The present invention relates to a matable component assembly and, more particularly, to an elastic attachment assembly for mating, aligning, and stiffening connection between mated components, as well as a method of reducing positional variation and increasing stiffness.
Currently, components which are to be mated together in a manufacturing process are subject to positional variation based on the mating arrangements between the components. One common arrangement includes components mutually located with respect to each other by 2-way and/or 4-way male alignment features; typically undersized structures which are received into corresponding oversized female alignment features such as apertures in the form of holes and/or slots. Alternatively, adhesives or welding processes may be employed to mate parts. Irrespective of the precise mating method, there is a clearance between at least a portion of the alignment features which is predetermined to match anticipated size and positional variation tolerances of the mating features as a result of manufacturing (or fabrication) variances. As a result, occurrence of significant positional variation between the mated components may contribute to the presence of free movement causing undesirable motion between the mating components, which contributes to increased vibration. Additional undesirable effects may include squeaking and rattling of the mated components, for example.
In one exemplary embodiment, an elastic attachment assembly for mating and aligning components is provided. The elastic attachment assembly includes a first component having a base outer surface. Also included is a plurality of elastically deformable protrusions extending from the base outer surface of the first component. Further included is a second component having a pocket portion configured to receive the first component therein, the pocket portion is defined by a base wall and at least one sidewall extending from the base wall. Yet further included is a plurality of receiving structures defined by the base wall of the pocket portion and configured to receive the plurality of elastically deformable protrusions, wherein the plurality of elastically deformable protrusions is configured to elastically deform upon insertion to the plurality of receiving structures.
In another exemplary embodiment, a method of increasing stiffness of an elastic attachment assembly is provided. The method includes inserting a first component into a pocket portion of a second component. The method also includes engaging a plurality of elastically deformable protrusions extending from a base outer surface of the first component with a plurality of receiving structures defined by a base wall of the pocket portion. The method further includes elastically deforming the plurality of elastically deformable protrusions upon engagement of the plurality of elastically deformable protrusions with the plurality of receiving structures. The method yet further includes performing an elastic averaging of the elastic deformation over the plurality of elastically deformable protrusions to account for positional variation of the plurality of elastically deformable protrusions
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
Although illustrated in a specific geometry, the first component 12 and the second component 14 may be configured in countless geometries. Irrespective of the precise geometry of the first component 12 and the second component 14, the first component 12 is configured to align and fittingly mate with the second component 14, which will be described in detail below. In an alternative embodiment, rather than two components comprising the elastic attachment assembly 10, additional or intermediate layers or components may be included. It is to be appreciated that the elastic attachment assembly 10 is to be employed for increasing the stiffness of the first component 12 and the second component 14 in an assembled condition. The elastic attachment assembly 10 provides a self-aligning relationship between components, such as the first component 12 and the second component 14, while also assisting in securely mating the components to each other. As will be described below, a stiff, fitted engagement between the first component 12 and the second component 14 reduces free or relative movement between the components. Such an assembly condition reduces vibration associated with operations of an application that the components are integrated with and more effectively accounts for load transfer capability between the first component 12 and the second component 14.
The first component 12 includes a compartment 16 defined by a base inner surface 18 and at least one side inner surface 20 extending relatively perpendicularly from a plane that the base inner surface 18 is substantially aligned with. As can be appreciated, the at least one side inner surface 20 may comprise a single wall that fully extends proximate the perimeter of the base inner surface 18, or a plurality of walls that are joined to extend proximate the perimeter of the base inner surface 18 in combination. The first component 12 also includes a base outer surface 22 and at least one side outer surface 24 extending relatively perpendicularly from a plane that the base outer surface 22 is substantially aligned with. Extending from the base outer surface 22 is a plurality of elastically deformable protrusions 26 in a direction relatively orthogonal from the plane that the base outer surface 22 is aligned with. The plurality of elastically deformable protrusions 26 are operatively coupled to the base outer surface 22 and may be integrally formed with the base outer surface 22.
The second component 14 includes a pocket portion 28 configured to receive the first component 12 therein. The pocket portion 28 is defined by a base wall 30 and at least one sidewall 32 extending from the base wall 30. The at least one sidewall 32 typically extends relatively perpendicularly from the base wall 30, but it is to be understood that extending of the at least one sidewall 32 from the base wall 30 at alternative angular orientations is contemplated. Disposed within and defined by the base wall 30 are a plurality of receiving structures 34. The plurality of receiving structures 34 are configured to engage and receive the plurality of elastically deformable protrusions 26 upon mating of the first component 12 and the second component 14.
Referring to
In addition to the embodiment described above, the plurality of elastically deformable protrusions 26 may be formed of elastically deformable clips. As will be apparent from the description below, the elastically deformable nature of the protrusions, in combination with the particular orientations described above, facilitates precise alignment of the first component 12 relative to the second component 14 by accounting for positional and/or tolerance variation of the retaining and/or locating features of the first component 12 and the second component 14 inherently present due to manufacturing processes. The elastic nature of the elastic attachment assembly 10 and the precise alignment between the first component 12 and the second component 14 reduces excessive movement, reduces vibrational characteristics, and stiffens the first component 12 relative to the second compartment 14. The self-aligning benefits associated with the elastic attachment assembly 10 will be described in detail below.
In the illustrated embodiment, the protrusion engagement wall 38 includes a first portion 40 extending relatively perpendicularly from the base outer surface 22 to an intermediate portion 42. A second portion 44 extends from the intermediate portion 42 and is disposed at an angle to the first portion 40, and more specifically at an angle that tapers inwardly toward a central axis 46. As described above, the plurality of receiving structures 34 may be formed in the base wall 30 in a variety of geometrical formations. In the illustrated embodiment, a round aperture is shown to correspond to the protrusion engagement wall 38 of the elastically deformable protrusion 26. The receiving structure 34 includes an engagement surface 48 that includes a chamfer portion 50 disposed proximate the base wall 30. The chamfer portion 50 comprises a beveled surface and is configured to provide a “lead-in,” or guide region, for the protrusion engagement wall 38 of the elastically deformable protrusion 26. Numerous angles of the chamfer portion 50 are contemplated.
The elastically deformable protrusion 26 of the first component 12 is positioned and engaged with the receiving structure 34 of the second component 14 upon translation of the first component 12 toward the second component 14. In this way, the first component 12 is press fit into the second component 14 upon engagement of the plurality of elastically deformable protrusions 26 with the plurality of receiving structures 34. The second portion 44 engages the engagement surface 48, and more specifically the chamfer portion 50. Subsequent translation of the elastically deformable protrusion 26 into the receiving structure 34 results in an elastic deformation of the deformable protrusion 26 by imposition of a compressive force on the protrusion engagement wall 38. It is to be appreciated that elastic deformation of the elastically deformable protrusions 26 is further facilitated by embodiments comprising the hollow portion 36 disposed radially inwardly of the protrusion engagement wall 38. The void of material defined by the hollow portion 36 enhances the flexibility of the plurality of elastically deformable protrusions 26.
The term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.
Numerous examples of materials that may at least partially form the components include various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS), such as an ABS acrylic. The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The material, or materials, may be selected to provide a predetermined elastic response characteristic of the plurality of elastically deformable protrusions 26. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.
The precise position where engagement between the protrusion engagement wall 38 and the plurality of receiving structures 34 occurs will vary depending on positional variance imposed by manufacturing factors. Due to the elastically deformable properties of the elastic material comprising the plurality of elastically deformable protrusions 26, the criticality of the initial location of engagement is reduced. Further insertion of the plurality of elastically deformable protrusions 26 into the plurality of receiving structures 34 ultimately leads to a fully engaged position of the plurality of elastically deformable protrusions 26. As the protrusion is inserted into the receiving structure, engagement of the protrusion engagement wall 38 with the engagement surface 48 results in the protrusion being elastically deformed and cantilevered radially inwardly.
In the fully engaged position, a tight, fitted engagement between the plurality of elastically deformable protrusions 26 and the plurality of receiving structures 34 is achieved by the contact interfaces located between the protrusion engagement wall 38 and the engagement surface 48. Such a condition is ensured by sizing the protrusion perimeters to be larger than the receiving structure perimeters. A protrusion perimeter is defined by the distance between oppositely disposed points along the protrusion engagement wall 38. The receiving structure perimeter is defined by the distance between oppositely disposed points along the engagement surface 48. The interference between the plurality of elastically deformable protrusions 26 and the plurality of receiving structures 34 causes elastic deformation proximate the protrusion engagement wall 38. The malleability of the materials reduces issues associated with positional variance. More particularly, in contrast to a rigid insert that typically results in gaps and free movement between the insert and receiving structure at portions around the perimeter of the insert, the plurality of elastically deformable protrusions 26 advantageously deforms to maintain alignment of the first component 12 and the second component 14, while also reducing or eliminating gaps and free movement associated with manufacturing challenges, thus stiffening the mated assembly.
Referring again to
Referring now to
A first embodiment of the plurality of elastically deformable components 62 and the engagement portion 60 is illustrated in
The hollow tube portion is illustrated in a tubular-shaped configuration, however, it is to be understood that alternate geometries are contemplated. Irrespective of the precise geometry, the plurality of elastically deformable components 62 comprises a perimeter that is greater than a perimeter of the pin receiving portion 74 of the slot structure 72. As described in detail above with respect to the plurality of elastically deformable protrusions 26 and the plurality of receiving structures 34, elastic deformation of the plurality of elastically deformable components 62 results upon insertion into the pin receiving portion 74 based on the relative sizing of the components.
Referring to
As one can appreciate, the embodiments described above may be altered by switching the location of the plurality of elastically deformable components 62 with the engagement portion 60. Specifically, in one embodiment the hollow tube may be operatively coupled to, and extend from, the at least one side outer surface 24, while the engagement portion 60 is operatively coupled to, and extends from the at least one sidewall 32. In such an embodiment, the first segment 64 extends outwardly away from the at least one sidewall 32, with the second segment 68 extending relatively perpendicularly therefrom, such as in an upwardly directed manner. The tube is then configured to slide downwardly into, and engage, the slot structure 72 of the engagement portion 60. Similarly, the ribs described above may be connected to the at least one sidewall 32, rather than the at least one side outer surface 24.
Each embodiment of the plurality of elastically deformable components 62 described above advantageously reduces movement of the first component 12 relative to the second component 14 by imposing contact interferences between the plurality of elastically deformable components 62 and the engagement portion 60. Upon reaching the fully engaged position of the first component 12 with the second component 14, the deformation of the plurality of elastically deformable components 62 is averaged in aggregate relative to each other, as described in detail above, with respect to the plurality of elastically deformable protrusions 26.
A method of reducing positional variation, freedom of movement, and vibration as well as increasing the stiffness of an elastic attachment assembly 100 is also provided, as illustrated in
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
Number | Name | Date | Kind |
---|---|---|---|
1219398 | Huntsman | Mar 1917 | A |
1261036 | Kerns | Apr 1918 | A |
1301302 | Nolan | Apr 1919 | A |
1556233 | Maise | Oct 1925 | A |
1819126 | Scheibe | Aug 1931 | A |
1929848 | Neely | Oct 1933 | A |
1968168 | Place | Jul 1934 | A |
1982076 | Spahn | Nov 1934 | A |
2006525 | Thal | Jul 1935 | A |
2267558 | Birger et al. | Dec 1941 | A |
2275103 | Gooch et al. | Mar 1942 | A |
2275900 | Hall | Mar 1942 | A |
2482488 | Franc | Sep 1949 | A |
2612139 | Collins | Sep 1952 | A |
2688894 | Modrey | Sep 1954 | A |
2707607 | O'Connor | May 1955 | A |
2778399 | Mroz | Jan 1957 | A |
2780128 | Rapata | Feb 1957 | A |
2862040 | Curran | Nov 1958 | A |
2902902 | Slone | Sep 1959 | A |
2946612 | Ahlgren | Jul 1960 | A |
3005282 | Christiansen | Oct 1961 | A |
3087352 | Daniel | Apr 1963 | A |
3089269 | McKiernan | May 1963 | A |
3130512 | Van Buren, Jr. | Apr 1964 | A |
3168961 | Yates | Feb 1965 | A |
3169004 | Rapata | Feb 1965 | A |
3169439 | Rapata | Feb 1965 | A |
3188731 | Sweeney | Jun 1965 | A |
3194292 | Borowsky | Jul 1965 | A |
3213189 | Mitchell et al. | Oct 1965 | A |
3230592 | Hosea | Jan 1966 | A |
3233503 | Birger | Feb 1966 | A |
3244057 | Mathison | Apr 1966 | A |
3248995 | Meyer | May 1966 | A |
3291495 | Liebig | Dec 1966 | A |
3310929 | Garvey | Mar 1967 | A |
3413752 | Perry | Dec 1968 | A |
3473283 | Meyer | Oct 1969 | A |
3531850 | Durand | Oct 1970 | A |
3643968 | Horvath | Feb 1972 | A |
3680272 | Meyer | Aug 1972 | A |
3842565 | Brown et al. | Oct 1974 | A |
3845961 | Byrd, III | Nov 1974 | A |
3847492 | Kennicutt et al. | Nov 1974 | A |
3905570 | Nieuwveld | Sep 1975 | A |
3972550 | Boughton | Aug 1976 | A |
4035874 | Liljendahl | Jul 1977 | A |
4039215 | Minhinnick | Aug 1977 | A |
4042307 | Jarvis | Aug 1977 | A |
4043585 | Yamanaka | Aug 1977 | A |
4169297 | Weihrauch | Oct 1979 | A |
4213675 | Pilhall | Jul 1980 | A |
4237573 | Weihrauch | Dec 1980 | A |
4300851 | Thelander | Nov 1981 | A |
4313609 | Clements | Feb 1982 | A |
4318208 | Borja | Mar 1982 | A |
4325574 | Umemoto et al. | Apr 1982 | A |
4363839 | Watanabe et al. | Dec 1982 | A |
4364150 | Remington | Dec 1982 | A |
4384803 | Cachia | May 1983 | A |
4394853 | Lopez-Crevillen et al. | Jul 1983 | A |
4406033 | Chisholm et al. | Sep 1983 | A |
4477142 | Cooper | Oct 1984 | A |
4481160 | Bree | Nov 1984 | A |
4575060 | Kitagawa | Mar 1986 | A |
4605575 | Auld et al. | Aug 1986 | A |
4616951 | Maatela | Oct 1986 | A |
4648649 | Beal | Mar 1987 | A |
4654760 | Matheson et al. | Mar 1987 | A |
4745656 | Revlett | May 1988 | A |
4767647 | Bree | Aug 1988 | A |
4807335 | Candea | Feb 1989 | A |
4817999 | Drew | Apr 1989 | A |
4819983 | Alexander et al. | Apr 1989 | A |
4881764 | Takahashi et al. | Nov 1989 | A |
4973212 | Jacobs | Nov 1990 | A |
4977648 | Eckerud | Dec 1990 | A |
5139285 | Lasinski | Aug 1992 | A |
5154479 | Sautter, Jr. | Oct 1992 | A |
5170985 | Killworth et al. | Dec 1992 | A |
5180219 | Geddie | Jan 1993 | A |
5208507 | Jung | May 1993 | A |
5212853 | Kaneko | May 1993 | A |
5297322 | Kraus | Mar 1994 | A |
5342139 | Hoffman | Aug 1994 | A |
5368797 | Quentin et al. | Nov 1994 | A |
5446965 | Makridis | Sep 1995 | A |
5507610 | Benedetti et al. | Apr 1996 | A |
5513603 | Ang et al. | May 1996 | A |
5556808 | Williams et al. | Sep 1996 | A |
5575601 | Skufca | Nov 1996 | A |
5577301 | De Maagd | Nov 1996 | A |
5577779 | Dangel | Nov 1996 | A |
5580204 | Hultman | Dec 1996 | A |
5586372 | Eguchi et al. | Dec 1996 | A |
5601453 | Horchler | Feb 1997 | A |
5634757 | Schanz | Jun 1997 | A |
5657516 | Berg et al. | Aug 1997 | A |
5667271 | Booth | Sep 1997 | A |
5670013 | Huang et al. | Sep 1997 | A |
5698276 | Mirabitur | Dec 1997 | A |
5736221 | Hardigg et al. | Apr 1998 | A |
5765942 | Shirai et al. | Jun 1998 | A |
5795118 | Osada et al. | Aug 1998 | A |
5797170 | Akeno | Aug 1998 | A |
5803646 | Weihrauch | Sep 1998 | A |
5806915 | Takabatake | Sep 1998 | A |
5810535 | Fleckenstein et al. | Sep 1998 | A |
5820292 | Fremstad | Oct 1998 | A |
5846631 | Nowosiadly | Dec 1998 | A |
5941673 | Hayakawa et al. | Aug 1999 | A |
6073315 | Rasmussen | Jun 2000 | A |
6095594 | Riddle et al. | Aug 2000 | A |
6164603 | Kawai | Dec 2000 | A |
6193430 | Culpepper et al. | Feb 2001 | B1 |
6202962 | Snyder | Mar 2001 | B1 |
6209175 | Gershenson | Apr 2001 | B1 |
6209178 | Wiese et al. | Apr 2001 | B1 |
6264869 | Notarpietro et al. | Jul 2001 | B1 |
6299478 | Jones et al. | Oct 2001 | B1 |
6321495 | Oami | Nov 2001 | B1 |
6349904 | Polad | Feb 2002 | B1 |
6354815 | Svihla et al. | Mar 2002 | B1 |
6378931 | Kolluri et al. | Apr 2002 | B1 |
6398449 | Loh | Jun 2002 | B1 |
6484370 | Kanie et al. | Nov 2002 | B2 |
6523817 | Landry, Jr. | Feb 2003 | B1 |
6533391 | Pan | Mar 2003 | B1 |
6543979 | Iwatsuki | Apr 2003 | B2 |
6557260 | Morris | May 2003 | B1 |
6568701 | Burdack et al. | May 2003 | B1 |
6579397 | Spain et al. | Jun 2003 | B1 |
6591801 | Fonville | Jul 2003 | B1 |
6609717 | Hinson | Aug 2003 | B2 |
6658698 | Chen | Dec 2003 | B2 |
6662411 | Rubenstein | Dec 2003 | B2 |
6664470 | Nagamoto | Dec 2003 | B2 |
6677065 | Blauer | Jan 2004 | B2 |
6692016 | Yokota | Feb 2004 | B2 |
6712329 | Ishigami et al. | Mar 2004 | B2 |
6746172 | Culpepper | Jun 2004 | B2 |
6799758 | Fries | Oct 2004 | B2 |
6840969 | Kobayashi et al. | Jan 2005 | B2 |
6857676 | Kawaguchi et al. | Feb 2005 | B2 |
6857809 | Granata | Feb 2005 | B2 |
6908117 | Pickett, Jr. et al. | Jun 2005 | B1 |
6932416 | Clauson | Aug 2005 | B2 |
6948753 | Yoshida et al. | Sep 2005 | B2 |
6951349 | Yokota | Oct 2005 | B2 |
6959954 | Brandt et al. | Nov 2005 | B2 |
6966601 | Matsumoto et al. | Nov 2005 | B2 |
6971831 | Fattori et al. | Dec 2005 | B2 |
6997487 | Kitzis | Feb 2006 | B2 |
7000941 | Yokota | Feb 2006 | B2 |
7008003 | Hirose et al. | Mar 2006 | B1 |
7014094 | Alcoe | Mar 2006 | B2 |
7017239 | Kurily et al. | Mar 2006 | B2 |
7036779 | Kawaguchi et al. | May 2006 | B2 |
7073260 | Jensen | Jul 2006 | B2 |
7089998 | Crook | Aug 2006 | B2 |
7121611 | Hirotani et al. | Oct 2006 | B2 |
7144183 | Lian et al. | Dec 2006 | B2 |
7178855 | Catron et al. | Feb 2007 | B2 |
7198315 | Cass et al. | Apr 2007 | B2 |
7234852 | Nishizawa et al. | Jun 2007 | B2 |
7306418 | Kornblum | Dec 2007 | B2 |
7322500 | Maierholzner | Jan 2008 | B2 |
7344056 | Shelmon et al. | Mar 2008 | B2 |
7435031 | Granata | Oct 2008 | B2 |
7454105 | Yi | Nov 2008 | B2 |
7487884 | Kim | Feb 2009 | B2 |
7557051 | Ryu et al. | Jul 2009 | B2 |
7568316 | Choby et al. | Aug 2009 | B2 |
D602349 | Andersson | Oct 2009 | S |
7764853 | Yi | Jul 2010 | B2 |
7793998 | Matsui et al. | Sep 2010 | B2 |
7802831 | Isayama et al. | Sep 2010 | B2 |
7828372 | Ellison | Nov 2010 | B2 |
7862272 | Nakajima | Jan 2011 | B2 |
7869003 | Van Doren et al. | Jan 2011 | B2 |
7922415 | Rudduck et al. | Apr 2011 | B2 |
7946684 | Drury et al. | May 2011 | B2 |
8029222 | Nitsche | Oct 2011 | B2 |
8061861 | Paxton et al. | Nov 2011 | B2 |
8101264 | Pace et al. | Jan 2012 | B2 |
8203496 | Miller et al. | Jun 2012 | B2 |
8203843 | Chen | Jun 2012 | B2 |
8276961 | Kwolek | Oct 2012 | B2 |
8297137 | Dole | Oct 2012 | B2 |
8297661 | Proulx et al. | Oct 2012 | B2 |
8414048 | Kwolek | Apr 2013 | B1 |
8444199 | Takeuchi et al. | May 2013 | B2 |
8677573 | Lee | Mar 2014 | B2 |
8720016 | Beaulieu | May 2014 | B2 |
8726473 | Dole | May 2014 | B2 |
8826499 | Tempesta | Sep 2014 | B2 |
8833832 | Whipps | Sep 2014 | B2 |
8834058 | Woicke | Sep 2014 | B2 |
9039318 | Mantei et al. | May 2015 | B2 |
9050690 | Hammer et al. | Jun 2015 | B2 |
9061715 | Morris | Jun 2015 | B2 |
9067625 | Morris | Jun 2015 | B2 |
20010030414 | Yokota | Oct 2001 | A1 |
20010045757 | Kanie et al. | Nov 2001 | A1 |
20020045086 | Tsuji et al. | Apr 2002 | A1 |
20020060275 | Polad | May 2002 | A1 |
20020136617 | Imahigashi | Sep 2002 | A1 |
20030007831 | Lian et al. | Jan 2003 | A1 |
20030080131 | Fukuo | May 2003 | A1 |
20030082986 | Wiens et al. | May 2003 | A1 |
20030087047 | Blauer | May 2003 | A1 |
20030108401 | Agha et al. | Jun 2003 | A1 |
20030180122 | Dobson | Sep 2003 | A1 |
20040028503 | Charles | Feb 2004 | A1 |
20040037637 | Lian et al. | Feb 2004 | A1 |
20040131896 | Blauer | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040140651 | Yokota | Jul 2004 | A1 |
20040208728 | Fattori et al. | Oct 2004 | A1 |
20050016116 | Scherff | Jan 2005 | A1 |
20050031946 | Kruger et al. | Feb 2005 | A1 |
20050054229 | Tsuya | Mar 2005 | A1 |
20050082449 | Kawaguchi et al. | Apr 2005 | A1 |
20050156409 | Yokota | Jul 2005 | A1 |
20050156410 | Yokota | Jul 2005 | A1 |
20050156416 | Yokota | Jul 2005 | A1 |
20050244250 | Okada et al. | Nov 2005 | A1 |
20060102214 | Clemons | May 2006 | A1 |
20060110109 | Yu | May 2006 | A1 |
20060141318 | MacKinnon et al. | Jun 2006 | A1 |
20060197356 | Catron et al. | Sep 2006 | A1 |
20060249520 | DeMonte | Nov 2006 | A1 |
20060264076 | Chen | Nov 2006 | A1 |
20070040411 | Dauvergne | Feb 2007 | A1 |
20070126211 | Moerke et al. | Jun 2007 | A1 |
20070144659 | De La Fuente | Jun 2007 | A1 |
20070274777 | Winkler | Nov 2007 | A1 |
20070292205 | Duval | Dec 2007 | A1 |
20080014508 | Van Doren et al. | Jan 2008 | A1 |
20080018128 | Yamagiwa et al. | Jan 2008 | A1 |
20080073888 | Enriquez | Mar 2008 | A1 |
20080094447 | Drury et al. | Apr 2008 | A1 |
20080128346 | Bowers | Jun 2008 | A1 |
20080217796 | Van Bruggen et al. | Sep 2008 | A1 |
20080260488 | Scroggie et al. | Oct 2008 | A1 |
20090028506 | Yi et al. | Jan 2009 | A1 |
20090072591 | Baumgartner | Mar 2009 | A1 |
20090091156 | Neubrand | Apr 2009 | A1 |
20090134652 | Araki | May 2009 | A1 |
20090174207 | Lota | Jul 2009 | A1 |
20090243172 | Ting et al. | Oct 2009 | A1 |
20090265896 | Beak | Oct 2009 | A1 |
20100001539 | Kikuchi et al. | Jan 2010 | A1 |
20100021267 | Nitsche | Jan 2010 | A1 |
20100061045 | Chen | Mar 2010 | A1 |
20100102538 | Paxton et al. | Apr 2010 | A1 |
20100134128 | Hobbs | Jun 2010 | A1 |
20100147355 | Shimizu et al. | Jun 2010 | A1 |
20100247034 | Yi et al. | Sep 2010 | A1 |
20110012378 | Ueno et al. | Jan 2011 | A1 |
20110031291 | Oakes | Feb 2011 | A1 |
20110076588 | Yamaura | Mar 2011 | A1 |
20110119875 | Iwasaki | May 2011 | A1 |
20110175376 | Whitens et al. | Jul 2011 | A1 |
20110207024 | Bogumil et al. | Aug 2011 | A1 |
20110239418 | Huang | Oct 2011 | A1 |
20110296764 | Sawatani et al. | Dec 2011 | A1 |
20110311332 | Ishman | Dec 2011 | A1 |
20120020726 | Jan | Jan 2012 | A1 |
20120073094 | Bishop | Mar 2012 | A1 |
20120115010 | Smith et al. | May 2012 | A1 |
20120240363 | Lee | Sep 2012 | A1 |
20120251226 | Liu et al. | Oct 2012 | A1 |
20120261951 | Mildner et al. | Oct 2012 | A1 |
20120321379 | Wang et al. | Dec 2012 | A1 |
20130019454 | Colombo et al. | Jan 2013 | A1 |
20130019455 | Morris | Jan 2013 | A1 |
20130027852 | Wang | Jan 2013 | A1 |
20130071181 | Herzinger et al. | Mar 2013 | A1 |
20130157015 | Morris | Jun 2013 | A1 |
20130212858 | Herzinger et al. | Aug 2013 | A1 |
20130269873 | Herzinger et al. | Oct 2013 | A1 |
20130287992 | Morris | Oct 2013 | A1 |
20140033493 | Morris et al. | Feb 2014 | A1 |
20140041176 | Morris | Feb 2014 | A1 |
20140041185 | Morris et al. | Feb 2014 | A1 |
20140041199 | Morris | Feb 2014 | A1 |
20140042704 | Polewarczyk | Feb 2014 | A1 |
20140047691 | Colombo et al. | Feb 2014 | A1 |
20140047697 | Morris | Feb 2014 | A1 |
20140080036 | Smith et al. | Mar 2014 | A1 |
20140132023 | Watanabe | May 2014 | A1 |
20140175774 | Kansteiner | Jun 2014 | A1 |
20140202628 | Sreetharan et al. | Jul 2014 | A1 |
20140208561 | Colombo et al. | Jul 2014 | A1 |
20140208572 | Colombo et al. | Jul 2014 | A1 |
20140360824 | Morris et al. | Dec 2014 | A1 |
20140360826 | Morris et al. | Dec 2014 | A1 |
20140366326 | Colombo et al. | Dec 2014 | A1 |
20150069779 | Morris et al. | Mar 2015 | A1 |
20150078805 | Morris et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1036250 | Oct 1989 | CN |
1129162 | Aug 1996 | CN |
1205285 | Jan 1999 | CN |
1328521 | Dec 2001 | CN |
1426872 | Jul 2003 | CN |
2661972 | Dec 2004 | CN |
1670986 | Sep 2005 | CN |
100573975 | Sep 2005 | CN |
1693721 | Nov 2005 | CN |
1771399 | May 2006 | CN |
1774580 | May 2006 | CN |
1933747 | Mar 2007 | CN |
2888807 | Apr 2007 | CN |
2915389 | Jun 2007 | CN |
101250964 | Apr 2008 | CN |
201259846 | Jun 2009 | CN |
201268336 | Jul 2009 | CN |
201310827 | Sep 2009 | CN |
201540513 | Aug 2010 | CN |
101821534 | Sep 2010 | CN |
201703439 | Jan 2011 | CN |
201737062 | Feb 2011 | CN |
201792722 | Apr 2011 | CN |
201890285 | Jul 2011 | CN |
102144102 | Aug 2011 | CN |
202079532 | Dec 2011 | CN |
102313952 | Jan 2012 | CN |
202132326U | Feb 2012 | CN |
102803753 | Nov 2012 | CN |
202686206 | Jan 2013 | CN |
1220673 | Jul 1966 | DE |
2736012 | Feb 1978 | DE |
3704190 | Dec 1987 | DE |
3711696 | Oct 1988 | DE |
3805693 | Feb 1989 | DE |
3815927 | Nov 1989 | DE |
9109276 | Jul 1991 | DE |
4002443 | Aug 1991 | DE |
4111245 | Oct 1991 | DE |
9201258 | Mar 1992 | DE |
29714892 | Oct 1997 | DE |
29800379 | May 1998 | DE |
69600357 | Dec 1998 | DE |
10234253 | Apr 2004 | DE |
102008005618 | Jul 2009 | DE |
102010028323 | Nov 2011 | DE |
102011050003 | Oct 2012 | DE |
102012212101 | Jul 2013 | DE |
0118796 | Sep 1984 | EP |
1132263 | Sep 2001 | EP |
1273766 | Jan 2003 | EP |
1293384 | Mar 2003 | EP |
1384536 | Jan 2004 | EP |
1388449 | Feb 2004 | EP |
2166235 | Mar 2010 | EP |
2450259 | May 2012 | EP |
2458454 | May 2012 | EP |
1369198 | Aug 1964 | FR |
2009941 | Feb 1970 | FR |
2750177 | Dec 1997 | FR |
2958696 | Oct 2011 | FR |
2281950 | Mar 1995 | GB |
2001171554 | Jun 2001 | JP |
2005268004 | Sep 2005 | JP |
2006205918 | Aug 2006 | JP |
2008307938 | Dec 2008 | JP |
2009084844 | Apr 2009 | JP |
2009187789 | Aug 2009 | JP |
2001032454 | Nov 2001 | WO |
2008140659 | Nov 2008 | WO |
2013191622 | Dec 2013 | WO |
Entry |
---|
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo. |
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E Morris, Edward D. Groninger, and Raymond J. Chess. |
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap ember Aligning and Fastening System”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/012,205, filed Aug. 28, 2013, entitled “Elastically Deformable Alignment Fastener and System,” inventors: Steven E. Morris, Marc J. Tahnoose, Michael E. McGuire and Jennifer P. Lawall. |
U.S. Appl. No. 14/021,282, filed Sep. 9, 2013, entitled “Elastic Tube Alignment and Fastening System for Providing Precise Alignment and Fastening of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/031,647, filed Sep. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris, Joel Colombo, Jennifer P. Lawall, Jeffrey L. Konchan, and Steve J. Briggs. |
U.S. Appl. No. 14/038,241, filed Sep. 26, 2013, entitled “Serviceable Aligning and Self-Retaining Elastic Arrangement for Mated Components and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 14/039,614, filed Sep. 27, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/044,199, filed Oct. 2, 2013, entitled “Lobular Elastic Tube Alignment and Retention System for Providing Precise Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/044,207, filed Oct. 2, 2013, entitled “Elastic Aperture Alignment System for Providing Precise Four-Way Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/045,463, filed Oct. 3, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/081,361, filed Nov. 15, 2013, entitled “Elastically Deformable Clip and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Jeffrey M. Gace. |
U.S. Appl. No. 14/104,321, filed Dec. 12, 2013, entitled “Alignment and Retention System for a Flexible Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,327, filed Dec. 12, 2013, entitled “Self-Retaining Alignment System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris, Jennifer P. Lawall and Toure D. Lee. |
U.S. Appl. No. 14/104,333, filed Dec. 12, 2013, entitled “Alignment System for Providing Precise Alignment and Retention of Components of a Sealable Compartment, ” inventors: Steven E. Morris, Christopher J. Georgi, Jennifer P. Lawall and Gordan N. Noll. |
U.S. Appl. No. 14/104,541, filed Dec. 12, 2013, entitled “Alignment and Retention System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,549, filed Dec. 12, 2013, entitled “Alignment System for Providing Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,921, filed Dec. 17, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,931, filed Dec. 17, 2013, entitled “Elastically Averaged Strap Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/109,296, filed Dec. 17, 2013, entitled “Fastener for Operatively Coupling Matable Components, ” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment Member,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,801, filed Dec. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,888, filed Dec. 19, 2013, entitled “Elastic Retaining Assembly and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/136,502, filed Dec. 20, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Timothy A. Kiester, Steven E. Morris, Kenton L. West, Scott J. Fast, and Evan Phillips. |
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/153,741, filed Jan. 13, 2014, entitled “Elastically Averaged Assembly for Closure Applications,” inventors: Steven E. Morris, Jeffrey A. Abell, Jennifer P. Lawall, and Jeffrey L. Konchan. |
U.S. Appl. No. 14/180,882, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/181,142, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/185,422, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall and Ashish M. Gollapalli. |
U.S. Appl. No. 14/185,472, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Kee Hyuk Im. |
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall, and Ashish M. Gollapalli. |
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander. |
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010. |
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and EDIP Sevincer, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechanical Engineers (ASME), Sep. 2006. |
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002. |
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007. |
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechanical Engineering, Dec. 2007. |
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of Technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004. |
U.S. Appl. No. 13/229,926, filed Sep. 12, 2011, entitled “Using Elastic Averaging for Alignment of Battery Stack, Fuel Cell Stack, or Other Vehicle Assembly”, inventors: Mark A. Smith, Ronald Daul, Xiang Zhao, David Okonski, Elmer Santos, Lane Lindstrom, and Jeffrey A. Abell. |
U.S. Appl. No. 13/330,718, filed Dec. 20, 2011, entitled “Precisely Locating Components in an Infrared Welded Assembly”, inventor: Steven E. Morris. |
U.S. Appl. No. 13/459,118, filed Apr. 28, 2012, entitled “Stiffened Multi-Layer Compartment Door Assembly Utilizing Elastic Averaging,” inventor: Steven E. Morris. |
U.S. Appl. No. 13/567,580, filed Aug. 6, 2012, entitled “Semi-Circular Alignment Features of an Elastic Averaging Alignment System”, inventors: Steven E. Morris and Thomas F. Bowles. |
U.S. Appl. No. 13/570,959, filed Aug. 9, 2012, entitled “Elastic Cantilever Beam Alignment System for Precisely Aligning Components”, inventor: Steven E. Morris. |
U.S. Appl. No. 13/571,030, filed Aug. 9, 2012, entitled “Elastic Tube Alignment System for Precisely Locating an Emblem Lens to an Outer Bezel”, inventors: Joel Colombo, Steven E. Morris, and Michael D. Richardson. |
U.S. Appl. No. 13/752,449, filed Jan. 29, 2013, entitled “Elastic Insert Alignment Assembly and Method of Reducing Positional Variation”, inventors: Steven E. Morris and Michael D. Richardson. |
U.S. Appl. No. 13/755,759, filed Jan. 31, 2013, entitled “Elastic Alignment Assembly for Aligning Mated Components and Method of Reducing Positional Variation”, inventors: Joel Colombo, Michael D. Richardson, and Steven E. Morris. |
U.S. Appl. No. 13/851,222, filed Mar. 27, 2013, entitled “Elastically Averaged Alignment System”, inventors: Joel Colombo and Steven E. Morris. |
U.S. Appl. No. 13/855,928, filed Apr. 3, 2013, entitled “Elastic Averaging Alignment System, Method of Making the Same and Cutting Punch Therefor”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Jeffrey L. Konchan. |
U.S. Appl. No. 13/856,888, filed Apr. 4, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Toure D. Lee. |
U.S. Appl. No. 13/856,927, filed Apr. 4, 2013, entitled “Elastic Tubular Attachment Assembly for Mating Components and Method of Mating Components ”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/856,956, filed Apr. 4, 2013, entitled “Elastic Clip Retaining Arrangement and Method of Mating Structures with an Elastic Clip Retaining Arrangement”, inventors: Joel Colombo, Steven E. Morris and Jeffrey L. Konchan. |
U.S. Appl. No. 13/856,973, filed Apr. 4, 2014, entitled “Elastically Deformable Flange Locator Arrangement and Method of Reducing Positional Variation”, inventors: Joel Colombo, Steven E. Morris and Michael D. Richardson. |
U.S. Appl. No. 13/858,478, filed Apr. 8, 2013, entitled “Elastic Mating Assembly and Method of Elastically Assembling Matable Components”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/859,109, filed Apr. 9, 2013, entitled “Elastic Retaining Arrangement for Jointed Components and Method of Reducing a Gap Between Jointed Components,” inventors: Steven E. Morris, James M. Kushner, Victoria L. Enyedy, Jennifer P. Lawall, and Piotr J. Ogonek. |
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall. |
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Jennifer P. Lawall, and Randy Johnson. |
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Steve J. Briggs. |
U.S. Appl. No. 13/918,183, filed Jun. 14, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling,” inventors: Steven E. Morris and Jennifer P. Lawall. |
Number | Date | Country | |
---|---|---|---|
20140369742 A1 | Dec 2014 | US |