The invention relates to an elastic coupling, in particular an elastic shaft coupling, comprising a metallic outer part, a metallic inner part and elastic buffers arranged so as to be spaced apart between the outer part and the inner part, the outer part comprising radially inwardly projecting elevations which define buffer contact surfaces and the inner part comprising radially outwardly projecting elevations which define buffer contact surfaces.
Couplings of this type are known in practice, for example under the ROLLASTIC brand. The known coupling can compensate an axial, a radial, and also an angular offset of the shafts to be coupled. When the torque is transmitted, all of the elastic buffers are loaded. The coupling makes simple separation of the drive from the associated work machine possible without the drive shaft and the driven shaft having to be pulled apart axially for this purpose. It is merely necessary to release a securing ring from an associated annular groove of the shaft hub, to displace axially the securing ring and an annular alignment disc fixable thereby, and to eject the buffers from the recesses thereof defined by the outer part and the inner part.
The known coupling of the ROLLASTIC type of construction is suitable for many applications, in particular for driving conveyers, crushers, mills, roller tables, mixers, stirring systems, high-pressure pumps and compressors. This coupling has been found to be highly expedient in many applications. Nevertheless, a coupling of this type could still be improved in relation to use at high rotary oscillations and relatively large masses to be accelerated and heavy impacts, so as to protect the connected unit from excessive rotary oscillations and critical dynamic loads.
On this basis, the object of the present invention is to provide a torsionally resilient coupling which makes possible a gentler startup and an operating behaviour optimized in terms of rotary oscillation by comparison with conventional couplings of the aforementioned type.
To achieve this object, a coupling having the features of claim 1 is proposed. Preferred and advantageous embodiments of the coupling according to the invention are specified in the dependent claims.
The coupling according to the invention is characterised in that the elastic buffers are arranged in at least two groups (rows) which are radially spaced apart from each other, at least one annular intermediate part being arranged between the adjacent buffer groups (rows) and being connected torsionally resiliently both to the outer part and to the inner part via the elastic buffers.
As a result of the elastic buffers being arranged in at least two groups (rows) which are radially spaced apart from each other, in other words along at least two substantially coaxial rings, preferably circles, which are radially spaced apart, the torsional rigidity of the coupling can be freely adjusted in a relatively wide range and thus variably adapted to the requirements of the respective application.
In particular, the coupling according to the invention offers the option of adapting the torsional rigidity thereof to the respective operating conditions by arranging elastic buffers of different Shore hardness, size and/or shape on the radially spaced annular regions. A preferred embodiment of the coupling according to the invention accordingly provides that the groups of elastic buffers differ from one another in the material, size and/or shape of the elastic buffers. In particular, the elastic buffers of one group may differ from the elastic buffers of (one of) the other group(s), also in respect to their length.
By comparison with a conventional, generic coupling, for example the known coupling of the ROLLASTIC type of construction, the coupling according to the invention has a much wider adjustment range, so as to change the torsional rigidity of the coupling or achieve an operating behaviour which is low in rotary oscillations.
The elastic buffers are for example substantially made of synthetic and/or natural elastomers and/or or non-thermoplastic polyurethane. The hardness thereof is for example in the range of from 50 to 98 Shore A, preferably in the range of from 55 to 95 Shore A. They may contain conductive material (antistatics), for example carbon and/or metal particles, so as to prevent electrostatic charges in the buffer material and the surroundings of the buffer material. Alternatively, however, the elastic buffers may also be electrically insulating.
The elastic buffers of at least one of the buffer groups are preferably substantially rotationally symmetrical, for example cylindrical, barrel-shaped or spherical.
The coupling according to the invention may comprise two or else more than two radially spaced buffer groups.
A further preferred embodiment of the coupling according to the invention is characterised in that the elastic buffers of an inner group or the inner group are harder and/or have a smaller diameter than the elastic buffers of an outer group or the outer group. As a result, a particularly gentle startup and an operating behaviour which is particularly low in rotary oscillations of the units coupled using the coupling can be achieved. Preferably, the inner part of the coupling should be connected to the work machine to be driven and the outer part to the driving power machine. However, the elastic buffers of an inner group or the inner group need not necessarily be harder than the elastic buffers of an outer group or the outer group; they may also be substantially equally hard or softer than the latter.
In a further preferred embodiment, the annular intermediate part arranged between two adjacent groups of elastic buffers comprises radially inwardly projecting elevations and radially outwardly projecting elevations, the respective inwardly and outwardly projecting elevations defining buffer contact surfaces or positive-fit surfaces. This embodiment is advantageous in relation to changing a group of buffers for harder or softer buffers without the buffers of the other group(s) having to be changed in this case.
The annular intermediate part of the coupling according to the invention may also be referred to as a star-shaped intermediate part.
The annular intermediate part is preferably made of plastics material or light metal, for example of aluminium or an aluminium alloy. As a result, the weight of the coupling according to the invention can be reduced or at least limited to a predetermined total weight. Further, the annular intermediate part can be produced more simply in this case, since a plastics material or light metal workpiece (starting workpiece) can more easily be machined by cutting than for example a steel workpiece. However, the at least one annular intermediate part of the coupling according to the invention may also be made of a metal other than light metal, in particular of steel.
A further advantageous embodiment of the coupling according to the invention provides that the annular intermediate part is assembled from at least two axially separable parts. This embodiment facilitates the mounting of the elastic buffers. The at least two axially separable parts are optionally provided with connecting means, in such a way that they can be releasably interconnected. The releasable connection means may for example be configured as a screw connection or releasable latch connection. Alternatively, the annular intermediate part may also be configured in a single piece. The elastic buffers and the annular intermediate piece are preferably separately produced components which are interconnected with a positive fit rather than being integrally bonded in the coupling according to the invention.
However, in an alternative embodiment of the coupling according to the invention, the annular intermediate part may also be integral with one or both of the adjacent groups of elastic buffers. This embodiment is advantageous regarding rapid and complete mounting of the elastic buffers.
Further, with regard to as uniform an oscillation damping as possible for a compact construction of the coupling, it is favourable if according to a further preferred embodiment of the invention the groups or at least two of the groups comprise the same amount of elastic buffers.
A further advantageous embodiment of the coupling according to the invention is characterised in that the elastic buffers of one of the groups are arranged offset in the circumferential direction relative to the elastic buffers of the adjacent, radially spaced group. This embodiment makes possible a particularly compact construction of the coupling according to the invention.
Another further embodiment of the coupling according to the invention involves it being provided with a mass damper. The mass damper is preferably formed in such a way that the spring constant or torsional spring constant thereof can be adjusted to a frequency to be damped or cancelled out.
Preferably, the mass damper comprises rubber-resilient elements as springs and an annular body as a mass, the rubber-resilient elements being arranged in clearances formed both in the outer surface of the outer part and in the inner surface of the annular body. This embodiment of the mass damper is convenient to implement in terms of production, and makes possible simple adjustment of the mass damper in relation to a frequency to be damped or cancelled out.
In the following, the invention is explained in greater detail by way of drawings which show a plurality of embodiments and in which, schematically:
The elastic coupling shown in
The elastic buffers 3, 4 are arranged in two groups (rows) which are spaced apart radially. The annular intermediate part 5, which is made of plastics material or metal, preferably from light metal, is arranged between the buffer groups. The annular intermediate part 5 is star-shaped (cf. also
The outer part 1 comprises radially inwardly projecting elevations 1.1 which define buffer contact surfaces or positive-fit surfaces. Likewise, the inner part 2 and the annular intermediate part 5 comprise radially inwardly and outwardly projecting elevations 2.1, 5.1, 5.2 which define buffer contact surfaces or positive-fit surfaces. The elevations 1.1, 2.1, 5.1, 5.2 of the outer part, the intermediate part and the inner part delimit trough-shaped recesses 1.2, 2.2, 5.3, 5.4, which are for positively receiving the buffers 3, 4. The annular intermediate part 5 is rotatable relative to the outer part 1 and the inner part 2 counter to the force of the resiliently compressible buffers 3, 4. It is thus not torsionally rigidly connected to either the outer part 1 or the inner part 2.
The trough-shaped recesses 1.2, 2.2, 5.3, 5.4 and accordingly the buffers 3, 4 received therein are spaced apart from each other and arranged so as to be substantially uniformly distributed over the circumference of the outer part 1 or inner part 2. It can clearly be seen in
In the embodiment shown in
It can further be seen in
For axially securing the buffers 3, 4 and the annular intermediate part 5, an annular groove (not shown) for fixing a securing ring, for example a Seeger circlip ring, may be formed in the outer surface of the hub 8 of the inner part 2. The annular groove and the securing ring (not shown) which can be inserted into it are sufficiently spaced apart from the radially projecting elevations 2.1 of the inner part 2 that an annular alignment disc (not shown) can be arranged with axial play between the securing ring fixed in the annular groove and the tooth-like elevations 2.1. The annular alignment disc extends radially approximately from the outer surface of the hub 8 to the level of the radially inwardly projecting elevations 1.1 of the outer part 1.
The buffers 3, 4 of the coupling can be replaced without displacing the coupled units.
To simplify the mounting of the buffers 3, 4, the annular intermediate part 5 may be configured in a plurality of parts. In the embodiment sketched in
Optionally, the two parts 5a, 5b of the intermediate parts 5 may be releasably interconnected. The releasable connection of the two parts 5a, 5b is for example implemented using mutually aligned holes (not shown) which extend axially therein and receive the fixing screws.
Instead of cylindrical or barrel-shaped buffers 3, 4, the coupling according to the invention may also be formed to receive differently shaped buffers, for example spherical buffers 3′, 4′ (cf.
By replacing the rubber-resilient elements 10.1 for elements of this type having a different Shore hardness, the torsional spring constant of the mass damper 10 can be adjusted in a simple manner to the frequency to be damped or cancelled out. Alternatively or in addition, the annular body 10.2 may also be replaced with a similar body of larger or smaller mass for this purpose.
The implementation of the invention is not limited to the above-disclosed embodiments.
Rather, the accompanying claims include a number of further configurations which also make use of the invention but in a configuration differing from the embodiments shown. Thus, the coupling according to the invention may for example also comprise more than two radially spaced buffer groups. Moreover, it is within the scope of the invention to form the annular intermediate part 5 integrally with one or both of the adjacent groups of elastic buffers 3, 4 (3′, 4′), the intermediate part 5 in this case likewise being produced from synthetic or natural elastomer or from non-thermoplastic polyurethane.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 101 069.5 | Feb 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/050613 | 1/14/2014 | WO | 00 |