, entitled “Serviceable Aligning and Self-Retaining Elastic Arrangement for Mated Components and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 14/039,614, filed Sep. 27, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/044,199, filed Oct. 2, 2013, entitled “Lobular Elastic Tube Alignment and Retention System for Providing Precise Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/044,207, filed Oct. 2, 2013, entitled “Elastic Aperture Alignment System for Providing Precise Four-Way Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/045,463, filed Oct. 3, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/081,361, filed Nov. 15, 2013, entitled “Elastically Deformable Clip and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Jeffrey M. Gace. |
U.S. Appl. No. 14/104,321, filed Dec. 12, 2013, entitled “Alignment and Retention System for a Flexible Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,327, filed Dec. 12, 2013, entitled “Self-Retaining Alignment System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris, Jennifer P. Lawall and Toure D. Lee. |
U.S. Appl. No. 14/104,333, filed Dec. 12, 2013, entitled “Alignment System for Providing Precise Alignment and Retention of Components of a Sealable Compartment,” inventors: Steven E. Morris, Christopher J. Georgi, Jennifer P. Lawall and Gordan N. Noll. |
U.S. Appl. No. 14/104,541, filed Dec. 12, 2013, entitled “Alignment and Retention System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,549, filed Dec. 12, 2013, entitled “Alignment System for Providing Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,921, filed Dec. 17, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,931, filed Dec. 17, 2013, entitled “Elastically Averaged Strap Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/109,296, filed Dec. 17, 2013, entitled “Fastener for Operatively Coupling Matable Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment Member,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,801, filed Dec. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,888, filed Dec. 19, 2013, entitled “Elastic Retaining Assembly and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/136,502, filed Dec. 20, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Timothy A. Kiester, Steven E. Morris, Kenton L. West, Scott J. Fast, and Evan Phillips. |
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/153,741, filed Jan. 13, 2014, entitled “Elastically Averaged Assembly for Closure Applications,” inventors: Steven E. Morris, Jeffrey A. Abell, Jennifer P. Lawall, and Jeffrey L. Konchan. |
U.S. Appl. No. 14/180,882, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/181,142, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/185,422, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall and Ashish M. Gollapalli. |
U.S. Appl. No. 14/185,472, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Kee Hyuk Im. |
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall, and Ashish M. Gollapalli. |
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander. |
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010. |
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and Edip Sevincer, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechanical Engineers (ASME), Sep. 2006. |
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002. |
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007. |
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechanical Engineering, Dec. 2007. |
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of Technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004. |
U.S. Appl. No. 13/229,926, filed Sep. 12, 2011, entitled “Using Elastic Averaging for Alignment of Battery Stack, Fuel Cell Stack, or Other Vehicle Assembly”, inventors: Mark A. Smith, Ronald Daul, Xiang Zhao, David Okonski, Elmer Santos, Lane Lindstrom, and Jeffrey A. Abell. |
U.S. Appl. No. 13/330,718, filed Dec. 20, 2011, entitled “Precisely Locating Components in an Infrared Welded Assembly”, inventor: Steven E. Morris. |
U.S. Appl. No. 13/459,118, filed Apr. 28, 2012, entitled “Stiffened Multi-Layer Compartment Door Assembly Utilizing Elastic Averaging,” inventor: Steven E. Morris. |
U.S. Appl. No. 13/567,580, filed Aug. 6, 2012, entitled “Semi-Circular Alignment Features of an Elastic Averaging Alignment System”, inventors: Steven E. Morris and Thomas F. Bowles. |
U.S. Appl. No. 13/570,959, filed Aug. 9, 2012, entitled “Elastic Cantilever Beam Alignment System for Precisely Aligning Components”, inventor: Steven E. Morris. |
U.S. Appl. No. 13/571,030, filed Aug. 9, 2012, entitled “Elastic Tube Alignment System for Precisely Locating an Emblem Lens to an Outer Bezel”, inventors: Joel Colombo, Steven E. Morris, and Michael D. Richardson. |
U.S. Appl. No. 13/752,449, filed Jan. 29, 2013, entitled “Elastic Insert Alignment Assembly and Method of Reducing Positional Variation”, inventors: Steven E. Morris and Michael D. Richardson. |
U.S. Appl. No. 13/755,759, filed Jan. 31, 2013, entitled “Elastic Alignment Assembly for Aligning Mated Components and Method of Reducing Positional Variation”, inventors: Joel Colombo, Michael D. Richardson, and Steven E. Morris. |
U.S. Appl. No. 13/851,222, filed Mar. 27, 2013, entitled “Elastically Averaged Alignment System”, inventors: Joel Colombo and Steven E. Morris. |
U.S. Appl. No. 13/855,928, filed Apr. 3, 2013, entitled “Elastic Averaging Alignment System, Method of Making the Same and Cutting Punch Therefor”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Jeffrey L. Konchan. |
U.S. Appl. No. 13/856,888, filed Apr. 4, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Toure D. Lee. |
U.S. Appl. No. 13/856,927, filed Apr. 4, 2013, entitled “Elastic Tubular Attachment Assembly for Mating Components and Method of Mating Components”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/856,956, filed Apr. 4, 2013, entitled “Elastic Clip Retaining Arrangement and Method of Mating Structures with an Elastic Clip Retaining Arrangement”, inventors: Joel Colombo, Steven E. Morris and Jeffrey L. Konchan. |
U.S. Appl. No. 13/856,973, filed Apr. 4, 2013, entitled “Elastically Deformable Flange Locator Arrangement and Method of Reducing Positional Variation”, inventors: Joel Colombo, Steven E. Morris and Michael D. Richardson. |
U.S. Appl. No. 13/858,478, filed Apr. 8, 2013, entitled “Elastic Mating Assembly and Method of Elastically Assembling Matable Components”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/859,109, filed Apr. 9, 2013, entitled “Elastic Retaining Arrangement for Jointed Components and Method of Reducing a Gap Between Jointed Components,” inventors: Steven E. Morris, James M. Kushner, Victoria L. Enyedy, Jennifer P. Lawall, and Piotr J. Ogonek. |
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall. |
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Jennifer P. Lawall, and Randy Johnson. |
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Steve J. Briggs. |
U.S. Appl. No. 13/918,183, filed Jun. 14, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling,” inventors: Steven E. Morris and Jennifer P. Lawall. |
Number | Date | Country | |
---|---|---|---|
20140208561 A1 | Jul 2014 | US |