Elastic attachment assembly and method of reducing positional variation and increasing stiffness

Information

  • Patent Grant
  • 9243655
  • Patent Number
    9,243,655
  • Date Filed
    Thursday, June 13, 2013
    11 years ago
  • Date Issued
    Tuesday, January 26, 2016
    9 years ago
Abstract
Included is a first component having a base outer surface. Also included is a plurality of elastically deformable protrusions extending from the base outer surface of the first component. Further included is a second component having a pocket portion configured to receive the first component therein, the pocket portion defined by a base wall and at least one sidewall extending from the base wall. Yet further included is a plurality of receiving structures defined by the base wall of the pocket portion and configured to receive the plurality of elastically deformable protrusions, wherein the plurality of elastically deformable protrusions is configured to elastically deform upon insertion to the plurality of receiving structures.
Description
FIELD OF THE INVENTION

The present invention relates to a matable component assembly and, more particularly, to an elastic attachment assembly for mating, aligning, and stiffening connection between mated components, as well as a method of reducing positional variation and increasing stiffness.


BACKGROUND

Currently, components which are to be mated together in a manufacturing process are subject to positional variation based on the mating arrangements between the components. One common arrangement includes components mutually located with respect to each other by 2-way and/or 4-way male alignment features; typically undersized structures which are received into corresponding oversized female alignment features such as apertures in the form of holes and/or slots. Alternatively, adhesives or welding processes may be employed to mate parts. Irrespective of the precise mating method, there is a clearance between at least a portion of the alignment features which is predetermined to match anticipated size and positional variation tolerances of the mating features as a result of manufacturing (or fabrication) variances. As a result, occurrence of significant positional variation between the mated components may contribute to the presence of free movement causing undesirable motion between the mating components, which contributes to increased vibration. Additional undesirable effects may include squeaking and rattling of the mated components, for example.


SUMMARY OF THE INVENTION

In one exemplary embodiment, an elastic attachment assembly for mating and aligning components is provided. The elastic attachment assembly includes a first component having a base outer surface. Also included is a plurality of elastically deformable protrusions extending from the base outer surface of the first component. Further included is a second component having a pocket portion configured to receive the first component therein, the pocket portion is defined by a base wall and at least one sidewall extending from the base wall. Yet further included is a plurality of receiving structures defined by the base wall of the pocket portion and configured to receive the plurality of elastically deformable protrusions, wherein the plurality of elastically deformable protrusions is configured to elastically deform upon insertion to the plurality of receiving structures.


In another exemplary embodiment, a method of increasing stiffness of an elastic attachment assembly is provided. The method includes inserting a first component into a pocket portion of a second component. The method also includes engaging a plurality of elastically deformable protrusions extending from a base outer surface of the first component with a plurality of receiving structures defined by a base wall of the pocket portion. The method further includes elastically deforming the plurality of elastically deformable protrusions upon engagement of the plurality of elastically deformable protrusions with the plurality of receiving structures. The method yet further includes performing an elastic averaging of the elastic deformation over the plurality of elastically deformable protrusions to account for positional variation of the plurality of elastically deformable protrusions


The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:



FIG. 1 is a perspective view of an elastic attachment assembly;



FIG. 2 is a cross-sectional view of an elastically deformable protrusion engaged with a receiving structure;



FIG. 3 is a side, elevational view of a plurality of elastically deformable components prior to engagement with corresponding engagement portions according to a first embodiment;



FIG. 4 is a bottom plan view of one of the plurality of elastically deformable components engaged with an engagement portion according to the embodiment illustrated in FIG. 3;



FIG. 5 is a perspective view of one of the plurality of elastically deformable components prior to engagement;



FIG. 6 is a side, elevational view of an elastically deformable component according to a second embodiment;



FIG. 7 is a cross-sectional view of a plurality of elastically deformable protrusions engaged with a plurality of receiving structures, illustrating an elastic averaging of the plurality of elastically deformable protrusions; and



FIG. 8 is a flow diagram illustrating a method of reducing positional variation and increasing stiffness of the elastic attachment assembly.





DESCRIPTION OF THE EMBODIMENTS

The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.


Referring to FIG. 1, an elastic attachment assembly 10 is illustrated. The elastic attachment assembly 10 comprises matable components, such as a first component 12 and a second component 14 that are configured to be mated and aligned with respect to each other. In one embodiment, the elastic attachment assembly 10 is employed in a vehicle application, and comprises a vehicle feature such as a vehicle console assembly. However, it is to be understood that the components may be associated with numerous other applications and industries, such as home appliance and aerospace applications, for example. In an exemplary embodiment such as the aforementioned vehicle console assembly for an automobile, the first component 12 comprises a vehicle console bin and the second component 14 comprises a vehicle console shell for receiving the vehicle console bin.


Although illustrated in a specific geometry, the first component 12 and the second component 14 may be configured in countless geometries. Irrespective of the precise geometry of the first component 12 and the second component 14, the first component 12 is configured to align and fittingly mate with the second component 14, which will be described in detail below. In an alternative embodiment, rather than two components comprising the elastic attachment assembly 10, additional or intermediate layers or components may be included. It is to be appreciated that the elastic attachment assembly 10 is to be employed for increasing the stiffness of the first component 12 and the second component 14 in an assembled condition. The elastic attachment assembly 10 provides a self-aligning relationship between components, such as the first component 12 and the second component 14, while also assisting in securely mating the components to each other. As will be described below, a stiff, fitted engagement between the first component 12 and the second component 14 reduces free or relative movement between the components. Such an assembly condition reduces vibration associated with operations of an application that the components are integrated with and more effectively accounts for load transfer capability between the first component 12 and the second component 14.


The first component 12 includes a compartment 16 defined by a base inner surface 18 and at least one side inner surface 20 extending relatively perpendicularly from a plane that the base inner surface 18 is substantially aligned with. As can be appreciated, the at least one side inner surface 20 may comprise a single wall that fully extends proximate the perimeter of the base inner surface 18, or a plurality of walls that are joined to extend proximate the perimeter of the base inner surface 18 in combination. The first component 12 also includes a base outer surface 22 and at least one side outer surface 24 extending relatively perpendicularly from a plane that the base outer surface 22 is substantially aligned with. Extending from the base outer surface 22 is a plurality of elastically deformable protrusions 26 in a direction relatively orthogonal from the plane that the base outer surface 22 is aligned with. The plurality of elastically deformable protrusions 26 are operatively coupled to the base outer surface 22 and may be integrally formed with the base outer surface 22.


The second component 14 includes a pocket portion 28 configured to receive the first component 12 therein. The pocket portion 28 is defined by a base wall 30 and at least one sidewall 32 extending from the base wall 30. The at least one sidewall 32 typically extends relatively perpendicularly from the base wall 30, but it is to be understood that extending of the at least one sidewall 32 from the base wall 30 at alternative angular orientations is contemplated. Disposed within and defined by the base wall 30 are a plurality of receiving structures 34. The plurality of receiving structures 34 are configured to engage and receive the plurality of elastically deformable protrusions 26 upon mating of the first component 12 and the second component 14.


Referring to FIG. 2, an enlarged cross-sectional view of one of the plurality of elastically deformable protrusions 26 engaged with one of the plurality of receiving structures 34 is illustrated in greater detail. The plurality of elastically deformable protrusions 26 and the plurality of receiving structures 34 may be formed of numerous contemplated embodiments. In the exemplary embodiment, the plurality of elastically deformable protrusions 26 are each formed as a relatively tubular protrusion having a hollow portion 36 that is substantially centrally disposed with respect to a protrusion engagement wall 38. It is to be appreciated that the plurality of elastically deformable protrusions 26, and more specifically the protrusion engagement wall 38 and/or the hollow portion 36 may be of similar or distinct shapes, such as circular or rectilinear, for example. The plurality of receiving structures 34 may comprise slots or trough-like structures or apertures extending through the base wall 30 of the second component 14.


In addition to the embodiment described above, the plurality of elastically deformable protrusions 26 may be formed of elastically deformable clips. As will be apparent from the description below, the elastically deformable nature of the protrusions, in combination with the particular orientations described above, facilitates precise alignment of the first component 12 relative to the second component 14 by accounting for positional and/or tolerance variation of the retaining and/or locating features of the first component 12 and the second component 14 inherently present due to manufacturing processes. The elastic nature of the elastic attachment assembly 10 and the precise alignment between the first component 12 and the second component 14 reduces excessive movement, reduces vibrational characteristics, and stiffens the first component 12 relative to the second compartment 14. The self-aligning benefits associated with the elastic attachment assembly 10 will be described in detail below.


In the illustrated embodiment, the protrusion engagement wall 38 includes a first portion 40 extending relatively perpendicularly from the base outer surface 22 to an intermediate portion 42. A second portion 44 extends from the intermediate portion 42 and is disposed at an angle to the first portion 40, and more specifically at an angle that tapers inwardly toward a central axis 46. As described above, the plurality of receiving structures 34 may be formed in the base wall 30 in a variety of geometrical formations. In the illustrated embodiment, a round aperture is shown to correspond to the protrusion engagement wall 38 of the elastically deformable protrusion 26. The receiving structure 34 includes an engagement surface 48 that includes a chamfer portion 50 disposed proximate the base wall 30. The chamfer portion 50 comprises a beveled surface and is configured to provide a “lead-in,” or guide region, for the protrusion engagement wall 38 of the elastically deformable protrusion 26. Numerous angles of the chamfer portion 50 are contemplated.


The elastically deformable protrusion 26 of the first component 12 is positioned and engaged with the receiving structure 34 of the second component 14 upon translation of the first component 12 toward the second component 14. In this way, the first component 12 is press fit into the second component 14 upon engagement of the plurality of elastically deformable protrusions 26 with the plurality of receiving structures 34. The second portion 44 engages the engagement surface 48, and more specifically the chamfer portion 50. Subsequent translation of the elastically deformable protrusion 26 into the receiving structure 34 results in an elastic deformation of the deformable protrusion 26 by imposition of a compressive force on the protrusion engagement wall 38. It is to be appreciated that elastic deformation of the elastically deformable protrusions 26 is further facilitated by embodiments comprising the hollow portion 36 disposed radially inwardly of the protrusion engagement wall 38. The void of material defined by the hollow portion 36 enhances the flexibility of the plurality of elastically deformable protrusions 26.


The term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.


Numerous examples of materials that may at least partially form the components include various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS), such as an ABS acrylic. The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The material, or materials, may be selected to provide a predetermined elastic response characteristic of the plurality of elastically deformable protrusions 26. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.


The precise position where engagement between the protrusion engagement wall 38 and the plurality of receiving structures 34 occurs will vary depending on positional variance imposed by manufacturing factors. Due to the elastically deformable properties of the elastic material comprising the plurality of elastically deformable protrusions 26, the criticality of the initial location of engagement is reduced. Further insertion of the plurality of elastically deformable protrusions 26 into the plurality of receiving structures 34 ultimately leads to a fully engaged position of the plurality of elastically deformable protrusions 26. As the protrusion is inserted into the receiving structure, engagement of the protrusion engagement wall 38 with the engagement surface 48 results in the protrusion being elastically deformed and cantilevered radially inwardly.


In the fully engaged position, a tight, fitted engagement between the plurality of elastically deformable protrusions 26 and the plurality of receiving structures 34 is achieved by the contact interfaces located between the protrusion engagement wall 38 and the engagement surface 48. Such a condition is ensured by sizing the protrusion perimeters to be larger than the receiving structure perimeters. A protrusion perimeter is defined by the distance between oppositely disposed points along the protrusion engagement wall 38. The receiving structure perimeter is defined by the distance between oppositely disposed points along the engagement surface 48. The interference between the plurality of elastically deformable protrusions 26 and the plurality of receiving structures 34 causes elastic deformation proximate the protrusion engagement wall 38. The malleability of the materials reduces issues associated with positional variance. More particularly, in contrast to a rigid insert that typically results in gaps and free movement between the insert and receiving structure at portions around the perimeter of the insert, the plurality of elastically deformable protrusions 26 advantageously deforms to maintain alignment of the first component 12 and the second component 14, while also reducing or eliminating gaps and free movement associated with manufacturing challenges, thus stiffening the mated assembly.


Referring again to FIGS. 1, 2 and 7, the elastic deformation of the plurality of elastically deformable protrusions 26 elastically averages any positional errors of the first component 12 and the second component 14. In other words, gaps that would otherwise be present due to positional errors associated with portions or segments of the first component 12 and the second component 14, particularly locating and retaining features, are eliminated by offsetting the gaps with an over-constrained condition of other elastically deformable protrusions. Specifically, the positional variance of each protrusion is offset by the remaining protrusions to average in aggregate the positional variance of each protrusion. Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles to an assembly that does facilitate elastic averaging and the benefits associated therewith.


Referring now to FIGS. 3-5, additional stability of the first component 12 relative to the second component 14 is provided by a plurality of elastically deformable components 62 (also generically illustrated in FIG. 1) extending from the at least one sidewall 32 of the second component 14. It is to be appreciated that the plurality of elastically deformable components 62 may be disposed along a single surface or a plurality of surfaces, depending upon the structure of the at least sidewall 32. The plurality of elastically deformable components 62 is configured to engage an engagement portion 60 (also generically illustrated in FIG. 1) of the first component 12. The engagement portion 60 may comprise a portion of the at least one side outer surface 24 or may extend therefrom as an additional component. In an alternative embodiment, the plurality of elastically deformable components 62 is not elastically deformable, but rather rigid structures that engage elastically deformable engagement portions. It is to be understood that one or both of the plurality of elastically deformable components 62 and the engagement portion 60 are deformable. As with the plurality of elastically deformable protrusions 26 described in detail, the plurality of elastically deformable components 62 are formed of at least one of the elastically deformable materials discussed above.


A first embodiment of the plurality of elastically deformable components 62 and the engagement portion 60 is illustrated in FIGS. 3 and 4. In the illustrated embodiment, each of the plurality of deformable components 62 comprises a hollow tube portion extending from the at least one sidewall 32. Numerous alignments are contemplated, but in the exemplary embodiment, the engagement portion 60 comprises a first segment 64 extending relatively perpendicularly from the at least one side outer surface 24 and a second segment 68 extending relatively perpendicularly from the first segment 64, such as in a predominantly downwardly extending manner. The engagement portion 60 comprises a slot structure 72 extending from the at least one outer side surface 24. The slot structure 72 includes a pin receiving portion 74 configured to fittingly receive the plurality of deformable components 62, and more particularly the hollow tube portion. The slot structure 72 is formed in the second segment 68 of the engagement portion 60.


The hollow tube portion is illustrated in a tubular-shaped configuration, however, it is to be understood that alternate geometries are contemplated. Irrespective of the precise geometry, the plurality of elastically deformable components 62 comprises a perimeter that is greater than a perimeter of the pin receiving portion 74 of the slot structure 72. As described in detail above with respect to the plurality of elastically deformable protrusions 26 and the plurality of receiving structures 34, elastic deformation of the plurality of elastically deformable components 62 results upon insertion into the pin receiving portion 74 based on the relative sizing of the components.


Referring to FIG. 6, a second embodiment of the plurality of elastically deformable components 62 and the engagement portion 60 is illustrated. In the illustrated embodiment, each of the plurality of deformable components 62 comprises a rib 80 extending from the at least one side outer surface 24. Numerous alignments are contemplated, but in the exemplary embodiment, the rib 80 comprises an arcuate-shaped configuration that arches or bows away from the at least one side outer surface 24 and is configured to elastically deform and/or deflect upon engagement with the engagement portion 60, thereby creating spring tension between the rib 80 and the engagement portion 62, which in the illustrated embodiment comprises the at least one sidewall 32.


As one can appreciate, the embodiments described above may be altered by switching the location of the plurality of elastically deformable components 62 with the engagement portion 60. Specifically, in one embodiment the hollow tube may be operatively coupled to, and extend from, the at least one side outer surface 24, while the engagement portion 60 is operatively coupled to, and extends from the at least one sidewall 32. In such an embodiment, the first segment 64 extends outwardly away from the at least one sidewall 32, with the second segment 68 extending relatively perpendicularly therefrom, such as in an upwardly directed manner. The tube is then configured to slide downwardly into, and engage, the slot structure 72 of the engagement portion 60. Similarly, the ribs described above may be connected to the at least one sidewall 32, rather than the at least one side outer surface 24.


Each embodiment of the plurality of elastically deformable components 62 described above advantageously reduces movement of the first component 12 relative to the second component 14 by imposing contact interferences between the plurality of elastically deformable components 62 and the engagement portion 60. Upon reaching the fully engaged position of the first component 12 with the second component 14, the deformation of the plurality of elastically deformable components 62 is averaged in aggregate relative to each other, as described in detail above, with respect to the plurality of elastically deformable protrusions 26.


A method of reducing positional variation, freedom of movement, and vibration as well as increasing the stiffness of an elastic attachment assembly 100 is also provided, as illustrated in FIG. 8, and with reference to FIGS. 1-7. The elastic attachment assembly 10, and more specifically the elastically deformable nature of the plurality of elastically deformable protrusions 26 and the elastically deformable components 62 have been previously described and specific structural components need not be described in further detail. The method 100 includes inserting 102 the first component 12 into the pocket portion 28 of the second component 14. The method also includes engaging 104 the plurality of elastically deformable protrusions 26 with the plurality of receiving structures 34. The method further includes elastically deforming 106 the plurality of elastically deformable protrusions 26 upon engagement of the plurality of elastically deformable protrusions 26 with the plurality of receiving structures 34. The method yet further includes performing 108 an elastic averaging of the elastic deformation over the plurality of elastically deformable protrusions 26 to account for positional variation, reduced free movement, and increased stiffness of the plurality of elastically deformable protrusions 26.


While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.

Claims
  • 1. An elastic attachment assembly comprising: a first component having a base outer surface and at least one side outer surface extending from the base outer surface, the first component comprising: a plurality of elastically deformable protrusions extending from the base outer surface of the first component, each of the elastically deformable protrusions comprising a tubular member having an engagement wall having a first perimeter; andat least one engagement portion extending from the side outer surface of the first component; anda second component having a pocket portion configured to receive the first component therein, the pocket portion defined by a base wall and at least one sidewall extending from the base wall; the second component comprising: a plurality of receiving structures defined in the base wall of the pocket portion and configured to receive the plurality of elastically deformable protrusions, wherein the plurality of elastically deformable protrusions is configured to elastically deform upon insertion into the plurality of receiving structures, each of the plurality of receiving structures comprising an engagement surface having a second perimeter that is less than the first perimeter; andat least one elastically deformable component extending from the sidewall and configured to be received within the at least one engagement portion of the first component;wherein a fully engaged position of the first component with the second component comprises contact interference between the engagement wall of each of the plurality of elastically deformable protrusions with the engagement surface of each of the plurality of receiving structures and between the at least one engagement portion and the at least one elastically deformable component, wherein respective positional deviations from respective nominal alignment positions of the first component and the second component is averaged when the engagement surface surrounding the engagement wall is in the fully engaged position.
  • 2. The elastic attachment assembly of claim 1, wherein the elastic deformation of the plurality of elastically deformable protrusions comprises a resiliently reversible change in at least one of shape and size.
  • 3. The elastic attachment assembly of claim 1, wherein the plurality of elastically deformable protrusions is integrally formed with the base outer surface.
  • 4. The elastic attachment assembly of claim 1, wherein the at least one sidewall of the second component comprises a plurality of elastically deformable components extending therefrom, each of the elastically deformable components configured to engage one of a plurality of engagement portions of the first component.
  • 5. The elastic attachment assembly of claim 4, wherein the plurality of elastically deformable components comprises a pin portion, and wherein each engagement portion comprises a slot structure configured to receive the plurality of elastically deformable components therein.
  • 6. The elastic attachment assembly of claim 5, wherein the perimeter of the plurality of elastically deformable components is greater than the perimeter of the slot structure.
  • 7. The elastic attachment assembly of claim 1, wherein the at least one engagement portion of the first component comprises a plurality of elastically deformable ribs extending therefrom, each of the ribs configured to engage one of a plurality of apertures in the second component.
  • 8. The elastic attachment assembly of claim 7, wherein the rib comprises an arcuate shaped geometry arching away from the at least one side outer surface.
  • 9. The elastic attachment assembly of claim 8, wherein the rib comprises a rib width and the aperture comprises an aperture width, and wherein the rib width is greater than the aperture width.
  • 10. The elastic attachment assembly of claim 1, wherein the first component comprises a vehicle console bin, and wherein the second component comprises a vehicle console shell.
US Referenced Citations (302)
Number Name Date Kind
1219398 Huntsman Mar 1917 A
1261036 Kerns Apr 1918 A
1301302 Nolan Apr 1919 A
1556233 Maise Oct 1925 A
1819126 Scheibe Aug 1931 A
1929848 Neely Oct 1933 A
1968168 Place Jul 1934 A
1982076 Spahn Nov 1934 A
2006525 Thal Jul 1935 A
2267558 Birger et al. Dec 1941 A
2275103 Gooch et al. Mar 1942 A
2275900 Hall Mar 1942 A
2482488 Franc Sep 1949 A
2612139 Collins Sep 1952 A
2688894 Modrey Sep 1954 A
2707607 O'Connor May 1955 A
2778399 Mroz Jan 1957 A
2780128 Rapata Feb 1957 A
2862040 Curran Nov 1958 A
2902902 Slone Sep 1959 A
2946612 Ahlgren Jul 1960 A
3005282 Christiansen Oct 1961 A
3087352 Daniel Apr 1963 A
3089269 McKiernan May 1963 A
3130512 Van Buren, Jr. Apr 1964 A
3168961 Yates Feb 1965 A
3169004 Rapata Feb 1965 A
3169439 Rapata Feb 1965 A
3188731 Sweeney Jun 1965 A
3194292 Borowsky Jul 1965 A
3213189 Mitchell et al. Oct 1965 A
3230592 Hosea Jan 1966 A
3233503 Birger Feb 1966 A
3244057 Mathison Apr 1966 A
3248995 Meyer May 1966 A
3291495 Liebig Dec 1966 A
3310929 Garvey Mar 1967 A
3413752 Perry Dec 1968 A
3473283 Meyer Oct 1969 A
3531850 Durand Oct 1970 A
3643968 Horvath Feb 1972 A
3680272 Meyer Aug 1972 A
3842565 Brown et al. Oct 1974 A
3845961 Byrd, III Nov 1974 A
3847492 Kennicutt et al. Nov 1974 A
3905570 Nieuwveld Sep 1975 A
3972550 Boughton Aug 1976 A
4035874 Liljendahl Jul 1977 A
4039215 Minhinnick Aug 1977 A
4042307 Jarvis Aug 1977 A
4043585 Yamanaka Aug 1977 A
4169297 Weihrauch Oct 1979 A
4213675 Pilhall Jul 1980 A
4237573 Weihrauch Dec 1980 A
4300851 Thelander Nov 1981 A
4313609 Clements Feb 1982 A
4318208 Borja Mar 1982 A
4325574 Umemoto et al. Apr 1982 A
4363839 Watanabe et al. Dec 1982 A
4364150 Remington Dec 1982 A
4384803 Cachia May 1983 A
4394853 Lopez-Crevillen et al. Jul 1983 A
4406033 Chisholm et al. Sep 1983 A
4477142 Cooper Oct 1984 A
4481160 Bree Nov 1984 A
4575060 Kitagawa Mar 1986 A
4605575 Auld et al. Aug 1986 A
4616951 Maatela Oct 1986 A
4648649 Beal Mar 1987 A
4654760 Matheson et al. Mar 1987 A
4745656 Revlett May 1988 A
4767647 Bree Aug 1988 A
4807335 Candea Feb 1989 A
4817999 Drew Apr 1989 A
4819983 Alexander et al. Apr 1989 A
4881764 Takahashi et al. Nov 1989 A
4973212 Jacobs Nov 1990 A
4977648 Eckerud Dec 1990 A
5139285 Lasinski Aug 1992 A
5154479 Sautter, Jr. Oct 1992 A
5170985 Killworth et al. Dec 1992 A
5180219 Geddie Jan 1993 A
5208507 Jung May 1993 A
5212853 Kaneko May 1993 A
5297322 Kraus Mar 1994 A
5342139 Hoffman Aug 1994 A
5368797 Quentin et al. Nov 1994 A
5446965 Makridis Sep 1995 A
5507610 Benedetti et al. Apr 1996 A
5513603 Ang et al. May 1996 A
5556808 Williams et al. Sep 1996 A
5575601 Skufca Nov 1996 A
5577301 De Maagd Nov 1996 A
5577779 Dangel Nov 1996 A
5580204 Hultman Dec 1996 A
5586372 Eguchi et al. Dec 1996 A
5601453 Horchler Feb 1997 A
5634757 Schanz Jun 1997 A
5657516 Berg et al. Aug 1997 A
5667271 Booth Sep 1997 A
5670013 Huang et al. Sep 1997 A
5698276 Mirabitur Dec 1997 A
5736221 Hardigg et al. Apr 1998 A
5765942 Shirai et al. Jun 1998 A
5795118 Osada et al. Aug 1998 A
5797170 Akeno Aug 1998 A
5803646 Weihrauch Sep 1998 A
5806915 Takabatake Sep 1998 A
5810535 Fleckenstein et al. Sep 1998 A
5820292 Fremstad Oct 1998 A
5846631 Nowosiadly Dec 1998 A
5941673 Hayakawa et al. Aug 1999 A
6073315 Rasmussen Jun 2000 A
6095594 Riddle et al. Aug 2000 A
6164603 Kawai Dec 2000 A
6193430 Culpepper et al. Feb 2001 B1
6202962 Snyder Mar 2001 B1
6209175 Gershenson Apr 2001 B1
6209178 Wiese et al. Apr 2001 B1
6264869 Notarpietro et al. Jul 2001 B1
6299478 Jones et al. Oct 2001 B1
6321495 Oami Nov 2001 B1
6349904 Polad Feb 2002 B1
6354815 Svihla et al. Mar 2002 B1
6378931 Kolluri et al. Apr 2002 B1
6398449 Loh Jun 2002 B1
6484370 Kanie et al. Nov 2002 B2
6523817 Landry, Jr. Feb 2003 B1
6533391 Pan Mar 2003 B1
6543979 Iwatsuki Apr 2003 B2
6557260 Morris May 2003 B1
6568701 Burdack et al. May 2003 B1
6579397 Spain et al. Jun 2003 B1
6591801 Fonville Jul 2003 B1
6609717 Hinson Aug 2003 B2
6658698 Chen Dec 2003 B2
6662411 Rubenstein Dec 2003 B2
6664470 Nagamoto Dec 2003 B2
6677065 Blauer Jan 2004 B2
6692016 Yokota Feb 2004 B2
6712329 Ishigami et al. Mar 2004 B2
6746172 Culpepper Jun 2004 B2
6799758 Fries Oct 2004 B2
6840969 Kobayashi et al. Jan 2005 B2
6857676 Kawaguchi et al. Feb 2005 B2
6857809 Granata Feb 2005 B2
6908117 Pickett, Jr. et al. Jun 2005 B1
6932416 Clauson Aug 2005 B2
6948753 Yoshida et al. Sep 2005 B2
6951349 Yokota Oct 2005 B2
6959954 Brandt et al. Nov 2005 B2
6966601 Matsumoto et al. Nov 2005 B2
6971831 Fattori et al. Dec 2005 B2
6997487 Kitzis Feb 2006 B2
7000941 Yokota Feb 2006 B2
7008003 Hirose et al. Mar 2006 B1
7014094 Alcoe Mar 2006 B2
7017239 Kurily et al. Mar 2006 B2
7036779 Kawaguchi et al. May 2006 B2
7073260 Jensen Jul 2006 B2
7089998 Crook Aug 2006 B2
7121611 Hirotani et al. Oct 2006 B2
7144183 Lian et al. Dec 2006 B2
7178855 Catron et al. Feb 2007 B2
7198315 Cass et al. Apr 2007 B2
7234852 Nishizawa et al. Jun 2007 B2
7306418 Kornblum Dec 2007 B2
7322500 Maierholzner Jan 2008 B2
7344056 Shelmon et al. Mar 2008 B2
7435031 Granata Oct 2008 B2
7454105 Yi Nov 2008 B2
7487884 Kim Feb 2009 B2
7557051 Ryu et al. Jul 2009 B2
7568316 Choby et al. Aug 2009 B2
D602349 Andersson Oct 2009 S
7764853 Yi Jul 2010 B2
7793998 Matsui et al. Sep 2010 B2
7802831 Isayama et al. Sep 2010 B2
7828372 Ellison Nov 2010 B2
7862272 Nakajima Jan 2011 B2
7869003 Van Doren et al. Jan 2011 B2
7922415 Rudduck et al. Apr 2011 B2
7946684 Drury et al. May 2011 B2
8029222 Nitsche Oct 2011 B2
8061861 Paxton et al. Nov 2011 B2
8101264 Pace et al. Jan 2012 B2
8203496 Miller et al. Jun 2012 B2
8203843 Chen Jun 2012 B2
8276961 Kwolek Oct 2012 B2
8297137 Dole Oct 2012 B2
8297661 Proulx et al. Oct 2012 B2
8414048 Kwolek Apr 2013 B1
8444199 Takeuchi et al. May 2013 B2
8677573 Lee Mar 2014 B2
8720016 Beaulieu May 2014 B2
8726473 Dole May 2014 B2
8826499 Tempesta Sep 2014 B2
8833832 Whipps Sep 2014 B2
8834058 Woicke Sep 2014 B2
9039318 Mantei et al. May 2015 B2
9050690 Hammer et al. Jun 2015 B2
9061715 Morris Jun 2015 B2
9067625 Morris Jun 2015 B2
20010030414 Yokota Oct 2001 A1
20010045757 Kanie et al. Nov 2001 A1
20020045086 Tsuji et al. Apr 2002 A1
20020060275 Polad May 2002 A1
20020136617 Imahigashi Sep 2002 A1
20030007831 Lian et al. Jan 2003 A1
20030080131 Fukuo May 2003 A1
20030082986 Wiens et al. May 2003 A1
20030087047 Blauer May 2003 A1
20030108401 Agha et al. Jun 2003 A1
20030180122 Dobson Sep 2003 A1
20040028503 Charles Feb 2004 A1
20040037637 Lian et al. Feb 2004 A1
20040131896 Blauer Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040140651 Yokota Jul 2004 A1
20040208728 Fattori et al. Oct 2004 A1
20050016116 Scherff Jan 2005 A1
20050031946 Kruger et al. Feb 2005 A1
20050054229 Tsuya Mar 2005 A1
20050082449 Kawaguchi et al. Apr 2005 A1
20050156409 Yokota Jul 2005 A1
20050156410 Yokota Jul 2005 A1
20050156416 Yokota Jul 2005 A1
20050244250 Okada et al. Nov 2005 A1
20060102214 Clemons May 2006 A1
20060110109 Yu May 2006 A1
20060141318 MacKinnon et al. Jun 2006 A1
20060197356 Catron et al. Sep 2006 A1
20060249520 DeMonte Nov 2006 A1
20060264076 Chen Nov 2006 A1
20070040411 Dauvergne Feb 2007 A1
20070126211 Moerke et al. Jun 2007 A1
20070144659 De La Fuente Jun 2007 A1
20070274777 Winkler Nov 2007 A1
20070292205 Duval Dec 2007 A1
20080014508 Van Doren et al. Jan 2008 A1
20080018128 Yamagiwa et al. Jan 2008 A1
20080073888 Enriquez Mar 2008 A1
20080094447 Drury et al. Apr 2008 A1
20080128346 Bowers Jun 2008 A1
20080217796 Van Bruggen et al. Sep 2008 A1
20080260488 Scroggie et al. Oct 2008 A1
20090028506 Yi et al. Jan 2009 A1
20090072591 Baumgartner Mar 2009 A1
20090091156 Neubrand Apr 2009 A1
20090134652 Araki May 2009 A1
20090174207 Lota Jul 2009 A1
20090243172 Ting et al. Oct 2009 A1
20090265896 Beak Oct 2009 A1
20100001539 Kikuchi et al. Jan 2010 A1
20100021267 Nitsche Jan 2010 A1
20100061045 Chen Mar 2010 A1
20100102538 Paxton et al. Apr 2010 A1
20100134128 Hobbs Jun 2010 A1
20100147355 Shimizu et al. Jun 2010 A1
20100247034 Yi et al. Sep 2010 A1
20110012378 Ueno et al. Jan 2011 A1
20110031291 Oakes Feb 2011 A1
20110076588 Yamaura Mar 2011 A1
20110119875 Iwasaki May 2011 A1
20110175376 Whitens et al. Jul 2011 A1
20110207024 Bogumil et al. Aug 2011 A1
20110239418 Huang Oct 2011 A1
20110296764 Sawatani et al. Dec 2011 A1
20110311332 Ishman Dec 2011 A1
20120020726 Jan Jan 2012 A1
20120073094 Bishop Mar 2012 A1
20120115010 Smith et al. May 2012 A1
20120240363 Lee Sep 2012 A1
20120251226 Liu et al. Oct 2012 A1
20120261951 Mildner et al. Oct 2012 A1
20120321379 Wang et al. Dec 2012 A1
20130019454 Colombo et al. Jan 2013 A1
20130019455 Morris Jan 2013 A1
20130027852 Wang Jan 2013 A1
20130071181 Herzinger et al. Mar 2013 A1
20130157015 Morris Jun 2013 A1
20130212858 Herzinger et al. Aug 2013 A1
20130269873 Herzinger et al. Oct 2013 A1
20130287992 Morris Oct 2013 A1
20140033493 Morris et al. Feb 2014 A1
20140041176 Morris Feb 2014 A1
20140041185 Morris et al. Feb 2014 A1
20140041199 Morris Feb 2014 A1
20140042704 Polewarczyk Feb 2014 A1
20140047691 Colombo et al. Feb 2014 A1
20140047697 Morris Feb 2014 A1
20140080036 Smith et al. Mar 2014 A1
20140132023 Watanabe May 2014 A1
20140175774 Kansteiner Jun 2014 A1
20140202628 Sreetharan et al. Jul 2014 A1
20140208561 Colombo et al. Jul 2014 A1
20140208572 Colombo et al. Jul 2014 A1
20140360824 Morris et al. Dec 2014 A1
20140360826 Morris et al. Dec 2014 A1
20140366326 Colombo et al. Dec 2014 A1
20150069779 Morris et al. Mar 2015 A1
20150078805 Morris et al. Mar 2015 A1
Foreign Referenced Citations (71)
Number Date Country
1036250 Oct 1989 CN
1129162 Aug 1996 CN
1205285 Jan 1999 CN
1328521 Dec 2001 CN
1426872 Jul 2003 CN
2661972 Dec 2004 CN
1670986 Sep 2005 CN
100573975 Sep 2005 CN
1693721 Nov 2005 CN
1771399 May 2006 CN
1774580 May 2006 CN
1933747 Mar 2007 CN
2888807 Apr 2007 CN
2915389 Jun 2007 CN
101250964 Apr 2008 CN
201259846 Jun 2009 CN
201268336 Jul 2009 CN
201310827 Sep 2009 CN
201540513 Aug 2010 CN
101821534 Sep 2010 CN
201703439 Jan 2011 CN
201737062 Feb 2011 CN
201792722 Apr 2011 CN
201890285 Jul 2011 CN
102144102 Aug 2011 CN
202079532 Dec 2011 CN
102313952 Jan 2012 CN
202132326U Feb 2012 CN
102803753 Nov 2012 CN
202686206 Jan 2013 CN
1220673 Jul 1966 DE
2736012 Feb 1978 DE
3704190 Dec 1987 DE
3711696 Oct 1988 DE
3805693 Feb 1989 DE
3815927 Nov 1989 DE
9109276 Jul 1991 DE
4002443 Aug 1991 DE
4111245 Oct 1991 DE
9201258 Mar 1992 DE
29714892 Oct 1997 DE
29800379 May 1998 DE
69600357 Dec 1998 DE
10234253 Apr 2004 DE
102008005618 Jul 2009 DE
102010028323 Nov 2011 DE
102011050003 Oct 2012 DE
102012212101 Jul 2013 DE
0118796 Sep 1984 EP
1132263 Sep 2001 EP
1273766 Jan 2003 EP
1293384 Mar 2003 EP
1384536 Jan 2004 EP
1388449 Feb 2004 EP
2166235 Mar 2010 EP
2450259 May 2012 EP
2458454 May 2012 EP
1369198 Aug 1964 FR
2009941 Feb 1970 FR
2750177 Dec 1997 FR
2958696 Oct 2011 FR
2281950 Mar 1995 GB
2001171554 Jun 2001 JP
2005268004 Sep 2005 JP
2006205918 Aug 2006 JP
2008307938 Dec 2008 JP
2009084844 Apr 2009 JP
2009187789 Aug 2009 JP
2001032454 Nov 2001 WO
2008140659 Nov 2008 WO
2013191622 Dec 2013 WO
Non-Patent Literature Citations (65)
Entry
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo.
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E Morris, Edward D. Groninger, and Raymond J. Chess.
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo.
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap ember Aligning and Fastening System”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/012,205, filed Aug. 28, 2013, entitled “Elastically Deformable Alignment Fastener and System,” inventors: Steven E. Morris, Marc J. Tahnoose, Michael E. McGuire and Jennifer P. Lawall.
U.S. Appl. No. 14/021,282, filed Sep. 9, 2013, entitled “Elastic Tube Alignment and Fastening System for Providing Precise Alignment and Fastening of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/031,647, filed Sep. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris, Joel Colombo, Jennifer P. Lawall, Jeffrey L. Konchan, and Steve J. Briggs.
U.S. Appl. No. 14/038,241, filed Sep. 26, 2013, entitled “Serviceable Aligning and Self-Retaining Elastic Arrangement for Mated Components and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo.
U.S. Appl. No. 14/039,614, filed Sep. 27, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Steven E. Morris.
U.S. Appl. No. 14/044,199, filed Oct. 2, 2013, entitled “Lobular Elastic Tube Alignment and Retention System for Providing Precise Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/044,207, filed Oct. 2, 2013, entitled “Elastic Aperture Alignment System for Providing Precise Four-Way Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/045,463, filed Oct. 3, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/081,361, filed Nov. 15, 2013, entitled “Elastically Deformable Clip and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Jeffrey M. Gace.
U.S. Appl. No. 14/104,321, filed Dec. 12, 2013, entitled “Alignment and Retention System for a Flexible Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/104,327, filed Dec. 12, 2013, entitled “Self-Retaining Alignment System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris, Jennifer P. Lawall and Toure D. Lee.
U.S. Appl. No. 14/104,333, filed Dec. 12, 2013, entitled “Alignment System for Providing Precise Alignment and Retention of Components of a Sealable Compartment, ” inventors: Steven E. Morris, Christopher J. Georgi, Jennifer P. Lawall and Gordan N. Noll.
U.S. Appl. No. 14/104,541, filed Dec. 12, 2013, entitled “Alignment and Retention System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/104,549, filed Dec. 12, 2013, entitled “Alignment System for Providing Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/108,921, filed Dec. 17, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/108,931, filed Dec. 17, 2013, entitled “Elastically Averaged Strap Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/109,296, filed Dec. 17, 2013, entitled “Fastener for Operatively Coupling Matable Components, ” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment Member,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,801, filed Dec. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,888, filed Dec. 19, 2013, entitled “Elastic Retaining Assembly and Method,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/136,502, filed Dec. 20, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Timothy A. Kiester, Steven E. Morris, Kenton L. West, Scott J. Fast, and Evan Phillips.
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/153,741, filed Jan. 13, 2014, entitled “Elastically Averaged Assembly for Closure Applications,” inventors: Steven E. Morris, Jeffrey A. Abell, Jennifer P. Lawall, and Jeffrey L. Konchan.
U.S. Appl. No. 14/180,882, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris.
U.S. Appl. No. 14/181,142, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris.
U.S. Appl. No. 14/185,422, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall and Ashish M. Gollapalli.
U.S. Appl. No. 14/185,472, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Kee Hyuk Im.
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall, and Ashish M. Gollapalli.
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander.
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010.
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and EDIP Sevincer, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechanical Engineers (ASME), Sep. 2006.
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002.
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007.
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechanical Engineering, Dec. 2007.
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of Technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004.
U.S. Appl. No. 13/229,926, filed Sep. 12, 2011, entitled “Using Elastic Averaging for Alignment of Battery Stack, Fuel Cell Stack, or Other Vehicle Assembly”, inventors: Mark A. Smith, Ronald Daul, Xiang Zhao, David Okonski, Elmer Santos, Lane Lindstrom, and Jeffrey A. Abell.
U.S. Appl. No. 13/330,718, filed Dec. 20, 2011, entitled “Precisely Locating Components in an Infrared Welded Assembly”, inventor: Steven E. Morris.
U.S. Appl. No. 13/459,118, filed Apr. 28, 2012, entitled “Stiffened Multi-Layer Compartment Door Assembly Utilizing Elastic Averaging,” inventor: Steven E. Morris.
U.S. Appl. No. 13/567,580, filed Aug. 6, 2012, entitled “Semi-Circular Alignment Features of an Elastic Averaging Alignment System”, inventors: Steven E. Morris and Thomas F. Bowles.
U.S. Appl. No. 13/570,959, filed Aug. 9, 2012, entitled “Elastic Cantilever Beam Alignment System for Precisely Aligning Components”, inventor: Steven E. Morris.
U.S. Appl. No. 13/571,030, filed Aug. 9, 2012, entitled “Elastic Tube Alignment System for Precisely Locating an Emblem Lens to an Outer Bezel”, inventors: Joel Colombo, Steven E. Morris, and Michael D. Richardson.
U.S. Appl. No. 13/752,449, filed Jan. 29, 2013, entitled “Elastic Insert Alignment Assembly and Method of Reducing Positional Variation”, inventors: Steven E. Morris and Michael D. Richardson.
U.S. Appl. No. 13/755,759, filed Jan. 31, 2013, entitled “Elastic Alignment Assembly for Aligning Mated Components and Method of Reducing Positional Variation”, inventors: Joel Colombo, Michael D. Richardson, and Steven E. Morris.
U.S. Appl. No. 13/851,222, filed Mar. 27, 2013, entitled “Elastically Averaged Alignment System”, inventors: Joel Colombo and Steven E. Morris.
U.S. Appl. No. 13/855,928, filed Apr. 3, 2013, entitled “Elastic Averaging Alignment System, Method of Making the Same and Cutting Punch Therefor”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Jeffrey L. Konchan.
U.S. Appl. No. 13/856,888, filed Apr. 4, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Toure D. Lee.
U.S. Appl. No. 13/856,927, filed Apr. 4, 2013, entitled “Elastic Tubular Attachment Assembly for Mating Components and Method of Mating Components ”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/856,956, filed Apr. 4, 2013, entitled “Elastic Clip Retaining Arrangement and Method of Mating Structures with an Elastic Clip Retaining Arrangement”, inventors: Joel Colombo, Steven E. Morris and Jeffrey L. Konchan.
U.S. Appl. No. 13/856,973, filed Apr. 4, 2014, entitled “Elastically Deformable Flange Locator Arrangement and Method of Reducing Positional Variation”, inventors: Joel Colombo, Steven E. Morris and Michael D. Richardson.
U.S. Appl. No. 13/858,478, filed Apr. 8, 2013, entitled “Elastic Mating Assembly and Method of Elastically Assembling Matable Components”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/859,109, filed Apr. 9, 2013, entitled “Elastic Retaining Arrangement for Jointed Components and Method of Reducing a Gap Between Jointed Components,” inventors: Steven E. Morris, James M. Kushner, Victoria L. Enyedy, Jennifer P. Lawall, and Piotr J. Ogonek.
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall.
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Jennifer P. Lawall, and Randy Johnson.
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Steve J. Briggs.
U.S. Appl. No. 13/918,183, filed Jun. 14, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling,” inventors: Steven E. Morris and Jennifer P. Lawall.
Related Publications (1)
Number Date Country
20140369742 A1 Dec 2014 US