Elastic averaging alignment member

Information

  • Patent Grant
  • 9446722
  • Patent Number
    9,446,722
  • Date Filed
    Thursday, December 19, 2013
    11 years ago
  • Date Issued
    Tuesday, September 20, 2016
    8 years ago
Abstract
An elastic averaging alignment member includes a base portion, a first elastic averaging member including a first end portion extending substantially perpendicularly from the base portion to a second end portion and a second elastic averaging member spaced from the first elastic averaging member. The second elastic averaging member includes a first end section extending substantially perpendicularly from the base portion to a second end section. At least one elastic averaging element arranged between the first and second elastic averaging members. At least one of the first and second elastic averaging members and the at least one elastic averaging element is configured and disposed to deform when the elastic averaging alignment member is passed into an alignment member receiver to establish an elastically average position of one component to another component.
Description
FIELD OF THE INVENTION

The subject invention relates to fastening devices and, more particularly, to an elastic averaging alignment member.


BACKGROUND

Currently, components which are to be mated together in a manufacturing process are mutually located with respect to each other by 2-way and/or 4-way male alignment features, typically upstanding bosses, which are received into corresponding female alignment features, typically apertures in the form of holes or slots. There is a clearance between the male alignment features and their respective female alignment features which is predetermined to match anticipated size and positional variation tolerances of the male and female alignment features as a result of manufacturing (or fabrication) variances. As a result, there can occur significant positional variation as between the mated first and second components which may contribute to the presence of undesirably large and varying gaps and otherwise poor fit. Additional undesirable effects including squeaking, rattling and overall poor quality perception based on relative motion of the mated components.


SUMMARY OF THE INVENTION

In accordance with an exemplary embodiment, an elastic averaging alignment member includes a base portion, a first elastic averaging member including a first end portion extending substantially perpendicularly from the base portion to a second end portion and a second elastic averaging member spaced from the first elastic averaging member. The second elastic averaging member includes a first end section extending substantially perpendicularly from the base portion to a second end section. At least one elastic averaging element is arranged between the first and second elastic averaging members. At least one of the first and second elastic averaging members and the at least one elastic averaging element is configured and disposed to deform when the elastic averaging alignment member is passed into an alignment member receiver to establish an elastically average position of one component to another component.


In accordance with another exemplary embodiment, a method of aligning a first substrate to a second substrate with an elastic averaging alignment member includes positioning a first substrate including a plurality of elastic averaging alignment members each having at least two elastic averaging members joined by at least one elastic averaging element relative to a second substrate including a plurality of alignment member receivers, establishing an initial alignment of the plurality of elastic averaging alignment members with respective ones of the alignment member receivers, inserting the at least two elastic averaging members into respective one of the alignment member receivers, and deforming at least one of the at least two elastic averaging members and the at least one elastic averaging element of each of the elastic averaging alignment members to establish a desired final alignment of the first substrate relative to the second substrate.


In yet another exemplary embodiment of the invention, a motor vehicle includes a body having a trim component receiving zone provided with a plurality of alignment member receivers, and a trim component having a base portion provided with a plurality of elastic averaging alignment members. Each of the elastic averaging alignment members include a first elastic averaging member including a first end portion extending substantially perpendicularly from the trim component to a second end portion and a second elastic averaging member spaced from the first elastic averaging member. The second elastic averaging member includes a first end section extending substantially perpendicularly from the trim component to a second end section. At least one elastic averaging element is arranged between the first and second elastic averaging members. At least one of the first and second elastic averaging members and the at least one elastic averaging element is configured and disposed to deform when each of the plurality of elastic averaging alignment members is passed into a corresponding one of the plurality of alignment member receivers to establish an elastically averaged position of the trim component relative to the body.


The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:



FIG. 1 is a perspective view of an elastic averaging alignment member having a plurality of elastic averaging elements in accordance with an exemplary embodiment;



FIG. 2 is a perspective view of the elastic averaging alignment member of FIG. 1 illustrating the plurality of elastic averaging elements in a compressed configuration;



FIG. 3 is a plan view of the elastic averaging alignment member of FIG. 1 engaged with an alignment member receiver;



FIG. 4 is a perspective view of an elastic averaging alignment member in accordance with another aspect of the exemplary embodiment;



FIG. 5 is a perspective view of the elastic averaging alignment member of FIG. 4 engaged with an alignment member receiver;



FIG. 6 is a perspective view of an elastic averaging alignment member in accordance with another aspect of the exemplary embodiment;



FIG. 7 is a plan view of the elastic averaging alignment member of FIG. 6 entering into an alignment member receiver;



FIG. 8 is a plan view of the elastic averaging alignment member of FIG. 7 passing into the alignment member receiver;



FIG. 9 is a plan view of the elastic averaging alignment member of FIG. 8 seated within the alignment member receiver;



FIG. 10 is a partial perspective disassembled view of a motor vehicle and trim component including an elastic averaging alignment member in accordance with the exemplary embodiment; and



FIG. 11 is a partial perspective view of the motor vehicle of FIG. 8 illustrating the trim component joined to a trim component receiving portion through the elastic averaging alignment member in accordance with the exemplary embodiment.





The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.


DESCRIPTION OF THE EMBODIMENTS

The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.


An elastic averaging alignment member in accordance with an exemplary embodiment is indicated generally at 2 in FIG. 1. As used herein, elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. Patent Application No. 2013/0019455, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed herein provide the ability to convert an existing component that is not compatible with the described elastic averaging principles to an assembly that does facilitate elastic averaging and the benefits associated therewith.


Any suitable elastically deformable material may be used. The term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.


Numerous examples of materials that may at least partially form the components include various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS), such as an ABS acrylic. The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The material, or materials, may be selected to provide a predetermined elastic response characteristic. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.


Elastic averaging alignment member 2 includes a base portion 4 that supports a first elastic averaging member 6 and a second elastic averaging member 8. First elastic averaging member 6 extends from a first end portion 12 to a second end portion 13 through an intermediate portion 14. Second end portion 13 includes a lead-in angle section 15. First elastic averaging member 6 extends substantially perpendicularly from base portion 4 and includes a first or exterior surface 16 and an opposing second or interior surface 17. Similarly, second elastic averaging member 8 extends from a first end portion 22 to a second end portion 23 through an intermediate portion 24. Second end portion 23 includes a lead-in angle section 25. Lead-in angle sections 15 and 25 facilitate insertion of elastic averaging alignment member 2 into an alignment member receiver as will be detailed more fully below. Second elastic averaging member 8 extends substantially perpendicularly from base portion 4 and is spaced from, and generally parallel to, first elastic averaging member 6. Second elastic averaging member 8 includes a first or exterior surface 26 and a second or interior surface 27.


In accordance with an exemplary embodiment, a web 34 extends between interior surface 17 of first elastic averaging member 6 and interior surface 27 of second elastic averaging member 8. Web 34 includes a first end 35 and a second end 36. In the exemplary embodiment shown, first end 35 is joined with base portion 4. However, it should be understood that first end 35 may also be spaced from base portion 4. Web 34 includes a plurality of elastic averaging elements, one of which is indicated at 38. Elastic averaging elements 38 are defined by a plurality of openings or gaps 41 that extend from second end 36 toward first end 35. In accordance with the exemplary aspect shown, openings 41 take the form of V-shaped notches 43 that terminate in a strain relief section 46. However it is understood that the notches could be shapes other than V-shaped and could, for example, be U-shaped. Strain relief section 46 substantially prevents openings 41 from extending completely through web 34 to first end 35.


As shown in FIGS. 2 and 3, when elastic averaging alignment member 2 is placed within an alignment member receiver 47, elastic averaging elements 38 are compressed. More specifically, alignment member receiver 47 takes the form of an opening 48 defined by a plurality of edge or side portions 50, which are indicated in FIG. 3. Two opposing side portions 50 interact with first and second elastic averaging members 6 and 8 causing elastic averaging elements 38 to come together. At this point, elastic averaging elements 38 exert an outward force on first and second elastic averaging members 6 and 8 causing an inter-engagement of elastic averaging alignment member 2 and alignment member receiver 47. In addition to an elastic deformation in elastic averaging element 38, first and second elastic averaging members 6 and 8 may also elastically deform to contribute to establishing an elastically averaged position of one component to another component. More specifically, the compression of elastic averaging element 38 and/or first and second elastic averaging members 6 and 8, when combined with compression of elastic averaging elements and/or members associated with additional elastic averaging alignment members, allows for components to be aligned or positioned. More specifically, each elastic averaging element and/or elastic averaging member may compress differently and also allow for further manipulation so that components that may be misaligned without elastic averaging, may now be aligned to one another to establish a desired fit and finish.


Reference will now follow to FIGS. 4 and 5 in describing an elastic averaging alignment member 60 in accordance with another aspect of the exemplary embodiment. Elastic averaging alignment member 60 includes a base portion 62 that supports a first elastic averaging member 64 and a second elastic averaging member 66. First elastic averaging member 64 extends from a first end portion 70 to a second end portion 71 through an intermediate portion 72. Second end portion 71 includes a lead-in angle section 73. First elastic averaging member 64 extends substantially perpendicularly from base portion 62 and includes a first or exterior surface 74 and an opposing second or interior surface 75. Similarly, second elastic averaging member 66 extends from a first end portion 80 to a second end portion 81 through an intermediate portion 82. Second end portion 81 includes a lead-in angle section 83. Lead-in angle sections 73 and 83 facilitate insertion of elastic averaging alignment member 60 into a mating component. Second elastic averaging member 66 extends substantially perpendicularly from base portion 62 and is spaced from, and generally parallel to, first elastic averaging member 64. Second elastic averaging member 66 includes a first or exterior surface 84 and a second or interior surface 85.


In accordance with the exemplary aspect shown, a web 88 extends between interior surface 75 of first elastic averaging member 64 and interior surface 85 of second elastic averaging member 66. Web 88 includes a first end 89 and a second end 90. In the exemplary embodiment shown, first end 89 is joined with base portion 62. However, it should be understood that first end 89 may also be spaced from base portion 62. Web 88 includes a plurality of elastic averaging elements, one of which is indicated at 92. Elastic averaging elements 92 are defined by a plurality of openings 94 that extend along web 88 between first end 89 and second end 90. In accordance with the exemplary aspect shown, openings 94 include a generally rectangular shape.


When elastic averaging alignment member 60 is placed within an alignment member receiver 96, openings 94 facilitate a bending moment of elastic averaging elements 92. More specifically, alignment member receiver 96 takes the form of an opening 98 defined by a plurality of edge or side portions, one of which is indicated at 100. Two opposing side portions 100 interact with first and second elastic averaging members 64 and 66 causing web 88 to compress inward. At this point, web 88 exerts an outward force on first and second elastic averaging members 64 and 66 causing an inter-engagement of elastic averaging alignment member 60 and alignment member receiver 96. First and second elastic averaging members 64 and 66 may also elastically deform. The compression of web 88 and/or elastic averaging members 64 and 66, when combined with compression/bending/deflection of webs and/or elastic averaging members associated with additional elastic averaging alignment members, allows for components to be aligned with much better precision. More specifically, each elastic averaging element may compress/bend/deflect differently and also allow for further manipulation so that components that may have poor alignment and fit prior to elastic averaging may now be aligned to establish a desired fit and finish.


Reference will now follow to FIGS. 6 and 7 in describing an elastic averaging alignment member 120 in accordance with another aspect of the exemplary embodiment. Elastic averaging alignment member 120 includes a base portion 122 that supports a first elastic averaging member 124 and a second elastic averaging member 126. First elastic averaging member 124 extends from a first end portion 130 to a second end portion 131 through an intermediate portion 132. Second end portion 131 includes a distal section 133. First elastic averaging member 124 extends substantially perpendicularly from base portion 122 and includes a first or exterior surface 134 and an opposing second or interior surface 135. Exterior surface 134 includes a first rib 136 and a second rib 137. First and second ribs 136 and 137 taper inwardly from first end portion 130 toward second end portion 131 to act as a lead-in. Similarly, second elastic averaging member 126 extends from a first end portion 139 to a second end portion 140 through an intermediate portion 141. Second end portion 131 includes a distal section 143. Second elastic averaging member 126 extends substantially perpendicularly from base portion 122 and is spaced from, and generally parallel to, first elastic averaging member 124. Second elastic averaging member 126 includes a first or exterior surface 144 and a second or interior surface 145. Exterior surface 144 includes a first rib 147 and a second rib 148. Ribs 147 and 148 taper inwardly from first end portion 139 toward second end portion 140 to act as a lead-in. The lead-ins provided by the first and second ribs 136, 147 and 137, 148 facilitate insertion of elastic averaging alignment member 120 into an alignment member receiver 165.


In accordance with the exemplary aspect shown, an elastic averaging element 153, shown in the form of a web 154, extends between interior surface 135 of first elastic averaging member 124 and interior surface 145 of second elastic averaging member 126. Web 154 includes a first end 155 and a second end 156. As discussed above, first end 155 is illustrated as being joined with base portion 122. However, it should be understood that first end 155 may also be spaced from base portion 122. A retaining clip 160 is positioned upon web 154.


The retaining clip 160 includes a clip member 163 and a spring member 1600 configured and disposed to engage with a portion 1601 of the alignment member receiver 165. The portion 1601 of the alignment member receiver 165 includes a tab 166 and a flange 167, which interferes with the tab 166 to thereby establish retention capability for elastic averaging alignment member 120.


As shown in FIG. 7, lead-ins provided by the first and second ribs 136, 147 and 137, 148 (see FIG. 6) facilitate insertion of elastic averaging alignment member 120 into the alignment member receiver 165, which is defined by a plurality of walls 168-171. As elastic averaging alignment member 120 is passed into alignment member receiver 165, ribs 136 and 137 engage with wall 171 and ribs 147 and 148 engage with wall 169 as shown in FIG. 8. As elastic averaging alignment member 120 continues to pass into alignment member receiver 165, ribs 135, 136 and 147, 148 cause first and second elastic averaging members 124 and 126 to deflect or bend around element 153 as shown in FIG. 9. The bending of first and second elastic averaging members 124 and 126 facilitates an elastically averaged alignment of components. The interference between the tab 166 and the flange 167 establish a mechanical stop for any attempt at continued insertion beyond the point of contact between the tab 166 and the flange 167. In addition, the spring member 1600 engages with the portion 1601 of the alignment member receiver 165 to establish retention capability.


Elastic averaging alignment members, as described above, may be employed in a wide range of configurations to facilitate a desired alignment of components to achieve a desired fit and finish. For example, as shown in FIGS. 10 and 11, a motor vehicle 190 includes a body 192 having a trim component receiving portion 195. Trim component receiving portion 195 is provided as a second component with a plurality of alignment member receivers, one of which is illustrated at 198. A trim component, such as shown at 203, is provided as a first component and includes a base portion 205 from which extend elastic averaging alignment members 208. Elastic averaging alignment members 208 are initially and roughly aligned with and then inter-engaged with alignment member receivers 198 to position and align trim component 203 to body 192 at trim component receiving portion 195. The use of elastic averaging alignment members allows for a much more desirable alignment then prior methods with manufactured clearances that established misalignments that would have previously resulted in a less than desirable fit and finish.


While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.

Claims
  • 1. An elastic averaging alignment member comprising: a base portion;a first elastic averaging member including a first end portion extending substantially perpendicularly from the base portion to a second end portion;a second elastic averaging member spaced from the first elastic averaging member, the second elastic averaging member including a first end section extending substantially perpendicularly from the base portion to a second end section; andat least one elastic averaging element arranged between the first and second elastic averaging members,wherein, when the elastic averaging alignment member is passed into an alignment member receiver to establish an elastically averaged position of one component to another component, at least one of the first and second elastic averaging members deforms toward the other of the first and second elastic averaging members and the at least one elastic averaging element deforms within a plane thereof.
  • 2. The elastic averaging alignment member according to claim 1, wherein the at least one elastic averaging element defines a web extending between the first and second elastic averaging members, the web including a first end arranged at the base portion that extends to a second end.
  • 3. The elastic averaging alignment member according to claim 2, further comprising a retaining clip operably disposed on the web.
  • 4. The elastic averaging alignment member according to claim 2, wherein web is formed to define a plurality of openings.
  • 5. The elastic averaging alignment member according to claim 4, wherein the plurality of openings extend between the first end and the second end of the web.
  • 6. The elastic averaging alignment member according to claim 4, wherein each of the plurality of openings is substantially rectangular.
  • 7. The elastic averaging alignment member according to claim 4, wherein each of the plurality of openings extends along the web through the second end to define at least one strain relief section and at least one V-shaped notch terminating at the strain relief section.
  • 8. The elastic averaging alignment member according to claim 1, wherein the first elastic averaging member includes a first surface and an opposing second surface, the first surface including at least two ribs defining lead-ins facilitating insertion of the first and second elastic averaging alignment members into the alignment member receiver.
  • 9. The elastic averaging alignment member according to claim 8, wherein each of the at least two ribs extends substantially perpendicularly from the first surface.
  • 10. The elastic averaging alignment member according to claim 9, wherein each of the at least two ribs includes a first rib extending substantially perpendicularly from the first surface and a second rib extending substantially perpendicularly from the first surface and being spaced from the first rib.
  • 11. A method of aligning a first substrate to a second substrate with elastic averaging alignment members, the method comprising: positioning the first substrate including a plurality of elastic averaging alignment members having at least two elastic averaging members joined by at least one elastic averaging element relative to the second substrate including a plurality of alignment member receivers;initially aligning the plurality of elastic averaging alignment members with respective ones of the plurality of alignment member receivers;inserting the at least two elastic averaging members into one of the alignment member receivers; anddeforming at least one of the at least two elastic averaging members the other of the at least two elastic averaging members and the at least one elastic averaging element within a plane thereof to establish a desired final alignment of the first substrate relative to the second substrate.
  • 12. The method of claim 11, wherein deforming at least one of the at least two elastic averaging members and the at least one elastic averaging element comprises compressing at least one of elastic averaging elements to close at least one of notches formed in a web extending between first and second elastic averaging members.
  • 13. The method of claim 11, wherein deforming at least one of the at least two elastic averaging members and the at least one elastic averaging element comprises compressing a plurality of elastic averaging elements to close a plurality of openings having a generally rectangular cross-section formed in a web extending between first and second elastic averaging members.
  • 14. The method of claim 11, wherein inserting the plurality of elastic averaging alignment members into one of the plurality of alignment member receivers includes bending the at least two elastic averaging members about the at least one elastic averaging element.
  • 15. A motor vehicle comprising: a body having a trim component receiving portion provided with a plurality of alignment member receivers; anda trim component having a base portion provided with a plurality of elastically averaging alignment members; each of the plurality of elastic averaging alignment members comprising:a first elastic averaging member including a first end portion extending substantially perpendicularly from the base portion to a second end portion;a second elastic averaging member spaced from the first elastic averaging member, the second elastic averaging member including a first end portion extending substantially perpendicularly from the base portion to a second end portion; andat least one elastic averaging element arranged between the first and second elastic averaging members,wherein, when each of the plurality of alignment members are passed into corresponding ones of the plurality of alignment member receivers to establish an elastically average position of the trim component relative to the body, at least one of the first and second elastic averaging members deforms toward the other of the first and second elastic averaging members and the at least one elastic averaging element deforms within a plane thereof.
  • 16. The motor vehicle according to claim 15, wherein the at least one elastic averaging element defines a web extending between the first and second elastic averaging members, the web including a first end coupled to the base portion that extends to a second end.
  • 17. The motor vehicle according to claim 16, wherein the at least one elastic averaging element comprises a plurality of elastic averaging elements defined by a plurality of openings formed in the web, the plurality of openings extending between the first end and the second end of the web.
  • 18. The motor vehicle according to claim 17, wherein the plurality of openings are substantially rectangular.
  • 19. The motor vehicle according to claim 17, wherein the plurality of openings extend along the web through the second end to define a plurality of strain relief sections and a plurality of V-shaped notches terminating at the plurality of strain relief sections.
  • 20. The motor vehicle according to claim 15, wherein the first elastic averaging member includes a first surface and an opposing second surface coupled to the at least one elastic averaging element, the first surface including a lead-in defining first rib extending substantially perpendicularly from a first end of the first surface and a lead-in defining second rib extending substantially perpendicularly from a second, opposing end of the first surface.
US Referenced Citations (510)
Number Name Date Kind
419358 Raymond Jan 1890 A
1219398 Huntsman Mar 1917 A
1261036 Kerns Apr 1918 A
1301302 Nolan Apr 1919 A
1556233 Maise Oct 1925 A
1819126 Scheibe Aug 1931 A
1929848 Neely Oct 1933 A
1968168 Place Jul 1934 A
1982076 Spahn Nov 1934 A
2006525 Thal Jul 1935 A
2267558 Birger et al. Dec 1941 A
2275103 Gooch et al. Mar 1942 A
2275900 Hall Mar 1942 A
2385180 Allen Sep 1945 A
2482488 Franc Sep 1949 A
2560530 Burdick Jul 1951 A
2612139 Collins Sep 1952 A
2688894 Modrey Sep 1954 A
2693014 Monahan Nov 1954 A
2707607 O'Connor May 1955 A
2778399 Mroz Jan 1957 A
2780128 Rapata Feb 1957 A
2788046 Joseph Apr 1957 A
2862040 Curran Nov 1958 A
2902902 Slone Sep 1959 A
2940149 O'Connor Jun 1960 A
2946612 Ahlgren Jul 1960 A
2958230 Haroldson Nov 1960 A
3005282 Christiansen Oct 1961 A
3014563 Bratton Dec 1961 A
3087352 Daniel Apr 1963 A
3089269 McKiernan May 1963 A
3130512 Van Buren, Jr. Apr 1964 A
3152376 Boser Oct 1964 A
3168961 Yates Feb 1965 A
3169004 Rapata Feb 1965 A
3169439 Rapata Feb 1965 A
3188731 Sweeney Jun 1965 A
3194292 Borowsky Jul 1965 A
3213189 Mitchell et al. Oct 1965 A
3230592 Hosea Jan 1966 A
3233358 Dehm Feb 1966 A
3233503 Birger Feb 1966 A
3244057 Mathison Apr 1966 A
3248995 Meyer May 1966 A
3291495 Liebig Dec 1966 A
3310929 Garvey Mar 1967 A
3413752 Perry Dec 1968 A
3473283 Meyer Oct 1969 A
3531850 Durand Oct 1970 A
3551963 Long Jan 1971 A
3669484 Bernitz Jun 1972 A
3680272 Meyer Aug 1972 A
3733655 Kolibar May 1973 A
3800369 Nikolits Apr 1974 A
3841044 Brown Oct 1974 A
3841682 Church Oct 1974 A
3842565 Brown et al. Oct 1974 A
3845961 Byrd, III Nov 1974 A
3847492 Kennicutt et al. Nov 1974 A
3860209 Strecker Jan 1975 A
3868804 Tantlinger Mar 1975 A
3895408 Leingang Jul 1975 A
3897967 Barenyl Aug 1975 A
3905570 Nieuwveld Sep 1975 A
3972550 Boughton Aug 1976 A
3988808 Poe et al. Nov 1976 A
4035874 Liljendahl Jul 1977 A
4039215 Minhinnick Aug 1977 A
4042307 Jarvis Aug 1977 A
4043585 Yamanaka Aug 1977 A
4158511 Herbenar Jun 1979 A
4169297 Weihrauch Oct 1979 A
4193588 Doneaux Mar 1980 A
4213675 Pilhall Jul 1980 A
4237573 Weihrauch Dec 1980 A
4267680 Delattre May 1981 A
4300851 Thelander Nov 1981 A
4313609 Clements Feb 1982 A
4318208 Borja Mar 1982 A
4325574 Umemoto et al. Apr 1982 A
4363839 Watanabe et al. Dec 1982 A
4364150 Remington Dec 1982 A
4384803 Cachia May 1983 A
4406033 Chisholm et al. Sep 1983 A
4477142 Cooper Oct 1984 A
4481160 Bree Nov 1984 A
4527760 Salacuse Jul 1985 A
4575060 Kitagawa Mar 1986 A
4599768 Doyle Jul 1986 A
4605575 Auld et al. Aug 1986 A
4616951 Maatela Oct 1986 A
4648649 Beal Mar 1987 A
4654760 Matheson et al. Mar 1987 A
4745656 Revlett May 1988 A
4757655 Nentoft Jul 1988 A
4767647 Bree Aug 1988 A
4805272 Yamaguchi Feb 1989 A
4807335 Candea Feb 1989 A
4817999 Drew Apr 1989 A
4819983 Alexander et al. Apr 1989 A
4843975 Welsch Jul 1989 A
4843976 Pigott et al. Jul 1989 A
4865502 Maresch Sep 1989 A
4881764 Takahashi et al. Nov 1989 A
4917426 Copp Apr 1990 A
4973212 Jacobs Nov 1990 A
4977648 Eckerud Dec 1990 A
5005265 Muller Apr 1991 A
5039267 Wollar Aug 1991 A
5111557 Baum May 1992 A
5139285 Lasinski Aug 1992 A
5154479 Sautter, Jr. Oct 1992 A
5165749 Sheppard Nov 1992 A
5170985 Killworth et al. Dec 1992 A
5180219 Geddie Jan 1993 A
5208507 Jung May 1993 A
5212853 Kaneko May 1993 A
5234122 Cherng Aug 1993 A
5250001 Hansen Oct 1993 A
5297322 Kraus Mar 1994 A
5309663 Shirley May 1994 A
5339491 Sims Aug 1994 A
5342139 Hoffman Aug 1994 A
5368427 Pfaffinger Nov 1994 A
5368797 Quentin et al. Nov 1994 A
5397206 Sihon Mar 1995 A
5407310 Kassouni Apr 1995 A
5446965 Makridis Sep 1995 A
5507610 Benedetti et al. Apr 1996 A
5524786 Skudlarek Jun 1996 A
5538079 Pawlick Jul 1996 A
5556808 Williams et al. Sep 1996 A
5566840 Waldner Oct 1996 A
5575601 Skufca Nov 1996 A
5577301 DeMaagd Nov 1996 A
5577779 Dangel Nov 1996 A
5580204 Hultman Dec 1996 A
5586372 Eguchi et al. Dec 1996 A
5593265 Kizer Jan 1997 A
5601453 Horchler Feb 1997 A
5629823 Mizuta May 1997 A
5634757 Schanz Jun 1997 A
5657516 Berg et al. Aug 1997 A
5667271 Booth Sep 1997 A
5670013 Huang et al. Sep 1997 A
5698276 Mirabitur Dec 1997 A
5736221 Hardigg et al. Apr 1998 A
5765942 Shirai et al. Jun 1998 A
5775860 Meyer Jul 1998 A
5795118 Osada et al. Aug 1998 A
5797170 Akeno Aug 1998 A
5797714 Oddenino Aug 1998 A
5803646 Weihrauch Sep 1998 A
5806915 Takabatake Sep 1998 A
5810535 Fleckenstein et al. Sep 1998 A
5820292 Fremstad Oct 1998 A
5846631 Nowosiadly Dec 1998 A
5920200 Pendse Jul 1999 A
5929382 Moore Jul 1999 A
5934729 Baack Aug 1999 A
5941673 Hayakawa et al. Aug 1999 A
5988678 Nakamura Nov 1999 A
6073315 Rasmussen Jun 2000 A
6079083 Akashi Jun 2000 A
6095594 Riddle et al. Aug 2000 A
6103987 Nordquist Aug 2000 A
6109882 Popov Aug 2000 A
6152436 Sonderegger et al. Nov 2000 A
6164603 Kawai Dec 2000 A
6193430 Culpepper et al. Feb 2001 B1
6199248 Akashi Mar 2001 B1
6202962 Snyder Mar 2001 B1
6209175 Gershenson Apr 2001 B1
6209178 Wiese et al. Apr 2001 B1
6254304 Takizawa et al. Jul 2001 B1
6264869 Notarpietro et al. Jul 2001 B1
6289560 Guyot Sep 2001 B1
6299478 Jones et al. Oct 2001 B1
6321495 Oami Nov 2001 B1
6336767 Nordquist et al. Jan 2002 B1
6345420 Nabeshima Feb 2002 B1
6349904 Polad Feb 2002 B1
6351380 Curlee Feb 2002 B1
6354815 Svihla et al. Mar 2002 B1
6378931 Kolluri et al. Apr 2002 B1
6398449 Loh Jun 2002 B1
6470540 Aamodt et al. Oct 2002 B2
6484370 Kanie et al. Nov 2002 B2
6485241 Oxford Nov 2002 B1
6498297 Samhammer Dec 2002 B2
6523229 Severson Feb 2003 B2
6523817 Landry, Jr. Feb 2003 B1
6533391 Pan Mar 2003 B1
6543979 Iwatsuki Apr 2003 B2
6557260 Morris May 2003 B1
6568701 Burdack et al. May 2003 B1
6579397 Spain et al. Jun 2003 B1
6591801 Fonville Jul 2003 B1
6609717 Hinson Aug 2003 B2
6637095 Stumpf et al. Oct 2003 B2
6658698 Chen Dec 2003 B2
6662411 Rubenstein Dec 2003 B2
6664470 Nagamoto Dec 2003 B2
6677065 Blauer Jan 2004 B2
6692016 Yokota Feb 2004 B2
6712329 Ishigami et al. Mar 2004 B2
6746172 Culpepper Jun 2004 B2
6757942 Matsui Jul 2004 B2
6799758 Fries Oct 2004 B2
6821091 Lee Nov 2004 B2
6840969 Kobayashi et al. Jan 2005 B2
6857676 Kawaguchi et al. Feb 2005 B2
6857809 Granata Feb 2005 B2
6908117 Pickett, Jr. et al. Jun 2005 B1
6932416 Clauson Aug 2005 B2
6948753 Yoshida et al. Sep 2005 B2
6951349 Yokota Oct 2005 B2
6957939 Wilson Oct 2005 B2
6959954 Brandt et al. Nov 2005 B2
6966601 Matsumoto et al. Nov 2005 B2
6971831 Fattori et al. Dec 2005 B2
6997487 Kitzis Feb 2006 B2
7000941 Yokota Feb 2006 B2
7008003 Hirose et al. Mar 2006 B1
7014094 Alcoe Mar 2006 B2
7017239 Kurily et al. Mar 2006 B2
7036779 Kawaguchi et al. May 2006 B2
7055785 Diggle, III Jun 2006 B1
7055849 Yokota Jun 2006 B2
7059628 Yokota Jun 2006 B2
7073260 Jensen Jul 2006 B2
7089998 Crook Aug 2006 B2
7097198 Yokota Aug 2006 B2
7121611 Hirotani et al. Oct 2006 B2
7144183 Lian et al. Dec 2006 B2
7165310 Murakami et al. Jan 2007 B2
7172210 Yokota Feb 2007 B2
7178855 Catron et al. Feb 2007 B2
7198315 Cass et al. Apr 2007 B2
7207758 Leon et al. Apr 2007 B2
7234852 Nishizawa et al. Jun 2007 B2
7306418 Kornblum Dec 2007 B2
7322500 Maierholzner Jan 2008 B2
7344056 Shelmon et al. Mar 2008 B2
7360964 Tsuya Apr 2008 B2
7369408 Chang May 2008 B2
7435031 Granata Oct 2008 B2
7454105 Yi Nov 2008 B2
7487884 Kim Feb 2009 B2
7493716 Brown Feb 2009 B2
7500440 Chiu Mar 2009 B2
7547061 Horimatsu Jun 2009 B2
7557051 Ryu et al. Jul 2009 B2
7568316 Choby et al. Aug 2009 B2
7591573 Maliar et al. Sep 2009 B2
D602349 Andersson Oct 2009 S
7614836 Mohiuddin Nov 2009 B2
7672126 Yeh Mar 2010 B2
7677650 Huttenlocher Mar 2010 B2
7727667 Sakurai Jun 2010 B2
7764853 Yi et al. Jul 2010 B2
7793998 Matsui et al. Sep 2010 B2
7802831 Isayama et al. Sep 2010 B2
7803015 Pham Sep 2010 B2
7828372 Ellison Nov 2010 B2
7832693 Moerke et al. Nov 2010 B2
7862272 Nakajima Jan 2011 B2
7869003 Van Doren et al. Jan 2011 B2
7883137 Bar Feb 2011 B2
7922415 Rudduck et al. Apr 2011 B2
7946684 Drury et al. May 2011 B2
8029222 Nitsche Oct 2011 B2
8061861 Paxton et al. Nov 2011 B2
8101264 Pace et al. Jan 2012 B2
8136819 Yoshitsune et al. Mar 2012 B2
8162375 Gurtatowski et al. Apr 2012 B2
8203496 Miller et al. Jun 2012 B2
8203843 Chen Jun 2012 B2
8206029 Vaucher et al. Jun 2012 B2
8228640 Woodhead et al. Jul 2012 B2
8249679 Cui Aug 2012 B2
8261581 Cerruti et al. Sep 2012 B2
8263889 Takahashi et al. Sep 2012 B2
8276961 Kwolek Oct 2012 B2
8291553 Moberg Oct 2012 B2
8297137 Dole Oct 2012 B2
8297661 Proulx et al. Oct 2012 B2
8312887 Dunn et al. Nov 2012 B2
8371788 Lange Feb 2013 B2
8414048 Kwolek Apr 2013 B1
8444199 Takeuchi et al. May 2013 B2
8572818 Hofmann Nov 2013 B2
8619504 Wyssbrod Dec 2013 B2
8677573 Lee Mar 2014 B2
8695201 Morris Apr 2014 B2
8720016 Beaulieu May 2014 B2
8726473 Dole May 2014 B2
8746801 Nakata Jun 2014 B2
8773846 Wang Jul 2014 B2
8826499 Tempesta Sep 2014 B2
8833771 Lesnau Sep 2014 B2
8833832 Whipps Sep 2014 B2
8834058 Woicke Sep 2014 B2
8905812 Pai-Chen Dec 2014 B2
8910350 Poulakis Dec 2014 B2
9003891 Frank Apr 2015 B2
9039318 Mantei et al. May 2015 B2
9050690 Hammer et al. Jun 2015 B2
9061403 Colombo et al. Jun 2015 B2
9061715 Morris Jun 2015 B2
9062991 Kanagaraj Jun 2015 B2
9067625 Morris Jun 2015 B2
9194413 Christoph Nov 2015 B2
20010016986 Bean Aug 2001 A1
20010030414 Yokota Oct 2001 A1
20010045757 Hideki et al. Nov 2001 A1
20020045086 Tsuji et al. Apr 2002 A1
20020060275 Polad May 2002 A1
20020092598 Jones et al. Jul 2002 A1
20020136617 Imahigashi Sep 2002 A1
20030007831 Lian et al. Jan 2003 A1
20030059255 Kirchen Mar 2003 A1
20030080131 Fukuo May 2003 A1
20030082986 Wiens et al. May 2003 A1
20030085618 Rhodes May 2003 A1
20030087047 Blauer May 2003 A1
20030108401 Agha et al. Jun 2003 A1
20030180122 Dobson Sep 2003 A1
20040028503 Charles Feb 2004 A1
20040037637 Lian et al. Feb 2004 A1
20040052574 Grubb Mar 2004 A1
20040131896 Blauer Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040140651 Yokota Jul 2004 A1
20040208728 Fattori et al. Oct 2004 A1
20040262873 Wolf et al. Dec 2004 A1
20050016116 Scherff Jan 2005 A1
20050031946 Kruger et al. Feb 2005 A1
20050042057 Konig et al. Feb 2005 A1
20050054229 Tsuya Mar 2005 A1
20050082449 Kawaguchi et al. Apr 2005 A1
20050109489 Kobayashi May 2005 A1
20050156409 Yokota Jul 2005 A1
20050156410 Yokota Jul 2005 A1
20050156416 Yokota Jul 2005 A1
20050217088 Lin Oct 2005 A1
20050244250 Okada et al. Nov 2005 A1
20060082187 Hernandez et al. Apr 2006 A1
20060092653 Tachiiwa et al. May 2006 A1
20060102214 Clemons May 2006 A1
20060110109 Yu May 2006 A1
20060113755 Yokota Jun 2006 A1
20060125286 Horimatsu et al. Jun 2006 A1
20060141318 MacKinnon et al. Jun 2006 A1
20060163902 Engel Jul 2006 A1
20060170242 Forrester et al. Aug 2006 A1
20060197356 Catron et al. Sep 2006 A1
20060202449 Yokota Sep 2006 A1
20060237995 Huttenlocher Oct 2006 A1
20060249520 DeMonte Nov 2006 A1
20060264076 Chen Nov 2006 A1
20070034636 Fukuo Feb 2007 A1
20070040411 Dauvergne Feb 2007 A1
20070051572 Beri Mar 2007 A1
20070113483 Hernandez May 2007 A1
20070113485 Hernandez May 2007 A1
20070126211 Moerke et al. Jun 2007 A1
20070137018 Aigner et al. Jun 2007 A1
20070144659 De La Fuente Jun 2007 A1
20070205627 Ishiguro Sep 2007 A1
20070227942 Hirano Oct 2007 A1
20070251055 Gerner Nov 2007 A1
20070274777 Winkler Nov 2007 A1
20070292205 Duval Dec 2007 A1
20080014508 Van Doren et al. Jan 2008 A1
20080018128 Yamagiwa et al. Jan 2008 A1
20080073888 Enriquez Mar 2008 A1
20080094447 Drury et al. Apr 2008 A1
20080128346 Bowers Jun 2008 A1
20080196535 Dole Aug 2008 A1
20080217796 Van Bruggen et al. Sep 2008 A1
20080260488 Scroggie et al. Oct 2008 A1
20090028506 Yi et al. Jan 2009 A1
20090072591 Baumgartner Mar 2009 A1
20090091156 Neubrand Apr 2009 A1
20090093111 Buchwalter et al. Apr 2009 A1
20090126168 Kobe et al. May 2009 A1
20090134652 Araki May 2009 A1
20090140112 Carnevali Jun 2009 A1
20090141449 Yeh Jun 2009 A1
20090154303 Vaucher et al. Jun 2009 A1
20090174207 Lota Jul 2009 A1
20090243172 Ting et al. Oct 2009 A1
20090265896 Beak Oct 2009 A1
20090309388 Ellison Dec 2009 A1
20100000156 Salhoff Jan 2010 A1
20100001539 Kikuchi et al. Jan 2010 A1
20100021267 Nitsche Jan 2010 A1
20100061045 Chen Mar 2010 A1
20100102538 Paxton et al. Apr 2010 A1
20100134128 Hobbs Jun 2010 A1
20100147355 Shimizu et al. Jun 2010 A1
20100162537 Shiba Jul 2010 A1
20100232171 Cannon Sep 2010 A1
20100247034 Yi et al. Sep 2010 A1
20100263417 Shoenow Oct 2010 A1
20100270745 Hurlbert et al. Oct 2010 A1
20100307848 Hashimoto Dec 2010 A1
20110012378 Ueno et al. Jan 2011 A1
20110036542 Woicke Feb 2011 A1
20110076588 Yamaura Mar 2011 A1
20110083392 Timko Apr 2011 A1
20110103884 Shiomoto et al. May 2011 A1
20110119875 Iwasaki May 2011 A1
20110131918 Glynn Jun 2011 A1
20110154645 Morgan Jun 2011 A1
20110175376 Whitens et al. Jul 2011 A1
20110183152 Lanham Jul 2011 A1
20110191990 Beaulieu Aug 2011 A1
20110191993 Forrest Aug 2011 A1
20110207024 Bogumil et al. Aug 2011 A1
20110239418 Huang Oct 2011 A1
20110296764 Sawatani et al. Dec 2011 A1
20110311332 Ishman Dec 2011 A1
20120000291 Christoph Jan 2012 A1
20120000409 Railey Jan 2012 A1
20120020726 Jan Jan 2012 A1
20120073094 Bishop Mar 2012 A1
20120112489 Okimoto May 2012 A1
20120115010 Smith et al. May 2012 A1
20120240363 Lee Sep 2012 A1
20120251226 Liu et al. Oct 2012 A1
20120261951 Mildner et al. Oct 2012 A1
20120301067 Morgan Nov 2012 A1
20120311829 Dickinson Dec 2012 A1
20120321379 Wang et al. Dec 2012 A1
20120324795 Krajenke et al. Dec 2012 A1
20130017038 Kestner et al. Jan 2013 A1
20130019454 Colombo et al. Jan 2013 A1
20130019455 Morris Jan 2013 A1
20130027852 Wang Jan 2013 A1
20130055822 Frank Mar 2013 A1
20130071181 Herzinger et al. Mar 2013 A1
20130157015 Morris Jun 2013 A1
20130212858 Herzinger et al. Aug 2013 A1
20130269873 Herzinger et al. Oct 2013 A1
20130287992 Morris Oct 2013 A1
20140033493 Morris et al. Feb 2014 A1
20140041176 Morris Feb 2014 A1
20140041185 Morris et al. Feb 2014 A1
20140041199 Morris Feb 2014 A1
20140042704 Polewarczyk Feb 2014 A1
20140047691 Colombo et al. Feb 2014 A1
20140047697 Morris Feb 2014 A1
20140080036 Smith et al. Mar 2014 A1
20140132023 Watanabe May 2014 A1
20140157578 Morris et al. Jun 2014 A1
20140159412 Morris Jun 2014 A1
20140172112 Marter Jun 2014 A1
20140175774 Kansteiner Jun 2014 A1
20140199116 Metten et al. Jul 2014 A1
20140202628 Sreetharan et al. Jul 2014 A1
20140208561 Colombo et al. Jul 2014 A1
20140208572 Colombo et al. Jul 2014 A1
20140220267 Morris et al. Aug 2014 A1
20140264206 Morris Sep 2014 A1
20140292013 Colombo et al. Oct 2014 A1
20140298638 Colombo et al. Oct 2014 A1
20140298640 Morris et al. Oct 2014 A1
20140298962 Morris et al. Oct 2014 A1
20140300130 Morris et al. Oct 2014 A1
20140301103 Colombo et al. Oct 2014 A1
20140301777 Morris et al. Oct 2014 A1
20140301778 Morris et al. Oct 2014 A1
20140360824 Morris et al. Dec 2014 A1
20140360826 Morris et al. Dec 2014 A1
20140366326 Colombo et al. Dec 2014 A1
20140369742 Morris et al. Dec 2014 A1
20140369743 Morris et al. Dec 2014 A1
20150016864 Morris et al. Jan 2015 A1
20150016918 Colombo Jan 2015 A1
20150023724 Morris et al. Jan 2015 A1
20150050068 Morris et al. Feb 2015 A1
20150052725 Morris et al. Feb 2015 A1
20150056009 Morris Feb 2015 A1
20150063943 Morris Mar 2015 A1
20150069779 Morris et al. Mar 2015 A1
20150078805 Morris et al. Mar 2015 A1
20150086265 Morris Mar 2015 A1
20150093178 Morris Apr 2015 A1
20150093179 Morris et al. Apr 2015 A1
20150115656 Lungershausen Apr 2015 A1
20150135509 Morris et al. May 2015 A1
20150165609 Morris et al. Jun 2015 A1
20150165985 Morris Jun 2015 A1
20150166124 Morris Jun 2015 A1
20150167717 Morris Jun 2015 A1
20150167718 Morris et al. Jun 2015 A1
20150174740 Morris et al. Jun 2015 A1
20150175091 Morris et al. Jun 2015 A1
20150175217 Morris et al. Jun 2015 A1
20150175219 Kiester Jun 2015 A1
20150176759 Morris et al. Jun 2015 A1
20150194650 Morris et al. Jul 2015 A1
20150197970 Morris et al. Jul 2015 A1
20150232131 Morris et al. Aug 2015 A1
20150274217 Colombo Oct 2015 A1
20150291222 Colombo et al. Oct 2015 A1
20150375798 Morris et al. Dec 2015 A1
Foreign Referenced Citations (111)
Number Date Country
1036250 Oct 1989 CN
1129162 Aug 1996 CN
2285844 Jul 1998 CN
1205285 Jan 1999 CN
1204744 Jul 1999 CN
1328521 Dec 2001 CN
1426872 Jul 2003 CN
2661972 Dec 2004 CN
2679409 Feb 2005 CN
1670986 Sep 2005 CN
100573975 Sep 2005 CN
1693721 Nov 2005 CN
1771399 May 2006 CN
1774580 May 2006 CN
2872795 Feb 2007 CN
1933747 Mar 2007 CN
1961157 May 2007 CN
2915389 Jun 2007 CN
200941716 Aug 2007 CN
101250964 Aug 2008 CN
201259846 Jun 2009 CN
201268336 Jul 2009 CN
201310827 Sep 2009 CN
201540513 Aug 2010 CN
101821534 Sep 2010 CN
101930253 Dec 2010 CN
201703439 Jan 2011 CN
201737062 Feb 2011 CN
201792722 Apr 2011 CN
201818606 May 2011 CN
201890285 Jul 2011 CN
102144102 Aug 2011 CN
102235402 Nov 2011 CN
202079532 Dec 2011 CN
102313952 Jan 2012 CN
202132326 Feb 2012 CN
102756633 Oct 2012 CN
102803753 Nov 2012 CN
202561269 Nov 2012 CN
102869891 Jan 2013 CN
102904128 Jan 2013 CN
202686206 Jan 2013 CN
102939022 Feb 2013 CN
202764872 Mar 2013 CN
202987018 Jun 2013 CN
103201525 Jul 2013 CN
203189459 Sep 2013 CN
1220673 Jul 1966 DE
2736012 Feb 1978 DE
3711696 Oct 1988 DE
29714892 Oct 1997 DE
29800379 May 1998 DE
69600357 Dec 1998 DE
10202644 Jun 2003 DE
10234253 Apr 2004 DE
10333540 Feb 2005 DE
60105817 Feb 2006 DE
202007006175 Aug 2007 DE
102008005618 Jul 2009 DE
102008063920 Sep 2009 DE
102008047464 Apr 2010 DE
102010028323 Nov 2011 DE
102011050003 Oct 2012 DE
102012212101 Jul 2013 DE
0118796 Sep 1984 EP
616140 Sep 1994 EP
1132263 Sep 2001 EP
1243471 Sep 2002 EP
1273766 Jan 2003 EP
1293384 Mar 2003 EP
1384536 Jan 2004 EP
1388449 Feb 2004 EP
1452745 Sep 2004 EP
2166235 Mar 2010 EP
2450259 May 2012 EP
2458454 May 2012 EP
1369198 Aug 1964 FR
2009941 Feb 1970 FR
2750177 Dec 1997 FR
2942749 Sep 2010 FR
2958696 Oct 2011 FR
155838 Mar 1922 GB
994891 Jun 1965 GB
2281950 Mar 1995 GB
2348924 Oct 2000 GB
H08200420 Aug 1996 JP
H0942233 Feb 1997 JP
2000010514 Jan 2000 JP
2001141154 May 2001 JP
2003158387 May 2003 JP
2003314515 Nov 2003 JP
2005268004 Sep 2005 JP
2006205918 Aug 2006 JP
2008307938 Dec 2008 JP
2009084844 Apr 2009 JP
2009187789 Aug 2009 JP
2011085174 Apr 2011 JP
2012060791 Mar 2012 JP
2012112533 Jun 2012 JP
20030000251 Jan 2003 KR
100931019 Dec 2009 KR
9822739 May 1998 WO
0055517 Mar 2000 WO
0132454 Nov 2001 WO
2004010011 Jan 2004 WO
2007126201 Nov 2007 WO
2008140659 Nov 2008 WO
2010105354 Sep 2010 WO
2011025606 Mar 2011 WO
2013088447 Jun 2013 WO
2013191622 Dec 2013 WO
Non-Patent Literature Citations (10)
Entry
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and EDIP SEVINCER, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechanical Engineers (ASME), Sep. 2006.
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002.
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007.
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechanical Engineering, Dec. 2007.
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of Technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004.
U.S. Appl. No. 13/229,926, filed Sep. 12, 2011, entitled “Using Elastic Averaging for Alignment of Battery Stack, Fuel Cell Stack, or Other Vehicle Assembly”, inventors: Mark A. Smith, Ronald Daul, Xiang Zhao, David Okonski, Elmer Santos, Lane Lindstrom, and Jeffrey A. Abell.
Chinese Office Action for Application No. 2014107920391; dated Mar. 31, 2016; 8 pgs.
Rojas, F.E., et al., “Kinematic Coupling for Precision Fixturing & Assembly” MIT Precision Engineering Research Group, Apr. 2013.
Slocum, A.H., et al., “Kinematic and Elastically Averaged Joints: Connecting the Past, Present and Future” International Symposium on Ultraprecision Engineering and Nanotechnology, Tokyo, Japan, Mar. 13, 2013.
Willoughby, P., “Elastically Averaged Precision Alignment”, B.S. Mechanical Engineering University of Pittsburgh, 2000.
Related Publications (1)
Number Date Country
20150175091 A1 Jun 2015 US