Elastic rod having different degrees of stiffness for the surgical treatment of the spine

Information

  • Patent Grant
  • 10695097
  • Patent Number
    10,695,097
  • Date Filed
    Monday, June 24, 2013
    11 years ago
  • Date Issued
    Tuesday, June 30, 2020
    4 years ago
Abstract
For a differentiated treatment of individual motion segments of the spine, a plastic rod (41, 42, 46) for the dynamic stabilization of the spine has different degrees of stiffness in its longitudinal direction. The different rod segments are interconnected along an oblique plane (13).
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a 35 U.S.C. § 371 National Phase conversion of PCT/EP2013/000112, filed Jun. 24, 2013, which claims benefit of Swiss patent application no. 1048/12, filed Jul. 5, 2012, the disclosure of which is incorporated herein by reference. The PCT International Application was published in the English language.


TECHNICAL FIELD OF THE INVENTION

The present invention relates to an elastic connecting rod for surgical treatment of the spine, the rod having different degrees of stiffness along its longitudinal axis according to the preamble of claim 1.


BACKGROUND OF THE INVENTION

Elastic connecting rods are typically used in conjunction with pedicle screws for the dynamic stabilization of the spine. If such a rod can be provided with a section of higher stiffness, the possible indications can be substantially extended. Thus, a section of higher stiffness may be used for the fusion of vertebral bodies while a section of lower stiffness may be used for the elastic connection of a neighboring vertebral body.


Today, the “golden standard” in spinal surgery still consists in the fusion (stiffening) of pathologic vertebral bodies. However, fusions often lead to premature degeneration of the segments adjacent to the fusion. Therefore, attempts are being made to provide rods having different degrees of stiffness and to include neighboring segments in the surgical treatment.


The approaches of the prior art to solving this problem will be set forth below.


The invention according to patent application US 2008/0319486 discloses a connecting element having a variable stiffness along its longitudinal axis. The variable stiffness is limited to the sections between two anchoring elements and provides a different response to pressure only.


The invention according to EP 2 113 216 also provides different degrees of stiffness. The connection of the different materials is either achieved by interpenetration or by a butt joint. The material differences are limited to differences in hardness and in bending flexibility. Differences in longitudinal or transversal stiffness are not disclosed. The butt joints are designed for normal stresses exclusively.


The invention according to patent application US 2008/0177388 also connects different rod materials, but this is achieved according to the male/female principle, which is demanding with regard to the production technique.


The invention according to patent application US 2009/0248083 also provides sections of different stiffness, however with a varying core that is difficult to anchor particularly in the stiffer areas.


The invention according to patent application WO 97/32533 provides a varying stiffness due to a varying external diameter, thereby making the rod more difficult to anchor.


The invention according to patent application US 2008/0306536 aims to achieve a variable stiffness between vertebral bodies by connecting the connecting element to the bone screw with variable stiffness. This solution is space-consuming and may have unfavorable consequences for the patient.


The invention according to patent application WO 2007/038429 also allows achieving different degrees of stiffness due to a modular construction but, according to the claims, only in response to bending stresses and not to tensile and compression loads.


The invention according to patent application US 2005/0203513 also provides different degrees of stiffness in that for one part, the core inside a cylindrical wall varies or, for the other part, the stiffness of a connecting element is locally reduced by material removal. On one hand, this entails the difficulty of anchoring a core by means of a wall of a different kind, and on the other hand, the difficulty of sections of predetermined length, which in the case of multisegment treatments involves significant logistic complexity.


The invention according to patent application US 2007/0129729 also provides a stiff and an elastic rod portion whose connection is interpenetrating and is supported by a cable.


The invention according to patent application US 2006/0041259 provides a variable stiffness along its rod axis. The variation is achieved by a helical slot (or spiral slot) reflecting the mechanical principle of a spiral spring. The spring may also be filled with a core and such core may be secured to the spring by welding or bonding. The variation may further be achieved by assembling rods of different properties one behind the other. However, the patent application does not disclose any method of sequentially connecting one rod to the other. Nor does it disclose how the anchorage of the rod in a bone screw would interface with such a connection site.


The inventions according to the patent applications CH 702636 or US 2006/0095134 disclose only blunt connections (butt joint connections) or blunt transitions.


Thus it follows from the prior art that most connections are butt joints, at least peripherally, and thus extend in a plane parallel to the clamping plane in the screw head.


SUMMARY OF THE INVENTION

Accordingly, it is the object of the invention described hereinafter to provide a biocompatible plastic rod having at least two sections of different stiffness along its longitudinal axis.


This object is achieved in that rod segments having different degrees of stiffness are interconnected in a plane that is oblique to the longitudinal rod axis. The connection may be achieved by bonding or welding or by a combination of both. In the case of welding, especially heating techniques (e.g. plates or mirrors), motion techniques (e.g. vibration or ultrasonic welding), or a combination of both may be contemplated.


Such a rod of variable stiffness is defined in the claims. The claims define preferred embodiments. According to the claims, the plastic material may be a polycarbonate urethane.


In contrast to US 2006/0041259, the present invention discloses a connection of different rods along an inclined plane, in order to not only have normal loads across the connection site, i.e. perpendicular to the connection plane, but also shear loads. The present invention discloses rods with plain sections and connection areas extending over the entire cross section. The inclination angle of the inclined plane is determined in order to avoid an anchorage which clamps from two opposite sides across the connection plane.


Furthermore, it is avoided that a connecting plane coincides with a clamping plane and the connection, besides normal stresses, is also ensured by more suitable shear stresses.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is explained in more detail hereinafter by way of preferred examples with reference to drawings which merely illustrate exemplary embodiments and in particular do not show the maximum number of different consecutive degrees of stiffness.


The Figures schematically show:



FIG. 1a: a point-symmetrical rod having sections of different degrees of stiffness connected via an oblique plane;



FIG. 1b: a rod having an arbitrary cross-section (e.g. with two plane-parallel sides) and sections of different degrees of stiffness connected via an oblique plane;



FIGS. 2a and 2b: the reaction forces for a rod connected by a butt-joint;



FIGS. 3a and 3b: the reaction forces for an oblique connection according to the invention and the angle α of the connecting plane;



FIG. 4: clamping ridges on a butt joint; and



FIG. 5: clamping ridges on an oblique connection.





DESCRIPTION OF EMBODIMENTS


FIG. 1a shows a left 1 and a right 2 segment of a rod 41 having a point-symmetrical cross-section 4 and the oblique weld seam 3 connecting them.



FIG. 1b shows a left 1 and a right 2 segment of a rod 42 having an arbitrary cross-section 5, e.g. with two plane-parallel sides, and the oblique weld seam 3 connecting them.



FIGS. 2a and 2b show an upper 6 and a lower 7 segment of a rod 44 connected by a butt joint 8 according to the prior art. In FIG. 2b, arrow 9 represents the external force and arrow 10 the reaction force in a sectional view. Here the reaction force exclusively consists of a normal force according to arrow 10.


In contrast, FIGS. 3a and 3b show an upper 11 and a lower 12 segment of rod 46 interconnected by an oblique joint 13. In FIG. 3b, arrow 14 represents the external force and arrow 15 the reaction forces in a sectional view. Here the reaction forces consist of a normal force 15a and of a shear force 15b. The angle α denotes the angle between the plane of the joint 13 and the longitudinal axis 47 of rod 46, or, as illustrated, the side face of rod 46.



FIG. 4 shows an upper 6 and a lower 7 segment of a rod 46 connected by a butt joint 8. If clamping ridges 18 apply on the connecting plane, they will apply a load to the weld seam of joint 8 from both sides.



FIG. 5 shows an upper 11 and a lower 12 segment of an obliquely connected rod. Clamping ridges 18 apply on one side of the weld seam 13 at the most.


Consequently, the disclosed invention offers multiple advantages, as explained below.


An oblique connection 13 with an angle of inclination α between 5° and 85°, preferably 45°, always represents a larger surface than a connection that is perpendicular to the rod axis 47. In this manner, tensions in the connection are reduced. Furthermore, shear stresses result, which are generally more suitable for connections than normal stresses i.e. stress perpendicular to the connecting plane.


If a clamping device comprises ridges 18 located in one and the same clamping plane and if these ridges apply in a connecting plane 8 that is orthogonal to the rod axis, they will penetrate into the connecting plane from both clamping sides. In the case of a bonded joint or a weld seam, a critical splitting force may result.


If a clamping device comprises ridges 18 located in one and the same clamping plane and if these ridges apply to an oblique connecting plane 13, only one ridge 18 may apply a load to the connection on one clamping side, and no force is exerted on other sections of the connection plane 13. Moreover, the clamping does not act in the oblique connecting plane and thus has no direct splitting or cleaving effect either.


This connection method allows connecting rod segments with large differences in longitudinal or transversal stiffness. To this end, the rod segments have to be dry. In order to allow the subsequent clinical application of rod segments of high stiffness, these have to be rehydrated after their connection and delivered in a preferably saturated condition.


The description of the examples enables the one skilled in the art to perceive modifications and alternations without leaving the scope of protection defined by the claims.

Claims
  • 1. A plastic connecting rod assembly for a surgical treatment of a spine, comprising a clamp having two opposed clamping ridges, and a plastic rod having at least two rod segments having different properties, wherein the at least two rod segments are interconnected at respective planar end faces thereof to form a connection,wherein said planar end faces lie along an oblique plane which is oblique with respect to a longitudinal axis of the plastic rod,wherein said two opposed clamping ridges are arranged in a clamping plane to engage opposite sides of the plastic rod;wherein an obliquity angle of said oblique plane is large enough so that at least one end of said oblique plane lies outside the clamping plane, the clamping plane being defined perpendicular to said longitudinal axis,wherein the oblique plane forms an angle in the range 45° to 85° with the longitudinal axis of the plastic rod.
  • 2. The plastic connecting rod assembly according to claim 1, wherein the connection is welded.
  • 3. The plastic connecting rod assembly according to claim 2, wherein the connection is vibration-welded.
  • 4. The plastic connecting rod assembly according to claim 1, wherein the connection is bonded.
  • 5. The plastic connecting rod assembly according to claim 1, wherein the connection is welded and bonded.
  • 6. The plastic connecting rod assembly according to claim 1, wherein the at least two rod segments of the plastic rod are limited to two.
  • 7. The plastic connecting rod assembly according to claim 1, wherein the plastic rod is made of a polycarbonate urethane.
  • 8. The plastic connecting rod assembly according to claim 1, wherein the at least two rod segments are rehydrated to saturation after their connection.
  • 9. The plastic connecting rod assembly according to claim 1, wherein the at least two rod segments have different stiffness properties, respectively.
  • 10. The plastic connecting rod assembly according to claim 1, wherein the plastic rod has two ends and an outer surface defined between the two ends, and the at least two rod segments are interconnected at a line defined in the outer surface, and said line defines said oblique plane.
  • 11. A method for producing a plastic connecting rod assembly for a surgical treatment of a spine, including a clamp having two opposed clamping ridges, and a plastic rod having at least two rod segments having different properties, the method comprising: interconnecting the at least two rod segments at respective planar end faces thereof to form a connection,wherein said planar end faces lie along an oblique plane which is oblique with respect to a longitudinal axis of the plastic rod,arranging said two opposed clamping ridges in a clamping plane to engage opposite sides of the plastic rod;providing an obliquity angle of said oblique plane that is large enough so that at least one end of said oblique plane lies outside the clamping plane, the clamping plane being defined perpendicular to said longitudinal axis,wherein the oblique plane forms an angle in the range 45° to 85° with the longitudinal axis of the plastic rod.
  • 12. The method of claim 11, wherein the at least two rod segments are dried prior to being connected along the oblique plane and the plastic rod is then rehydrated.
  • 13. The method of claim 11, wherein the at least two rod segments are rehydrated to saturation after their connection.
  • 14. The method of claim 11, wherein the connection is welded.
  • 15. The method of claim 14, wherein the connection is vibration-welded.
  • 16. The method of claim 11, wherein the connection is bonded.
Priority Claims (1)
Number Date Country Kind
1048/12 Jul 2012 CH national
PCT Information
Filing Document Filing Date Country Kind
PCT/CH2013/000112 6/24/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/005236 1/9/2014 WO A
US Referenced Citations (73)
Number Name Date Kind
5215246 Thompson Jun 1993 A
5217461 Asher et al. Jun 1993 A
5593408 Gayet et al. Jan 1997 A
6099528 Saurat Aug 2000 A
6197015 Wilson Mar 2001 B1
7815663 Trieu Oct 2010 B2
8038818 Murata Oct 2011 B2
8409396 Bech Apr 2013 B2
8974497 Cho et al. Mar 2015 B2
20040002708 Ritland Jan 2004 A1
20050203513 Jahng et al. Sep 2005 A1
20050261686 Paul Nov 2005 A1
20060009768 Ritland Jan 2006 A1
20060041259 Paul et al. Feb 2006 A1
20060095134 Trieu et al. May 2006 A1
20060142760 McDonnell Jun 2006 A1
20060242813 Molz et al. Nov 2006 A1
20060247638 Trieu et al. Nov 2006 A1
20070005063 Bruneau et al. Jan 2007 A1
20070129729 Petit et al. Jun 2007 A1
20070186990 Serbousek Aug 2007 A1
20070191841 Justis et al. Aug 2007 A1
20070233073 Wisnewski et al. Oct 2007 A1
20070270819 Justis et al. Nov 2007 A1
20070270843 Matthis et al. Nov 2007 A1
20080086127 Patterson Apr 2008 A1
20080140133 Allard et al. Jun 2008 A1
20080177388 Patterson Jul 2008 A1
20080221620 Krause Sep 2008 A1
20080262548 Lange et al. Oct 2008 A1
20080306536 Frigg et al. Dec 2008 A1
20080312694 Peterman et al. Dec 2008 A1
20080319486 Hestad et al. Dec 2008 A1
20090240284 Randol et al. Sep 2009 A1
20090248077 Johns Oct 2009 A1
20090248083 Patterson et al. Oct 2009 A1
20090270921 Krause Oct 2009 A1
20090270922 Biedermann Oct 2009 A1
20090287251 Bae et al. Nov 2009 A1
20100042154 Biedermann et al. Feb 2010 A1
20100114165 Ely May 2010 A1
20100114167 Wilcox May 2010 A1
20100126654 Katayama May 2010 A1
20100217326 Bowden et al. Aug 2010 A1
20100324600 Biyani Dec 2010 A1
20110029018 Carlos Feb 2011 A1
20110054535 Gephart et al. Mar 2011 A1
20110106162 Ballard et al. May 2011 A1
20110152936 Gil et al. Jun 2011 A1
20110152937 Trieu Jun 2011 A1
20120065687 Ballard et al. Mar 2012 A1
20120071928 Jackson Mar 2012 A1
20120089188 Jackson Apr 2012 A1
20120112422 Larsson May 2012 A1
20120290013 Simonson Nov 2012 A1
20130012997 Hestad et al. Jan 2013 A1
20130079825 Loke et al. Mar 2013 A1
20130103090 Prevost Apr 2013 A1
20130110169 Hynes et al. May 2013 A1
20130123855 Clark May 2013 A1
20130158606 Freudiger et al. Jun 2013 A1
20130211454 Beger et al. Aug 2013 A1
20140025116 Wei Jan 2014 A1
20140081333 Jackson Mar 2014 A1
20140257393 Trieu et al. Sep 2014 A1
20150039034 Frankel et al. Feb 2015 A1
20150080955 Celmerowski et al. Mar 2015 A1
20150297265 Arena Oct 2015 A1
20150305779 Montavon Oct 2015 A1
20150313642 Fessler Nov 2015 A1
20170105764 Williams Apr 2017 A1
20170135728 Williams May 2017 A1
20190142469 Williams May 2019 A1
Foreign Referenced Citations (7)
Number Date Country
702 636 Aug 2011 CH
702637 Aug 2011 CH
702637 Aug 2011 CH
703 000 Oct 2011 CH
2 113 216 Nov 2009 EP
WO 9732533 Sep 1997 WO
WO 2007038429 Apr 2007 WO
Non-Patent Literature Citations (2)
Entry
International Preliminary Report on Patentability and the Written Opinion of the International Searching Authority dated Jan. 6, 2015 issued in corresponding International Patent Application No. PCT/CH2013/000112.
International Search Report dated Aug. 6, 2013 issued in corresponding International patent application No. PCT/CH2013/000112.
Related Publications (1)
Number Date Country
20150173799 A1 Jun 2015 US