This application is a national stage application of PCT/IB2014/065987, filed Nov. 12, 2014, which is herein incorporated by reference in its entirety.
This disclosure relates to blood processing systems and more particularly to blood processing systems that are used in blood perfusion systems.
Blood perfusion entails encouraging blood through the blood vessels of the body. Typically, blood perfusion systems include one or more pumps in an extracorporeal circuit that is interconnected with the vascular system of a patient. In cardiopulmonary bypass surgery, a blood perfusion system provides for the temporary cessation of the heart beating to create an unmoving operating field by replacing the function of the heart and lungs. Such isolation allows for the surgical correction of medical problems including vascular stenosis, valve disorders, and congenital heart defects. Blood perfusion systems used in cardiopulmonary bypass surgery have an extracorporeal blood circuit that includes at least one pump and an oxygenation device to replace the functions of the heart and lungs.
In cardiopulmonary bypass procedures, oxygen-poor blood, i.e., venous blood, is gravity-drained or vacuum suctioned from a large vein entering the heart right atrium or other veins in the body, such as the femoral vein. The oxygen-poor blood is transferred through a venous line in the extracorporeal circuit and pumped to an oxygenator that provides for oxygen transfer to the blood. The oxygen can be introduced into the blood by transfer across a microporous membrane or, less frequently, by bubbling oxygen through the blood. Concurrently, carbon dioxide is removed across the membrane. The oxygenated blood is then returned through an arterial line to the aorta, femoral artery, or another artery.
Surgeons and patients would welcome advances in blood processing systems that are used in blood perfusion systems.
In some embodiments described in the disclosure, a blood processing apparatus includes a housing, a shell, a fiber bundle, and an elastic tube. The housing has a blood inlet and a blood outlet and the shell is situated in the housing and configured to receive blood through the blood inlet. The shell includes a surface and one or more apertures extending through the surface to permit the blood to flow to an exterior of the shell. The fiber bundle includes gas exchanger hollow fibers situated about the shell such that gas flows through the gas exchanger hollow fibers and the blood flows across the gas exchanger hollow fibers. The elastic tube includes a fiber web situated about the fiber bundle and configured to elastically constrain and protect the gas exchanger hollow fibers, wherein the fiber web has a pore size such that the fiber web permits the blood to flow across the fiber web without filtering micro-emboli from the blood.
In some embodiments described in the disclosure, a blood processing apparatus includes a housing, a heat exchanger, a shell, a fiber bundle, and an elastic tube. The housing has a blood inlet and a blood outlet and the heat exchanger is situated in the housing and configured to receive blood through the blood inlet and regulate the temperature of the blood. The shell is situated about the heat exchanger and includes a surface and one or more apertures extending through the surface to permit the blood to flow to an exterior of the shell. The fiber bundle includes gas exchanger hollow fibers situated about the shell such that gas flows through the gas exchanger hollow fibers and the blood flows across the gas exchanger hollow fibers. The elastic tube has a tube interior and a tube exterior such that the fiber bundle is situated in the tube interior and the tube exterior is situated next to the housing. The elastic tube elastically constrains and protects the gas exchanger hollow fibers as the fiber bundle and the elastic tube are introduced into the housing and maintained in the housing. Also, the elastic tube has an average pore size diameter with a best fit circle of greater than 200 micrometers that permits the blood to flow from the tube interior to the tube exterior without filtering micro-emboli from the blood and with a reduced hydraulic resistance to blood flow.
In some embodiments described in the disclosure, a method of manufacturing a blood processing apparatus includes: providing gas exchanger hollow fibers; winding the gas exchanger hollow fibers onto a shell to provide a fiber bundle on the shell; providing an elastic tube including a fiber web that permits blood to flow across the fiber web without filtering micro-emboli from the blood; introducing the fiber bundle and the shell into the elastic tube; and introducing the elastic tube containing the fiber bundle and the shell into a housing such that the fiber web elastically constrains the gas exchanger hollow fibers and protects the gas exchanger hollow fibers from being mechanically damaged by the housing during the introduction.
In some embodiments described in the disclosure, a method of pre-cleaning an elastic tube used in a blood processing apparatus includes: washing the elastic tube with a solvent; washing the elastic tube with purified water; and sterilizing the elastic tube with steam sterilization.
While multiple embodiments are disclosed, still other embodiments will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
Embodiments have been shown by way of example in the drawings and are described in detail below. The intention is not to limit the disclosure to the particular embodiments described. On the contrary, the disclosure is intended to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure as defined by the appended claims.
The disclosure describes a blood processing apparatus that, according to some embodiments, includes a heat exchanger and a gas exchanger. The blood processing apparatus can be used in an extracorporeal blood circuit, such as that used in a cardiopulmonary bypass procedure, which includes several different elements, such as a pump, a blood reservoir, and an oxygenator. In some embodiments, the term oxygenator refers to an integrated structure that combines a heat exchanger and a gas exchanger in a unitary device. In some embodiments, the heat exchanger and the gas exchanger are disposed concentrically with one component situated inside the other component. In some embodiments, the heat exchanger and the gas exchanger are structurally distinct structures operably coupled to each other.
The disclosure describes a blood processing apparatus that includes a gas exchanger that includes an elastic tube disposed about a fiber bundle of gas exchanger hollow fibers. The elastic tube is situated about the fiber bundle to elastically constrain and protect the gas exchanger hollow fibers.
In some embodiments, the fiber bundle is wrapped around a shell and the elastic tube, the fiber bundle, and the shell are situated in a housing that includes a blood inlet and a blood outlet. The shell receives blood through the blood inlet and includes a surface and at least one aperture extending through the surface to permit the blood to flow to an exterior of the shell and the fiber bundle. Gas flows through the gas exchanger hollow fibers and blood flows across the gas exchanger hollow fibers to oxygenate the blood and remove carbon dioxide from the blood. The elastic tube has a pore size that permits the blood to flow across the elastic tube and out of the blood outlet without filtering micro-emboli from the blood. In some embodiments, the elastic tube/fiber bundle/shell assembly is introduced into the housing as a single unit. In some embodiments, the blood processing apparatus includes a heat exchanger situated in the housing and configured to receive blood and regulate the temperature of the blood.
The blood processing apparatus 10 includes a housing 12, a first end cap 14 that is secured to the housing 12, and a second end cap 16 that is secured to the housing 12. The gas exchanger, including the elastic tube 8 and the fiber bundle, is situated in the housing 12. In some embodiments, the blood processing apparatus 10 includes a heat exchanger. In some embodiments, the blood processing apparatus 10 includes a heat exchanger and the heat exchanger and the gas exchanger are integrated into a single structure. In some embodiments, the housing 12 includes other structure that enables attachment of the housing 12 to other devices.
While the housing 12 is illustrated as largely cylindrical in shape, in some embodiments the housing 12 has another shape, such as a cuboid shape, a triangular prism shape, or a hexagonal prism shape. Also, in some embodiments, the gas exchanger has the same shape or a different shape than the housing 12, and in some embodiments, a heat exchanger has the same shape or a different shape than the housing 12. In some embodiments, the blood processing apparatus 10 includes a heat exchanger and a gas exchanger, and the heat exchanger is situated inside of the gas exchanger. In some embodiments, the heat exchanger and the gas exchanger are concentrically aligned with one another.
The housing 12 and the first and second end caps 14 and 16 include a number of inlets and outlets for gas and fluid flow into the housing 12 and out of the housing 12, respectively. For blood flow, a blood inlet 18 extends into the housing 12 and a blood outlet 20 exits the housing 12. For gas flow, a gas inlet 22 extends into the housing 12 and a gas outlet 24 exits the housing 12 and, in embodiments that include a heat exchanger, for heat exchanger fluid, a heat exchanger fluid inlet 26 extends into the housing 12 and a heat exchanger fluid outlet 28, which is behind the heat exchanger fluid inlet 26 in
The positions of the inlets 18, 22, and 26, the outlets 20, 24, and 28, and the purge port 30 are merely illustrative, as other arrangements and configurations are contemplated.
In some embodiments, the blood inlet 18 and/or the gas inlet 22 are integrally formed with the first end cap 14. For example, in some embodiments, the first end cap 14 can be injection molded with the blood inlet 18 and/or the gas inlet 22 formed as part of the injection molded part. In some embodiments, the first end cap 14 can be formed having apertures to which the blood inlet 18 and/or the gas inlet 22 are attached.
The first end cap 14 includes an annular ring 32 that is disposed about a periphery of the first end cap 14 and that serves, in some embodiments, as an attachment point for securing the first end cap 14 to the housing 12. In some embodiments, the first end cap 14 also includes an annular ring 34 that locates portions of a heat exchanger.
In some embodiments, a heat exchanger fluid inlet 26 and/or a heat exchanger fluid outlet 28 are integrally formed with the second end cap 16. For example, in some embodiments, the second end cap 16 can be injection molded with the heat exchanger fluid inlet 26 and/or the heat exchanger fluid outlet 28 formed as part of the injection molded part. Also, in some embodiments, the second end cap 16 can be injected molded with the gas outlet 24 formed as part of the injection molded part. In some embodiments, the second end cap 16 can be formed having apertures to which one or more of the heat exchanger fluid inlet 26, the heat exchanger fluid outlet 28, and/or the gas outlet 24 are attached.
The second end cap 16 includes an annular ring 36 that is disposed about a periphery of the second end cap 16 and that serves, in some embodiments, as an attachment point for securing the second end cap 16 to the housing 12. In some embodiments, the second end cap 16 also includes an annular ring 38 that locates portions of a heat exchanger.
In some embodiments, one of the heat exchanger fluid inlet 26 and the heat exchanger fluid outlet 28 is located in the first end cap 14 and the other of the heat exchanger fluid inlet 26 and the heat exchanger fluid outlet 28 is located in the second end cap 16. Also, in some embodiments, the heat exchanger fluid inlet 26 and outlet 28 can be located in the first end cap 14.
The heat exchanger core 40 includes a conical deflection surface 48 upon which incoming blood, from the blood inlet 18, impinges. The conical deflection surface 48 deflects the blood in a radial direction. In some embodiments, the conical deflection surface 48 includes a divider 50 that assists in directing blood in particular directions.
The heat exchanger core 40 includes an outer surface 52. A core aperture 54 is formed within the outer surface 52, such that blood impinging on the conical deflection surface 48 is deflected radially outwardly through the core aperture 54. In some embodiments, the heat exchanger core 40 has one, two, three, or more core apertures 54 spaced radially about the heat exchanger core 40.
The heat exchanger core 40 includes a first radially disposed core rib 56 and a second radially disposed core rib 58. The core ribs (or projections) 56 and 58 deflect blood away from the outer surface 52 in a radially outward direction and impart a radial component to blood flow trajectory. The heat exchanger core 40 also includes longitudinally extending ribs 60 that serve to promote longitudinal flow paths down the outside of the heat exchanger core 40. In some embodiments, the heat exchanger core 40 includes more than two core ribs 56 and 58. In some embodiments, the ribs 56 and 58 extend circumferentially around or substantially around the outer surface of the heat exchanger core 40.
The cylindrical shell 62 includes a first end 64 and a second end 66. In some embodiments, the cylindrical shell 62 is disposed within the housing 12 such that the first end 64 is near the first end cap 14 and the second end 66 is near the second end cap 16.
The cylindrical shell 62 also includes an exterior or outer surface 68. A shell aperture 70 is formed in the outer surface 68 such that blood flowing between the outer surface 52 of the heat exchanger core 40 and an inner surface 72 of the cylindrical shell 62 can exit the cylindrical shell 62 through the shell aperture 70 to the outer surface 68. In some embodiments, the cylindrical shell 62 has one, two, three, four, or more shell apertures 70 spaced radially about the cylindrical shell 62.
In some embodiments, the inner surface 72 of the cylindrical shell 62 includes one or more shell ribs 80 that protrude from the inner surface 72 and extend toward the heat exchanger core 40. These shell ribs 80 deflect blood away from the inner surface 72 in a radially inward direction. In some embodiments, the one or more shell ribs 80, in combination with the core ribs 56 and 58, interrupt longitudinal blood flow and impart a radial flow component to blood flow through the heat exchanger, i.e., between the outer surface 52 of the heat exchanger core 40 and the inner surface 72 of the cylindrical shell 72. In some embodiments, the heat exchanger core 40 includes one or more longitudinally extending ribs 75 that promote longitudinal flow paths between the heat exchanger core 40 and the cylindrical shell 62.
The blood processing apparatus 10 includes a heat exchanger element 74 disposed between the heat exchanger core 40 and the cylindrical shell 62. Also, the blood processing apparatus 10 includes a gas exchanger element 76 disposed between the cylindrical shell 62 and the housing 12. The elastic tube 8 is disposed about the gas exchanger element 76.
In some embodiments, the heat exchanger element 74 includes a number of hollow fibers through which a heating fluid, such as water, can flow. The blood flows around and past the hollow fibers to regulate the temperature of the blood. In some embodiments, the hollow fibers are polymeric. In some embodiments, the hollow fibers are metallic fibers. In some embodiments, the hollow fibers can be formed of polyurethane, polyester, or other suitable polymer or plastic material. In some embodiments, the hollow fibers have an outer diameter of between 0.2 and 1.0 millimeters, and in some embodiments, the hollow fibers have an outer diameter of between 0.25 and 0.5 millimeters.
The heat exchanger hollow fibers can be woven into mats that can range, for example, from 80 to 200 millimeters in width. In some embodiments, the mats are arranged in a criss-cross configuration. In some embodiments, the mats may be arranged parallel to each other. In other embodiments, the heat exchanger element 74 can include a metal bellows or other structure having a substantial surface area, e.g., fins, for facilitating heat transfer with the blood.
The gas exchanger element 76 includes a number of micro-porous hollow fibers through which a gas, such as oxygen, can flow. The micro-porous hollow fibers are situated on and about the outer surface 68 of the cylindrical shell 62 to provide a fiber bundle 78 on the cylindrical shell 62. The blood flows around and past the micro-porous hollow fibers and, due to concentration gradients, oxygen diffuses through the hollow fibers and into the blood and carbon dioxide diffuses out of the blood and into the hollow fibers. In some embodiments, the micro-porous hollow fibers are wound around the cylindrical shell 62 to provide the fiber bundle 78 on the outer surface 68 of the cylindrical shell 62. In some embodiments, the micro-porous hollow fibers are woven into fiber mats that are wound around the cylindrical shell 62 to provide the fiber bundle 78 on the outer surface 68 of the cylindrical shell 62. In some embodiments, the micro-porous hollow fibers are woven into fiber mats that can range, for example, from 80 to 200 millimeters in width. In some embodiments, the fiber mats are woven in a criss-cross configuration.
In some embodiments, the micro-porous hollow fibers are made of polymethylpentene (PMP), a plasma breakthrough resistant material. In some embodiments, the micro-porous hollow fibers are made of other plasma breakthrough resistant materials. In some embodiments, the micro-porous hollow fibers have an outer diameter of about 0.38 millimeters. In some embodiments, the micro-porous hollow fibers have an outer diameter of between 0.2 and 1.0 millimeters, and in some embodiments, the micro-porous hollow fibers have an outer diameter of between 0.25 and 0.5 millimeters. In other embodiments, the micro-porous hollow fibers are made of polypropylene, polyester, or another suitable polymer or plastic material.
The elastic tube 8 is disposed about the gas exchanger element 76 to elastically constrain and protect the micro-porous hollow fibers of the fiber bundle 78. The elastic tube 8 has a pore size that is large enough to permit blood to flow across the elastic tube 8 without filtering micro-emboli from the blood and to provide a reduced hydraulic resistance to blood flow.
In some embodiments, the elastic tube 8 is situated about the fiber bundle 78 prior to insertion of an assembly, including the elastic tube 8, the fiber bundle 78, and the cylindrical shell 62, into the housing 12 of the blood processing apparatus 10. The elastic tube 8 elastically confines or constrains the micro-porous hollow fibers of the fiber bundle 78 and the elastic tube 8 protects the micro-porous hollow fibers of the fiber bundle 78 from being damaged as the assembly is introduced into the housing 12. This prevents subsequent leaks through the micro-porous hollow fibers. The elastic tube 8 is not removed from the blood processing apparatus 10, such that the elastic tube 8 remains in the housing 12 during storage and operation of the blood processing apparatus 10.
In operation, blood enters the blood processing apparatus 10 through the blood inlet 18 and is radially directed through the core aperture(s) 54, such that the blood flows over and around the hollow fibers within the heat exchanger element 74. At least some of the blood flow impinges on the inner surface 72 of the cylindrical shell 62 and is radially directed back towards the outer surface 52 of the heat exchanger core 40, and at least some of the blood flow is directed radially outwards by the core ribs 56 and 58. The blood continues traveling back and forth radially until it reaches the shell aperture(s) 70. The blood flows through the shell aperture(s) 70 and over and around the micro-porous hollow fibers of the fiber bundle 78 in the space between the cylindrical shell 62 and the housing 12. The blood also flows through the elastic tube 8, which has a pore size that is large enough to permit the blood to flow across the elastic tube 8 without filtering micro-emboli from the blood and with a reduced hydraulic resistance to blood flow. The blood exits the blood processing apparatus 10 through the blood outlet 20.
The elastic tube 8 is made from an elastomeric yarn that elastically expands to be disposed about the fiber bundle 78. In some embodiments, the elastomeric yarn includes an inner core of a polyurethane elastic fiber covered with a nylon yarn. In some embodiments, the elastomeric yarn includes an inner core of spandex or elastane covered with a nylon yarn. In some embodiments, a coating is applied to the elastomeric yarn to decrease the contact angle of the surfaces and improve the wettability of the elastic tube 8.
The elastic tube 8 is produced by knitting the elastomeric yarn into the shape of a tube or sock. In some embodiments, the elastic tube 8 is knit on a circular machine, similar to a circular machine that produces socks. In some embodiments, the elastic tube 8 can be weaved into the shape of a tube or sock.
The elastic tube 8 is made to provide a pore size that permits the blood to flow across the fiber web without filtering micro-emboli from the blood and to reduce the hydraulic resistance of blood flow across the elastic tube 8 through the pores 84. The micro-emboli, including blood clots and bubbles, as measured by a best fit circle technique, have diameters of less than 120 micrometers. The elastic tube 8 is made to provide no significant filtering of solid or gaseous micro-emboli of less than 120 micrometers in diameter of a best fit circle.
In some embodiments, the pores 84 have an average pore size diameter with a best fit circle of 350 micrometers. In some embodiments, the pores 84 have an average pore size diameter with a best fit circle in a range of from 200 to 500 micrometers. In some embodiments, the pores 84 have an average pore size diameter with a best fit circle in a range of from 150 to 800 micrometers. In some embodiments, the pores 84 have an average pore size diameter with a best fit circle of greater than 200 micrometers.
The elastic tube 8 has a tube interior 96 and a tube exterior 98. In the expanded condition at 94, when disposed on the fiber bundle 78 and situated in the blood processing apparatus 10, the fiber bundle 78 is situated next to the tube interior 96 and the housing 12 is situated next to the tube exterior 98.
At 100, the method includes providing gas exchanger micro-porous hollow fibers. The gas exchanger 74 includes micro-porous hollow fibers that blood flows around and past for oxygenating the blood and removing carbon dioxide from the blood. In some embodiments, the micro-porous hollow fibers are made of plasma breakthrough resistant PMP hollow fibers. In other embodiments, the micro-porous hollow fibers are made of polypropylene, polyester, or another suitable polymer or plastic material.
At 102, the method includes winding the micro-porous hollow fibers onto the cylindrical shell 62 to provide the fiber bundle 78. The micro-porous hollow fibers are situated on and about the exterior surface of the cylindrical shell 62 to provide the fiber bundle 78 on the cylindrical shell 62. In some embodiments, the micro-porous hollow fibers are woven into fiber mats that are wound about the cylindrical shell 62 to provide the fiber bundle 78. In other embodiments, the shell 62 is not cylindrical, but another shape, such as cuboid shaped, triangular prism shaped, or hexagonal prism shaped.
At 104, the method includes providing the elastic tube 8 including the fiber web 82 that permits blood to flow across the fiber web 82 without filtering micro-emboli from the blood. In some embodiments, providing the elastic tube 8 includes knitting an elastomeric yarn to provide the elastic tube 8. In some embodiments, providing the elastic tube 8 includes knitting an elastomeric yarn to provide the elastic tube 8 using a circular machine.
At 106, the method includes introducing the fiber bundle 78 and the cylindrical shell 62 into the elastic tube 8. The elastic tube 8 elastically constrains and protects the micro-porous hollow fibers of the fiber bundle 78. Also, the elastic tube 8 has a pore size that is large enough to permit blood to flow across the elastic tube 8, from the tube interior 92 to the tube exterior 94, without filtering micro-emboli from the blood and with a reduced hydraulic resistance to blood flow.
At 108, the method includes introducing the elastic tube 8 containing the fiber bundle 78 and the cylindrical shell 62 into the housing 12, such that the fiber web 82 elastically constrains the gas exchanger hollow fibers and protects the gas exchanger hollow fibers from being damaged by the housing 12. The elastic tube 8 is not removed from the blood processing apparatus 10, such that the elastic tube 8 remains in the housing 12 during storage and operation of the blood processing apparatus 10.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present disclosure. For example, while the embodiments described above refer to particular features, the scope of the disclosure also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present disclosure is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/065987 | 11/12/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/075514 | 5/19/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3339341 | Murdock | Sep 1967 | A |
3957648 | Roget et al. | May 1976 | A |
4038190 | Baudet et al. | Jul 1977 | A |
4225439 | Spranger | Sep 1980 | A |
4229305 | Fecondini et al. | Oct 1980 | A |
4597868 | Watanabe | Jul 1986 | A |
4639353 | Takemura et al. | Jan 1987 | A |
4707268 | Shah et al. | Nov 1987 | A |
4758341 | Banner | Jul 1988 | A |
4902476 | Gordon et al. | Feb 1990 | A |
5169530 | Schucker et al. | Dec 1992 | A |
5192439 | Roth et al. | Mar 1993 | A |
5192499 | Sakai et al. | Mar 1993 | A |
5270004 | Cosentino et al. | Dec 1993 | A |
5316724 | Mathewson et al. | May 1994 | A |
5338512 | Mathewson et al. | Aug 1994 | A |
5514095 | Brightbill et al. | May 1996 | A |
5578267 | Cosentino et al. | Nov 1996 | A |
5651765 | Haworth et al. | Jul 1997 | A |
5674452 | Carson et al. | Oct 1997 | A |
5733398 | Carson et al. | Mar 1998 | A |
5762868 | Leonard | Jun 1998 | A |
5762869 | White et al. | Jun 1998 | A |
5817278 | Fini et al. | Oct 1998 | A |
5817279 | Eilers et al. | Oct 1998 | A |
5830370 | Maloney, Jr. et al. | Nov 1998 | A |
RE36774 | Cosentino et al. | Jul 2000 | E |
6105664 | Gillbrand et al. | Aug 2000 | A |
6113782 | Leonard | Sep 2000 | A |
6241945 | Owen | Jun 2001 | B1 |
6454999 | Farhangia et al. | Sep 2002 | B1 |
6459937 | Morgan et al. | Oct 2002 | B1 |
6755894 | Bikson et al. | Jun 2004 | B2 |
6960322 | Stringer et al. | Nov 2005 | B2 |
7431754 | Ogihara et al. | Oct 2008 | B2 |
7947113 | Ogihara et al. | May 2011 | B2 |
7981121 | Stegfeldt et al. | Jul 2011 | B2 |
8142546 | Ogihara et al. | Mar 2012 | B2 |
8318092 | Reggiani et al. | Nov 2012 | B2 |
8388566 | Reggiani et al. | Mar 2013 | B2 |
8394049 | Reggiani et al. | Mar 2013 | B2 |
8425838 | Mizoguchi et al. | Apr 2013 | B2 |
8652406 | Reggiani et al. | Feb 2014 | B2 |
8685319 | Olson et al. | Apr 2014 | B2 |
8795220 | Reggiani et al. | Aug 2014 | B2 |
8865067 | Olson et al. | Oct 2014 | B2 |
8911666 | Mizoguchi et al. | Dec 2014 | B2 |
8980176 | Reggiani et al. | Mar 2015 | B2 |
9162022 | Reggiani et al. | Oct 2015 | B2 |
9402943 | Reggiani et al. | Aug 2016 | B2 |
9566376 | Kashefi Khorasani | Feb 2017 | B2 |
10098994 | Silvestri et al. | Oct 2018 | B2 |
10159777 | Reggiani et al. | Dec 2018 | B2 |
10322223 | Ochel | Jun 2019 | B2 |
10369262 | Reggiani | Aug 2019 | B2 |
20020039543 | Ikeda et al. | Apr 2002 | A1 |
20020049401 | Ghelli et al. | Apr 2002 | A1 |
20030080047 | Watkins et al. | May 2003 | A1 |
20030175149 | Searles et al. | Sep 2003 | A1 |
20040149645 | Sunohara et al. | Aug 2004 | A1 |
20040175292 | Ghellil et al. | Sep 2004 | A1 |
20040251011 | Kudo | Dec 2004 | A1 |
20060016743 | Ogihara et al. | Jan 2006 | A1 |
20070107884 | Sirkar et al. | May 2007 | A1 |
20070166190 | Ogihara et al. | Jul 2007 | A1 |
20070231203 | Mizoguchi et al. | Oct 2007 | A1 |
20080234623 | Strauss et al. | Sep 2008 | A1 |
20100106072 | Kashefi-Khorasani et al. | Apr 2010 | A1 |
20100269342 | Carpenter et al. | Oct 2010 | A1 |
20100272606 | Carpenter et al. | Oct 2010 | A1 |
20100272607 | Carpenter et al. | Oct 2010 | A1 |
20110268608 | Reggiani et al. | Nov 2011 | A1 |
20110268609 | Reggiani et al. | Nov 2011 | A1 |
20120046594 | Reggiani et al. | Feb 2012 | A1 |
20120121463 | Reggiani et al. | May 2012 | A1 |
20120294761 | Reggiani | Nov 2012 | A1 |
20120308434 | Kawamura | Dec 2012 | A1 |
20130142695 | Reggiani et al. | Jun 2013 | A1 |
20130142696 | Reggiani et al. | Jun 2013 | A1 |
20140030146 | Takeuchi | Jan 2014 | A1 |
20140154137 | Kashefi Khorasani | Jun 2014 | A1 |
20140227133 | Reggiani et al. | Aug 2014 | A1 |
20150068670 | Mizoguchi et al. | Mar 2015 | A1 |
20160325036 | Silvestri et al. | Nov 2016 | A1 |
20160354529 | Reggiani et al. | Dec 2016 | A1 |
20170072123 | Reggiani | Mar 2017 | A1 |
20180133388 | Mazzoli et al. | May 2018 | A1 |
20190091395 | Reggiani et al. | Mar 2019 | A1 |
20190290821 | Reggiano | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
1042082 | May 1990 | CN |
2511309 | Sep 2002 | CN |
1308549 | Sep 2005 | CN |
2772515 | Apr 2006 | CN |
1907508 | Feb 2007 | CN |
1914474 | Feb 2007 | CN |
201510571 | Jun 2010 | CN |
101837151 | Sep 2010 | CN |
201978219 | Sep 2011 | CN |
103180032 | Jun 2013 | CN |
103328019 | Sep 2013 | CN |
103547298 | Jan 2014 | CN |
106029118 | Oct 2016 | CN |
19782098 | Nov 1999 | DE |
102007010112 | Sep 2008 | DE |
102010027973 | Oct 2011 | DE |
0170210 | Feb 1986 | EP |
0312125 | Apr 1989 | EP |
0582959 | Feb 1994 | EP |
0895786 | Feb 1999 | EP |
1108462 | Jun 2001 | EP |
1180374 | Feb 2002 | EP |
1371381 | Dec 2003 | EP |
1618906 | Jan 2006 | EP |
1834656 | Sep 2007 | EP |
2420262 | Feb 2012 | EP |
2524712 | Nov 2012 | EP |
2537543 | Dec 2012 | EP |
445526 | Mar 1969 | JP |
S52126681 | Oct 1977 | JP |
S59147603 | Aug 1984 | JP |
60053156 | Mar 1985 | JP |
S6178407 | Apr 1986 | JP |
S63139562 | Jun 1988 | JP |
S63283709 | Nov 1988 | JP |
03169329 | Jul 1991 | JP |
H042067 | Jan 1992 | JP |
04-039862 | Jun 1992 | JP |
H0439862 | Jun 1992 | JP |
H05177117 | Jul 1993 | JP |
H0788178 | Apr 1995 | JP |
H08168525 | Jul 1996 | JP |
H11508476 | Jul 1999 | JP |
2000501954 | Feb 2000 | JP |
2000093510 | Apr 2000 | JP |
3228518 | Nov 2001 | JP |
2002506692 | Mar 2002 | JP |
3284568 | May 2002 | JP |
2002306592 | Oct 2002 | JP |
2003520617 | Jul 2003 | JP |
2003525736 | Sep 2003 | JP |
2004216143 | Aug 2004 | JP |
2006034466 | Feb 2006 | JP |
2007190218 | Feb 2007 | JP |
2007244880 | Sep 2007 | JP |
3992377 | Oct 2007 | JP |
2007260151 | Oct 2007 | JP |
2007328114 | Dec 2007 | JP |
2009-093659 | Apr 2009 | JP |
201147269 | Mar 2011 | JP |
5020111 | Sep 2012 | JP |
2012239885 | Dec 2012 | JP |
201363121 | Apr 2013 | JP |
2015144857 | Aug 2015 | JP |
2017-510340 | Apr 2017 | JP |
WO1997016213 | May 1997 | WO |
WO1997019714 | Jun 1997 | WO |
WO1997033636 | Sep 1997 | WO |
W09947189 | Sep 1999 | WO |
WO9958171 | Nov 1999 | WO |
WO2010124087 | Oct 2010 | WO |
2012066439 | May 2012 | WO |
2012133372 | Oct 2012 | WO |
2015104725 | Jul 2015 | WO |
2015107486 | Jul 2015 | WO |
2015128886 | Sep 2015 | WO |
Entry |
---|
European Search Report issued in EP Application No. 10161451, dated Sep. 28, 2010, 5 pages. |
European Search Report issued in EP Application No. 10173436, dated Feb. 14, 2011, 7 pages. |
European Search Report issued in EP Application No. 10186550, dated Jan. 27, 2011, 7 pages. |
European Search Report issued in EP Application No. 10191140, dated Nov. 30, 2011, 8 pages. |
European Search Report issued in EP Application No. 12187501, dated Nov. 20, 2013, 6 pages. |
European Search Report issued in EP Application No. 13161841, dated Jun. 11, 2013, 6 pages. |
International Preliminary Report on Patentability issued in PCT/IB2014/065987, dated May 26, 2017, 9 pages. |
International Preliminary Report on Patentability issued in PCT/IT2014/000005, dated Jul. 12, 2016, 6 pages. |
International Preliminary Report on Patentability issued in PCT/IT2014/000058, dated Sep. 6, 2016, 10 pages. |
International Search Report and Written Opinion issued in PCT/IB2012/052424, dated Oct. 24, 2012, 17 pages. |
International Search Report and Written Opinion issued in PCT/IB2014/065987, dated Jul. 6, 2015, 10 pages. |
International Search Report and Written Opinion issued in PCT/IT2014/000005, dated Sep. 26, 2014, 9 pages. |
International Search Report and Written Opinion issued in PCT/IT2014/000058, dated Dec. 8, 2014, 14 pages. |
International Search Report issued in PCT/IB2011/054725, dated Feb. 9, 2012, 12 pages. |
Italian Search Report issued in IT Application No. IT MO20140010, completed Sep. 23, 2014, 7 pages. |
International Preliminary Report on Patentability issued in PCT/IB2014/065987, dated May 16, 2017, 8 pages. |
International Preliminary Report on Patentability issued in PCT/IB2015/053493, dated Nov. 23, 2017, 9 pages. |
International Search Report and Written Opinion issued in PCT/IB2015/053493, dated Jan. 18, 2016, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/IB2012/052424, dated Nov. 28, 2013, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/IT2014/000005, dated Sep. 26, 2014, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170319767 A1 | Nov 2017 | US |