Elastic strand bonded laminate

Information

  • Patent Grant
  • 6902796
  • Patent Number
    6,902,796
  • Date Filed
    Friday, December 28, 2001
    22 years ago
  • Date Issued
    Tuesday, June 7, 2005
    19 years ago
Abstract
A simplified elastic laminate is made from nonwovens and is especially suitable for side panels of training pant garments or the like. A plurality of thermoplastic adhesive elastomeric fibers are located between first and second facing webs. The fibers have an elastic core and adhesive surfaces. The facing webs, with the elastomeric fibers between them, are calendered together thus adhering the facing webs together via contact adhesion with the elastomeric fibers.
Description
BACKGROUND

In the field of elastic laminate garment panels for disposable or limited use garments, desirable qualities include light weight, good skin feel (hand) and exterior abrasion resistance, good flexibility and bond strength. Generally such elastic laminates may be made with a first facing of good hand to contact the skin of the wearer in a non-irritating manner. A second, exterior, facing is used for the exterior side of the garment facing away from the skin of the wearer. Between the two facings is applied an adhesive and strands or webs of elastic material.


However a first problem occurs with such elastic laminates in getting the facings to adhere to each other, and the tensioned elastics, without debonding. This can especially be problematic when the garment is wet, e.g. in swim pants which are subject to total immersion. A second problem occurs aesthetically when, as more adhesive is added to construct the laminate, the heavier, and stiffer, or less flexible, the material becomes. Standard methodology generally requires spraying an entire layer of adhesive down, which leads to a loss of aesthetic cloth-like qualities. Also, as more steps or materials are put into making a fabric (such as adhesive spraying) the more equipment and material is required, leading to a loss of economy.


Hot melt applied adhesives may require the use of adhesives applied in a liquid state and may have problems including increased energy consumption, increased thickness, process control and change time, in addition to the above-stated problems. Meltbonding of the facings may require that the facing webs or the elastic strands or webs, or both, of thermoplastic material be brought at least partially to their melting point in order to bond. These meltbonding techniques may share the same heat-associated problems as hot melt applications and may further suffer cosmetic and lamination strength problems as well as loss of cloth like feel.


Thus there is need to provide economical, light weight, easily manufactured nonwoven laminates having desirable aesthetic qualities.


SUMMARY

The present invention solves the above-stated needs in the art by providing a simplified elastomeric laminate made, in one aspect of the invention, from nonwoven facings and thermoplastic adhesive elastomeric fiber strands. A plurality of thermoplastic adhesive elastomeric fiber strands are located between first and second facing webs. The fibers have an elastic core and adhesive-enriched surfaces. Thus the core is free to perform its primary elastic function while the sheath or surface is free to perform the primary adhesive function without undue corruption of the primary functions resulting from an attempt to derive both functions from a single composition. The facing webs, with the elastomeric fiber strands between them, are calendered together, thus adhering the facing webs together via contact adhesion with the elastomeric fibers. Thus no extra material, machinery, or steps for separate placement of adhesives is required.


Without excessive adhesive, the laminates are lighter, and more flexible while still retaining excellent bond strength between the layers and desired aesthetics. Further, because the strand construction may allow the facings to remain free between the strands, additional bulk and softness may be obtained with the present invention while still providing adequate strand-to-facing and facing-to-facing adhesion. Heretofore, no one is believed to have taught such an elastic laminate using tacky, or adhesive, elastomeric strands, because the person having ordinary skill in the art would likely consider such adhesive strands to be too difficult to work with in a practical manufacturing setting.


Elastic adhesive fibers suitable for use with the present invention may be spunbond (SB) bicomponent or meltblown (MB) bicomponent fibers with a tacky sheath, or may be homofilament fibers loaded with an adhesive which will aggregate or concentrate at, or migrate to, the surface of the fibers. The process may be a vertical filament laminate (VFL) process, such as for making vertical filament stretch-bonded laminate (VFSBL) material, as disclosed in copending application WO 01/87588 published Nov. 22, 2001 and entitled Targeted Elastic Laminate, or a horizontal/continuous filament laminate (CFL) manufacturing process, such as for making continuous filament stretch-bonded laminate (CFSBL) material, as disclosed in U.S. Pat. No. 5,385,775 issued Jan. 31, 1995 to Wright; all of which are incorporated by reference herein in their entirety.


The facings may be nonwoven laminates such as, without limitation, about a 0.1 osy to about a 4.0 osy nonwoven, with a particular example being a 0.4 osy polypropylene spunbond nonwoven web and may be gatherable or expandable, or both in the desired direction, or axis, of elasticity for the laminate in order to provide for expansion and contraction of the resulting laminate.


DEFINITIONS

The term “bicomponent filaments” or “bicomponent fibers” refers to fibers which have been formed from at least two polymers extruded and formed together to create one fiber and may also be referred to herein as “conjugate” or “multicomponent” fibers. “Bicomponent” is not meant to be limiting to only two constituent polymers unless otherwise specifically indicated. The polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the bicomponent fibers and extend continuously along the length of the bicomponent fibers. The configuration of such a bicomponent fiber may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another, or may be a side-by-side arrangement, or a side-by-side-by-side, arrangement. Bicomponent fibers are generally taught in U.S. Pat. No. 5,108,820 to Kaneko et al., U.S. Pat. No. 5,336,552 to Strack et al., and U.S. Pat. No. 5,382,400 to Pike et al. For two component fibers, the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios. Conventional additives, such as pigments and surfactants, may be incorporated into one or both polymer streams, or applied to the filament surfaces.


As used herein, the term “consisting essentially of” does not exclude the presence of additional materials which do not significantly affect the desired characteristics of a given composition or product. Exemplary materials of this sort would include, without limitation, pigments, antioxidants, stabilizers, surfactants, waxes, flow promoters, solvents, particulates, and materials added to enhance processability of the composition.


The term “contact adhesion” or “contact adherence” refers to an adhesive system whereby a tacky surface adheres to create a bond without the necessity of one of the materials entering a liquid state to create the bond.


“Homofilament” refers to a fiber formed from only one predominate polymer and made from a single stream of that polymer. This is not meant to exclude fibers formed from one polymer to which small amounts of additives have been added for coloration, adhesive properties, anti-static properties, lubrication, hydrophilicity, processability, etc.


As used herein, the term “machine direction” or MD means the length of a fabric in the direction in which it is produced. The term “cross machine direction” or CD means the width of fabric, i.e. a direction generally perpendicular to the MD.


The term “meltblown fibers” means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity heated gas (e.g., air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. Such a process is disclosed for example, in U.S. Pat. No. 3,849,241 to Butin et al. Meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than 10 microns in diameter, and are generally self bonding when deposited onto a collecting surface.


The term “microfibers” means small diameter fibers having an average diameter not greater than about 75 microns, for example, having an average diameter of from about 1 micron to about 50 microns, or more particularly, having an average diameter of from about 1 micron to about 30 microns. Another frequently used expression of fiber diameter is denier, which is defined as grams per 9000 meters of a fiber. For a fiber having circular cross-section, denier may be calculated as fiber diameter in microns squared, multiplied by the density in grams/cc, multiplied by 0.00707. A lower denier indicates a finer fiber and a higher denier indicates a thicker or heavier fiber. For example, the diameter of a polypropylene fiber given as 15 microns may be converted to denier by squaring, multiplying the result by 0.89 g/cc (an assumed polypropylene density for this example) and multiplying by 0.00707. Thus, a 15 micron polypropylene fiber has a denier of about 1.42 (152×0.89×0.00707=1.415). Outside the United States the unit of measurement is more commonly the “tex,” which is defined as the grams per kilometer of fiber. Tex may be calculated as denier/9.


As used herein, the term “neck” or “neck stretch” interchangeably means that the fabric is drawn such that it is extended under conditions reducing its width or its transverse dimension by drawing and elongating to increase the length of the fabric. The controlled drawing may take place under cool temperatures, room temperature or greater temperatures and is limited to an increase in overall dimension in the direction being drawn up to the elongation required to break the fabric. The necking process typically involves unwinding a sheet from a supply roll and passing it through a brake nip roll assembly driven at a given linear speed. A take-up roll or nip, operating at a linear speed higher than the brake nip roll, draws the fabric and generates the tension needed to elongate and neck the fabric. U.S. Pat. No. 4,965,122 issued Oct. 23, 1990 to Morman, which, discloses a process for providing a reversibly necked nonwoven material which may include necking the material, then heating the necked material, followed by cooling.


As used herein, the term “neckable material or layer” means any material which can be necked such as a nonwoven, woven, or knitted material. As used herein, the term “necked material” refers to any material which has been drawn in at least one dimension, (e.g. lengthwise), reducing the transverse dimension, (e.g. width), such that when the drawing force is removed, the material can be pulled back, or relaxed, to its original width. The necked material typically has a higher basis weight per unit area than the un-necked material. When the necked material returns to its original un-necked width, it should have about the same basis weight as the un-necked material. This differs from stretching a material layer, during which the layer is thinned and the basis weight is permanently reduced.


Typically, such necked nonwoven fabric materials are capable of being necked up to about 80 percent. For example, the neckable backsheet 30 of the various aspects of the present invention may be provided by a material that has been necked from about 10 to about 80 percent, desirably from about 20 to about 60 percent, and more desirably from about 30 to about 50 percent for improved performance. For the purposes of the present disclosure, the term “percent necked” or “percent neckdown”refers to a ratio or percentage determined by measuring the difference between the pre-necked dimension and the necked dimension of a neckable material, and then dividing that difference by the pre-necked dimension of the neckable material and multiplying by 100 for percentage. The percentage of necking (percent neck) can be determined in accordance with the description in the above-mentioned U.S. Pat. No. 4,965,122.


The term “nonwoven fabric” or “nonwoven web” means a web having a structure of individual fibers or threads which are interlaid, but not in a regular or identifiable manner as in a knitted fabric. Nonwoven fabrics or webs have been formed from many processes such as, for example, meltblowing processes, spunbonding processes, air-laying processes, and bonded carded web processes. The basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters are usually expressed in microns. (Note that to convert from osy to gsm, multiply osy by 33.91).


“Personal care product” or “personal care absorbent article” means diapers, wipes, training pants, absorbent underpants, adult incontinence products, feminine hygiene products, wound care items like bandages, and other like articles.


The term “polymer” generally includes without limitation homopolymers, copolymers (including, for example, block, graft, random and alternating copolymers), terpolymers, etc., and blends and modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” shall include all possible geometrical configurations of the material. These configurations include, but are not limited to isotactic, syndiotactic and atactic symmetries.


The term “spunbond fibers” refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine capillaries of a spinneret having a circular or other configuration, with the diameter of the extruded filaments then being rapidly reduced as by, for example, in U.S. Pat. No. 4,340,563 to Appel et al., and U.S. Pat. No. 3,692,618 to Dorschner et al., U.S. Pat. No. 3,802,817 to Matsuki et al., U.S. Pat. Nos. 3,338,992 and 3,341,394 to Kinney, U.S. Pat. No. 3,502,763 to Hartman, U.S. Pat. No. 3,502,538 to Petersen, and U.S. Pat. No. 3,542,615 to Dobo et al. Spunbond fibers are quenched and generally not tacky when they are deposited onto a collecting surface. Spunbond fibers are generally continuous and usually have average diameters larger than meltblown fibers, and more particularly, generally between about 10 and 30 microns.


The term “substantially continuous filaments” or “substantially continuous fibers” refers to filaments or fibers prepared by extrusion from a spinneret, including without limitation spunbond and meltblown fibers, which are not cut from their original length prior to being formed into a nonwoven web or fabric. Substantially continuous filaments or fibers may have average lengths ranging from greater than about 15 cm to more than one meter, and up to or greater than the length of the nonwoven web or fabric being formed. The definition of “substantially continuous filaments” (or fibers) includes those filaments or fibers which are not cut prior to being formed into a nonwoven web or fabric, but which are later cut when the nonwoven web or fabric is cut.


The term “staple fibers” means fibers which are natural or cut from a manufactured filament prior to forming into a web, and which have an average length ranging from about 0.1-15 cm, more commonly about 0.2-7 cm.


Words of degree, such as “about”, “substantially”, and the like are used herein in the sense of “at, or nearly at, when given the manufacturing and material tolerances inherent in the stated circumstances” and are used to prevent the unscrupulous infringer from unfairly taking advantage of the invention disclosure where exact or absolute figures are stated as an aid to understanding the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are presented as an aid to explanation and understanding of various aspects of the present invention only and are not to be taken as limiting the present invention. The drawings are not necessarily to scale, nor should they be taken as photographically accurate depictions of real objects unless otherwise stated.



FIG. 1 illustrates a training pant/swim pant which may utilize the elastic laminate of the present invention;



FIGS. 2-4 illustrate transverse, or cross direction, cross sections of alternative embodiments of the elastic adhesive fibers with facings;



FIG. 5 illustrates a first process for making an elastic laminate of the present invention;



FIG. 6 illustrates a second process for making an elastic laminate of the present invention; and



FIGS. 7 and 8 illustrate top plan views of laminates of the present invention stretched and unstretched in the longitudinal, or machine direction, respectively.





DETAILED DESCRIPTION

Certain aspects and embodiments of the invention will be described in the context of disposable absorbent articles, and may more particularly be referred to, without limitation and by way of illustration, as a disposable training pant garment or swim wear garment with elastic side panels. It is, however, readily apparent that aspects of the present invention can also be employed to produce other elasticized areas and for other garment or personal care article types, such as feminine care articles, various incontinence garments, medical garments and any other disposable garments, whether absorbent or not, needing an easily manufactured elasticized area. Typically, such disposable garments are intended for limited use and are not intended to be laundered or otherwise cleaned for reuse. A disposable training pant, for example, is discarded after it has become soiled by the wearer.


With reference to FIG. 1, the garment 20 generally defines a front waist section 22, a rear waist section 24, and a crotch 26 which interconnects the front and rear waist sections. The front and rear waist sections 22 and 24 include the general portions of the garment which are constructed to extend over the wearer's front and rear abdominal regions, respectively, during use. Elasticized side panels 28, 30, as further explained below, connect the front and rear waist sections 22, 24, respectively. The crotch 26 of the garment includes the general portion of the garment that is constructed to extend through the wearer's crotch region between the legs.


To provide improved fit and to help reduce leakage of body exudates from the garment 20, the garment leg cuffs 35 and waist margins 37 may be elasticized with suitable elastic members. For example, as illustrated in FIG. 1, the garment 20 may include leg elastics 36 which are constructed to operably tension the side margins of the garment 20 to provide elasticized leg bands which can closely fit around the legs of the wearer to reduce leakage and provide improved comfort and appearance. Waist elastics 38 may be employed to elasticize the waist margins 37 of the garment 20 to provide elasticity to the waistband. The waist elastics 38 are configured to help provide a resilient, comfortably close fit around the waist of the wearer.


Referencing FIG. 1, the side panels 28, 30 are also elasticized to provide improved fit and conformance to the wearer. Each side panel, e.g., side panel 28, is composed of a first portion 42, and a second portion 44. The first portion 42 is bonded to the front waist section 22 by any known means such as ultrasonic bonding, adhesives, etc. Likewise the second portion 44 is bonded to the back waist section 24 in similar matter. The free ends of the side panel portions not bonded to the waist sections are then bonded in a standing butt seam 46 to create a side panel area 49. As used herein, the term “standing butt seam” refers to a seam wherein two separate pieces of substrate are bonded together face-to-face or back-to-back in close proximity to an outer edge of each of the pieces of substrate, and the outer edges of the pieces of substrate project outward from the finished product, placing the seam in peel, as opposed to shearing strain. The seam 46 may be substantially permanent or easily separable depending on the garment application.


Referencing FIG. 2, an exemplary material, or laminate, 47 for the side panel portions is made elastic, flexible, and light weight by placing thermoplastic elastomeric adhesive fibers 48 between a first nonwoven facing 50 and a second nonwoven facing 52 such as 0.4 osy spunbond nonwoven webs. The fibers have elastic cores 51 and adhesive-rich sheaths, or outer perimeters 54, which are adhered to the facings, or extendible webs, 50, 52 by contact adhesion. It will of course be appreciated that facing materials may be webs of material other than nonwovens if appropriate. The fibers may be, for example, bicomponent fibers having a core of an elastic polymer blend available from KRATON Polymers of Houston, Tex. containing 70% by weight KRATON® G1730 tetrablock copolymer elastomer and 30% by weight polyethylene wax; and a sheath of KRATON® G2760 polymer which contains a tackifying resin. Such a composition may be suitable for fibers formed on a wire or screen such as in the continuous filament laminate (CFL) process as further explained below. Higher levels of tackifier in the sheath may be obtained with the vertical filament laminate (VFL) process, further explained below wherein the fibers are formed on a chill roll with a release layer coating.


Alternatively, referencing FIG. 3, a bicomponent meltblown fiber of sheath/core (not shown) (especially good for VFL processes), or a partial sheath/core morphology fiber 56 (especially good for CFL processes) with an elastic core polymer 58 and incomplete or partially surrounding, tackifier, or adhesive, rich, outer areas 60, which do not necessarily provide a 360 degree coverage of the core, may be utilized to bond the facings 50, 52 through contact adhesion. The sheaths or surface areas 60 may also be a blend of elastomer and tackifier components.


As another alternative, referencing FIG. 4, a homofilament fiber 62, such as polyethylene substantially continuous spunbond fiber is loaded with a selective tackifier 64 which migrates to the surface of the fiber 62. This homofilament fiber with selectively migrating tackifier may thus eliminate any special requirements of bicomponent processing. Examples of such a filament and selective migrating tackifier might include polyethylene fibers with a hydrogenated hydrocarbon resin tackifier.



FIG. 5 schematically illustrates a vertical filament laminate (VFL) process for the manufacture of elastic laminates as previously mentioned above. Referring to FIG. 5, at least one molten elastomeric material is extruded from a die extruder 70 through spinning holes as a plurality of substantially continuous elastomeric, adhesive-rich filaments 72. The filaments 72 are quenched and solidified by passing the filaments 72 over a first chill roll 74. Any number of chill rolls can be used. Suitably, chill rolls may have a temperature of about 40 degrees F. to about 80 degrees F. The chill roll 74 may also suitably have a release layer covering (not shown) on the surface to provide for easy release of the adhesive rich filaments, or fibers, 72 which may allow for a higher level of tackifier in the filaments than possible with current horizontal wire processes, as explained in conjunction with FIG. 6.


The die of the extruder 70 may be positioned with respect to the first roller so that the continuous filaments meet this first roller 74 at a predetermined angle 76. This strand extrusion geometry is particularly advantageous for depositing a melt extrudate onto a rotating roll or drum. An angled, or canted, orientation provides an opportunity for the filaments to emerge from the die at a right angle to the roll tangent point resulting in improved spinning, more efficient energy transfer, and generally longer die life. This configuration allows the filaments to emerge at an angle from the die and follow a relatively straight path to contact the tangent point on the roll surface. The angle 76 between the die exit of the extruder 70 and the vertical axis (or the horizontal axis of the first roller, depending on which angle is measured) may be as little as a few degrees or as much as 90 degrees. For example, a 90 degree extrudate exit to roller angle could be achieved by positioning the extruder 70 directly above the downstream edge of the first roller 74 and having a side exit die tip on the extruder. Moreover, angles such as about 20 degrees, about 35 degrees, or about 45 degrees, away from vertical may be utilized. It has been found that, when utilizing a 12-filament/inch spinplate hole density, an approximately 45 degree angle (shown in FIG. 5) allows the system to operate effectively. The optimum angle, however, may vary as a function of extrudate exit velocity, roller speed, vertical distance from the die to the roller, and horizontal distance from the die centerline to the top dead center of the roller. Optimal performance can be achieved by employing various geometries to result in improved spinning efficiency and reduced filament breakage.


After the filaments 72 are quenched and solidified they are stretched or elongated using a first series of stretch rolls 78. The first series of stretch rolls 78 may comprise one or more individual stretch rolls and suitably at least two stretch rolls 80 and 82, as shown in FIG. 5. Stretch rolls 80, 82 rotate at a speed greater than a speed at which chill roll 74 rotates, thereby stretching the filaments 72.


In one embodiment of this invention, each successive roll rotates at a speed greater than the speed of the previous roll. For example, referring to FIG. 5, if the chill roll 74 rotates at a speed “x”; stretch roll 80 rotates at a still greater speed, for example about 1.15×; second stretch roll 82 rotates at a still greater speed, for example about 1.25× to about 7×. As a result, the filaments 72 may be stretched by about 100% to about 800% of an initial pre-stretched length.


After the filaments 72 are stretched, they are laminated to the first facing material 84 and desirably at the same time to a second facing material 86. The first facing material 84 is unwound from a roller 88 and laminated to a first side of the filaments 72. The second facing material 86 is unwound from a second roller 90 and laminated to a second side of the filaments 72. Before the facing materials 84, 86 are laminated to the filaments they may be necked by additional rollers (not shown). The laminate material is then passed through nip rolls 92 to bond the adhesive-surfaced elastic filaments to the facings 84, 86 by contact adhesion. The nip rolls 92, may alternatively be used in place of, or in addition to, the stretch rolls 80, 82 to achieve stretching. The laminate material is then allowed to relax thereby allowing the retracting elastomers to form gathers in the material (see FIG. 8).


The nip rollers may be designed to provide a maximum bond area through the use of flat calender rolls in certain aspects of the invention. Alternatively, a patterned roller may yield certain benefits such as increased bulk or stretching of the laminate and may be used where the strength of the contact adhesion between and among the facings and the strands is not unduly effected. The calender rolls can be heated to a degree below the melting points of the various laminate components, or may be ambient, or chilled.



FIG. 6 illustrates a horizontal, continuous filament laminate (CFL) process for making another elastic laminate of the invention. A first extrusion apparatus 102 is fed with an elastomeric polymer or polymer blend from one or more sources (not shown) and provided with the necessary adhesive sheath or selectively migrating adhesive. In various embodiments, the extrusion apparatus 102 can be configured to produce meltblown or spunbond, and bicomponent or homofilament fibers. Techniques for fiber extrusion, such as modified meltblowing of the fibers, are further set forth in the previously mentioned U.S. Pat. No. 5,385,775 to Wright. Apparatus 102 extrudes filaments 104 directly onto a conveyor system, which can be a forming wire system 106 (i.e., a foraminous belt) moving clockwise about rollers 108. Filaments 104 may be cooled using vacuum suction applied through the forming wire system, and/or cooling fans (not shown). The vacuum can also help hold the filaments 104 against the foraminous wire system. Tackifier loading of about 23 percent has been found to be a practical limit with certain forming wires. However, it is contemplated that this percentage maybe increased with modifications to the forming wires which are designed to enhance handling of the adhesive rich fibers. The tackifier may be present in amounts for about 5 percent to about 40 percent and desirably from about 15 percent to about 25 percent.


The filaments 104 are then stretched by tensioning rollers 110 to elongate and tension the filaments. Desirably the tension rollers 110 are provided with a surface having little to no affinity for the adhesive of the filaments 104.


After the filaments 104 are stretched, they are laminated to the first facing material 112 and desirably at the same time to a second facing material 114. The first facing material 112 is unwound from a roller 116 and laminated to a first side of the filaments 104. The second facing material 114 is unwound from a second roller 118 and laminated to a second side of the filaments 104. Before the facing materials 112, 114 are laminated to the filaments 104 the facing materials may also be stretched by additional rollers (not shown). The laminate material is then passed through nip rolls 120 to bond the adhesive-surfaced elastic filaments to the facings 84, 86 by contact adhesion to produce the elastic laminate 122. The elastic laminate 122 is then allowed to relax, forming gathers therein (see FIG. 8) and collected on a collection roll 124 for further use.


As in the VFL process, the nip rollers 120 may be desirably designed to provide a 100% bond area through the use of flat calender rolls or may provide a patterned bond area. The rollers 120 can be heated to a degree below the melting points of the various laminate components, or may be ambient, or chilled.


Referencing FIGS. 7 and 8, an exemplary elastic laminate material 47 appears in a stretched, or tensioned, condition in FIG. 7 showing the elastic strands, e.g. 62, in phantom. FIG. 8 shows the elastic laminate material 47 in a relaxed, or untensioned, condition with gathers 126 formed in the material 47 by the contraction of the elastic strands (not shown).


Having thus described a light weight, flexible, easily manufactured, elastic laminate of good aesthetics it will be appreciated that many variations thereon may occur to the person having ordinary skill in the art. Thus, the invention is intended to be limited only by the appended claims and not by the exemplary embodiments and aspects put forth herein.

Claims
  • 1. An elastic laminate, comprising: a) a first facing web; b) a second facing web; c) a plurality of thermoplastic elastomeric fiber strands located between the first facing web and the second facing web; and d) the fiber strands having an elastic core and adhesive surfaces and bonding the first facing web and the second facing web together by contact adhesion with the adhesive surfaces of the fibers to create the elastic laminate.
  • 2. A disposable garment including the elastic web of claim 1 incorporated therein as a side panel.
  • 3. An elastic laminate, comprising: a) a first web constructed to be on an interior side of a garment; b) a second web constructed to be on an exterior side of the garment; c) a plurality of thermoplastic elastomeric fibers located between the first web and the second web; and d) the fibers having an elastic core and adhesive surfaces and bonding the first web and the second web together by contact with the adhesive surfaces of the fibers to create the elastic laminate.
  • 4. The elastic laminate according to claim 3 wherein the thermoplastic fibers have elastic cores which are nonadhesive.
  • 5. The elastic laminate according to claim 3 wherein the thermoplastic fibers having a melting point over 200 degrees F.
  • 6. The elastic laminate according to claim 3 wherein the first web is a nonwoven web of between about 0.1 osy and about 4.0 osy basis weight comprising substantially continuous spunbond polypropylene filaments.
  • 7. The elastic laminate according to claim 3 wherein the second web is a nonwoven web of between about 0.1 osy and about 4.0 osy basis weight comprising substantially continuous spunbond polypropylene filaments.
  • 8. The elastic laminate according to claim 3 wherein the first web is a nonwoven web.
  • 9. The elastic laminate according to claim 3 wherein the second web is a nonwoven web.
  • 10. The elastic laminate according to claim 4 wherein the thermoplastic fibers include a bicomponent fiber of substantially sheath/core or partial sheath/core morphology wherein a core section of the fiber is a nonadhesive elastomer and a sheath section is an adhesive.
  • 11. The elastic laminate according to claim 5 wherein the thermoplastic fibers include a homofilament comprising a thermoplastic elastomeric polymer with a tackifier compound therein, the tackifier being concentrated at the surface of the filament to be the adhesive.
  • 12. The elastic laminate according to claim 11 wherein the homofilament comprises an elastic block copolymer.
  • 13. The elastic laminate according to claim 12 wherein the tackifier includes hydrogenated hydrocarbon resin tackifier.
  • 14. The elastic laminate according to claim 10 wherein the adhesive is an elastomer/tackifier blend.
  • 15. The elastic laminate according to claim 10 wherein the fiber is a spunbond bicomponent.
  • 16. The elastic laminate according to claim 10 wherein the fiber is a meltblown bicomponent.
US Referenced Citations (434)
Number Name Date Kind
2206761 Bergstein Jul 1940 A
2266761 Jackson, Jr. et al. Dec 1941 A
2357392 Francis, Jr. Sep 1944 A
2464301 Francis, Jr. Mar 1949 A
2483405 Francis, Jr. Oct 1949 A
2957512 Wade et al. Oct 1960 A
2957852 Frankenburg et al. Oct 1960 A
3186893 Mercer Jun 1965 A
3338992 Kinney Aug 1967 A
3341394 Kinney Sep 1967 A
3371668 Johnson Mar 1968 A
3391048 Dyer et al. Jul 1968 A
3439085 Hartmann Apr 1969 A
3449187 Bobkowicz Jun 1969 A
3468748 Bassett Sep 1969 A
3489148 Duncan et al. Jan 1970 A
3502538 Petersen Mar 1970 A
3502763 Hartmann Mar 1970 A
3542615 Dobo et al. Nov 1970 A
3575782 Hansen Apr 1971 A
3616129 Sager Oct 1971 A
3629047 Davidson Dec 1971 A
3669823 Wood Jun 1972 A
3673026 Brown Jun 1972 A
3676242 Prentice Jul 1972 A
3689342 Vogt et al. Sep 1972 A
3692618 Dorschner et al. Sep 1972 A
3752613 Vogt et al. Aug 1973 A
3773590 Morgan Nov 1973 A
3802817 Matsuki et al. Apr 1974 A
3806289 Schwarz Apr 1974 A
3836416 Ropiequet Sep 1974 A
3838692 Levesque Oct 1974 A
3849241 Butin et al. Nov 1974 A
3857144 Bustin Dec 1974 A
3860003 Buell Jan 1975 A
3890184 Morgan Jun 1975 A
3904465 Haase et al. Sep 1975 A
3912567 Schwartz Oct 1975 A
3917448 Wood Nov 1975 A
3932328 Korpman Jan 1976 A
3949128 Ostermeier Apr 1976 A
3949130 Sabee et al. Apr 1976 A
3973063 Clayton Aug 1976 A
3978185 Buntin et al. Aug 1976 A
3979050 Cilia Sep 1976 A
4013816 Sabee et al. Mar 1977 A
4028292 Korpman Jun 1977 A
4038346 Feeney Jul 1977 A
4080348 Korpman Mar 1978 A
4090385 Packard May 1978 A
4100324 Anderson et al. Jul 1978 A
4107364 Sisson Aug 1978 A
4148676 Paquette et al. Apr 1979 A
4189338 Ejima et al. Feb 1980 A
4209563 Sisson Jun 1980 A
4211807 Yazawa et al. Jul 1980 A
4239578 Gore Dec 1980 A
4241123 Shih Dec 1980 A
4248652 Civardi et al. Feb 1981 A
4259220 Bunnelle et al. Mar 1981 A
4269888 Ejima et al. May 1981 A
4285998 Thibodeau Aug 1981 A
4300562 Pieniak Nov 1981 A
4302495 Marra Nov 1981 A
4303571 Jansen et al. Dec 1981 A
4304234 Hartmann Dec 1981 A
4310594 Yamazaki et al. Jan 1982 A
4319572 Widlund et al. Mar 1982 A
4323534 DesMarais Apr 1982 A
4333782 Pieniak Jun 1982 A
4340558 Hendrickson Jul 1982 A
4340563 Appel et al. Jul 1982 A
4375446 Fujii et al. Mar 1983 A
4402688 Julemont Sep 1983 A
4405397 Teed Sep 1983 A
4413623 Pieniak Nov 1983 A
4417935 Spencer Nov 1983 A
4418123 Bunnelle et al. Nov 1983 A
4438167 Schwarz Mar 1984 A
4440819 Rosser et al. Apr 1984 A
4469540 Furukawa et al. Sep 1984 A
4490427 Grant et al. Dec 1984 A
4496417 Haake et al. Jan 1985 A
4500316 Damico Feb 1985 A
4507163 Menard Mar 1985 A
4522863 Keck et al. Jun 1985 A
4525407 Ness Jun 1985 A
4543099 Bunnelle et al. Sep 1985 A
4548859 Kline et al. Oct 1985 A
4552795 Hansen et al. Nov 1985 A
4555811 Shimalla Dec 1985 A
4572752 Jensen et al. Feb 1986 A
4586199 Birring May 1986 A
D284036 Birring Jun 1986 S
4606964 Wideman Aug 1986 A
4618384 Sabee Oct 1986 A
4626305 Suzuki et al. Dec 1986 A
4636419 Madsen et al. Jan 1987 A
4640859 Hansen et al. Feb 1987 A
4644045 Fowells Feb 1987 A
4652487 Morman Mar 1987 A
4656081 Ando et al. Apr 1987 A
4657793 Fisher Apr 1987 A
4657802 Morman Apr 1987 A
4661389 Mudge et al. Apr 1987 A
4663220 Wisneski et al. May 1987 A
4666542 Kawano May 1987 A
4675068 Lundmark Jun 1987 A
4683877 Ersfeld et al. Aug 1987 A
4687477 Suzuki et al. Aug 1987 A
4692368 Taylor et al. Sep 1987 A
4692371 Morman et al. Sep 1987 A
4696779 Wideman Sep 1987 A
4698242 Salerno Oct 1987 A
4699941 Salerno Oct 1987 A
4704116 Enloe Nov 1987 A
4718901 Singheimer Jan 1988 A
4719261 Bunnelle et al. Jan 1988 A
4720415 Vander Wielen et al. Jan 1988 A
4725468 McIntyre Feb 1988 A
4726874 VanVliet Feb 1988 A
4734311 Sokolowski Mar 1988 A
4734320 Ohira et al. Mar 1988 A
4734447 Hattori et al. Mar 1988 A
4735673 Piron Apr 1988 A
4756942 Aichele Jul 1988 A
4761198 Salerno Aug 1988 A
4762582 de Jonckheere Aug 1988 A
4775579 Hagy et al. Oct 1988 A
4777080 Harris, Jr. et al. Oct 1988 A
4789699 Kieffer et al. Dec 1988 A
4798603 Meyer et al. Jan 1989 A
4801345 Dussaud et al. Jan 1989 A
4801482 Goggans et al. Jan 1989 A
4803117 Daponte Feb 1989 A
4804577 Hazelton et al. Feb 1989 A
4816094 Pomplun et al. Mar 1989 A
4818597 DaPonte et al. Apr 1989 A
4826415 Mende May 1989 A
4837715 Ungpiyakul et al. Jun 1989 A
4842666 Werenicz Jun 1989 A
4854985 Soderlund et al. Aug 1989 A
4854989 Singheimer Aug 1989 A
4863779 Daponte Sep 1989 A
4867735 Wogelius Sep 1989 A
4874447 Hazelton et al. Oct 1989 A
4883482 Gandrez et al. Nov 1989 A
4883549 Frost et al. Nov 1989 A
4891258 Fahrenkrug Jan 1990 A
4892536 DesMarais et al. Jan 1990 A
4892903 Himes Jan 1990 A
4900619 Ostrowski et al. Feb 1990 A
4906507 Grynaeus et al. Mar 1990 A
4908247 Baird et al. Mar 1990 A
4908253 Rasmussen Mar 1990 A
4910064 Sabee Mar 1990 A
4917696 De Jonckheere Apr 1990 A
4917746 Kons et al. Apr 1990 A
4929492 Carey, Jr. et al. May 1990 A
4935021 Huffman et al. Jun 1990 A
4938757 Van Gompel et al. Jul 1990 A
4938821 Soderlund et al. Jul 1990 A
4940464 Van Gompel et al. Jul 1990 A
4965122 Morman Oct 1990 A
4968313 Sabee Nov 1990 A
4970259 Mitchell et al. Nov 1990 A
4977011 Smith Dec 1990 A
4984584 Hansen et al. Jan 1991 A
4994508 Shiraki et al. Feb 1991 A
4995928 Sabee Feb 1991 A
4998929 Bjorksund et al. Mar 1991 A
5000806 Merkatoris et al. Mar 1991 A
5002815 Yamanaka et al. Mar 1991 A
5005215 McIlquham Apr 1991 A
5013785 Mizui May 1991 A
5028646 Miller et al. Jul 1991 A
5034008 Breitkopf Jul 1991 A
5045133 DaPonte et al. Sep 1991 A
5046272 Vogt et al. Sep 1991 A
5060349 Walton et al. Oct 1991 A
5073436 Antonacci et al. Dec 1991 A
5093422 Himes Mar 1992 A
5100435 Onwumere Mar 1992 A
5104116 Pohjola Apr 1992 A
5108820 Kaneko et al. Apr 1992 A
5112889 Miller et al. May 1992 A
5114087 Fisher et al. May 1992 A
5116662 Morman May 1992 A
5147487 Nomura et al. Sep 1992 A
5163932 Nomura et al. Nov 1992 A
D331627 Igaue et al. Dec 1992 S
5169706 Collier, IV et al. Dec 1992 A
5169712 Tapp Dec 1992 A
5171633 Muramoto et al. Dec 1992 A
5176668 Bernardin Jan 1993 A
5176672 Bruemmer et al. Jan 1993 A
5186779 Tubbs Feb 1993 A
5192606 Proxmire et al. Mar 1993 A
5198281 Muzzy et al. Mar 1993 A
5200246 Sabee Apr 1993 A
5204429 Kaminsky et al. Apr 1993 A
D335707 Igaue et al. May 1993 S
5209801 Smith May 1993 A
5219633 Sabee Jun 1993 A
5224405 Pohjola Jul 1993 A
5226992 Morman Jul 1993 A
5229191 Austin Jul 1993 A
5232777 Sipinen et al. Aug 1993 A
5236430 Bridges Aug 1993 A
5236770 Assent et al. Aug 1993 A
5238733 Joseph et al. Aug 1993 A
5246433 Hasse et al. Sep 1993 A
D340283 Igaue et al. Oct 1993 S
5252170 Schaupp Oct 1993 A
5259902 Muckenfuhs Nov 1993 A
5260126 Collier, IV et al. Nov 1993 A
5272236 Lai et al. Dec 1993 A
5278272 Lai et al. Jan 1994 A
5288791 Collier, IV et al. Feb 1994 A
5290842 Sasaki et al. Mar 1994 A
5296080 Merkatoris et al. Mar 1994 A
5304599 Himes Apr 1994 A
5308345 Herrin May 1994 A
5312500 Kurihara et al. May 1994 A
5324580 Allan et al. Jun 1994 A
5332613 Taylor et al. Jul 1994 A
5334437 Zafiroglu Aug 1994 A
5334446 Quantrille et al. Aug 1994 A
5336545 Morman Aug 1994 A
5336552 Strack et al. Aug 1994 A
5342341 Igaue et al. Aug 1994 A
5342469 Bodford et al. Aug 1994 A
5360854 Bozich, Jr. Nov 1994 A
5364382 Latimer et al. Nov 1994 A
5366793 Fitts, Jr. et al. Nov 1994 A
5376198 Fahrenkrug et al. Dec 1994 A
5376430 Swenson et al. Dec 1994 A
5382400 Pike et al. Jan 1995 A
5385775 Wright Jan 1995 A
5389168 Litchholt et al. Feb 1995 A
5389173 Merkatoris et al. Feb 1995 A
5393599 Quantrille et al. Feb 1995 A
5399219 Roessler et al. Mar 1995 A
5405682 Shawyer et al. Apr 1995 A
5407507 Ball Apr 1995 A
5411618 Jocewicz, Jr. May 1995 A
5413654 Igaue et al. May 1995 A
5413849 Austin et al. May 1995 A
5415644 Enloe May 1995 A
5415649 Watanabe et al. May 1995 A
5415925 Austin et al. May 1995 A
5422172 Wu Jun 1995 A
5425987 Shawver et al. Jun 1995 A
5429629 Latimer et al. Jul 1995 A
5429694 Herrmann Jul 1995 A
5431644 Sipinen et al. Jul 1995 A
5431991 Quantrille et al. Jul 1995 A
5447462 Smith et al. Sep 1995 A
5447508 Numano et al. Sep 1995 A
5449353 Watanabe et al. Sep 1995 A
5462793 Isoda et al. Oct 1995 A
5464401 Hasse et al. Nov 1995 A
5472775 Obijeski et al. Dec 1995 A
5476458 Glaug et al. Dec 1995 A
5476563 Nakata Dec 1995 A
5484645 Lickfield et al. Jan 1996 A
5486166 Bishop et al. Jan 1996 A
5490846 Ellis et al. Feb 1996 A
5496298 Kuepper et al. Mar 1996 A
5498468 Blaney Mar 1996 A
5500075 Herrmann Mar 1996 A
5501679 Krueger et al. Mar 1996 A
5503919 Litchholt et al. Apr 1996 A
5509915 Hanson et al. Apr 1996 A
5514470 Haffner et al. May 1996 A
5516476 Haggard et al. May 1996 A
5523146 Bodford et al. Jun 1996 A
5527300 Sauer Jun 1996 A
5531850 Herrmann Jul 1996 A
5534330 Groshens Jul 1996 A
5536563 Shah et al. Jul 1996 A
5540796 Fries Jul 1996 A
5540976 Shawver et al. Jul 1996 A
5543206 Austin et al. Aug 1996 A
5545158 Jessup Aug 1996 A
5545285 Johnson Aug 1996 A
5549964 Shohji et al. Aug 1996 A
5569232 Roe et al. Oct 1996 A
5575783 Clear et al. Nov 1996 A
5576090 Suzuki Nov 1996 A
5582668 Kling Dec 1996 A
5591152 Buell et al. Jan 1997 A
5591792 Hattori et al. Jan 1997 A
5593525 Isoda et al. Jan 1997 A
5593768 Gessner Jan 1997 A
5595618 Fries et al. Jan 1997 A
5597430 Rasche Jan 1997 A
5612118 Schleinz et al. Mar 1997 A
5614276 Petsetakis Mar 1997 A
5620780 Krueger et al. Apr 1997 A
5624740 Nakata Apr 1997 A
5626573 Igaue et al. May 1997 A
5628856 Dobrin et al. May 1997 A
5645672 Dobrin Jul 1997 A
5652041 Buerger et al. Jul 1997 A
5660664 Herrmann Aug 1997 A
5663228 Sasaki et al. Sep 1997 A
5669897 Lavon et al. Sep 1997 A
5674216 Buell et al. Oct 1997 A
5677057 Tashiro et al. Oct 1997 A
5680653 Mathis et al. Oct 1997 A
5681302 Melbye et al. Oct 1997 A
5683787 Boich et al. Nov 1997 A
5690626 Suzuki et al. Nov 1997 A
5691034 Krueger et al. Nov 1997 A
5693038 Suzuki et al. Dec 1997 A
5695849 Shawver et al. Dec 1997 A
5702378 Widlund et al. Dec 1997 A
5707709 Blake Jan 1998 A
5709921 Shawver Jan 1998 A
5720838 Nakata Feb 1998 A
5733635 Terakawa et al. Mar 1998 A
5733822 Gessner et al. Mar 1998 A
5735839 Kawaguchi et al. Apr 1998 A
5736219 Suehr et al. Apr 1998 A
5746731 Hisada May 1998 A
5749865 Yamamoto et al. May 1998 A
5749866 Roe et al. May 1998 A
5766389 Brandon et al. Jun 1998 A
5766737 Willey et al. Jun 1998 A
5769838 Buell et al. Jun 1998 A
5769993 Baldauf Jun 1998 A
5772649 Siudzinski Jun 1998 A
5773373 Wynne et al. Jun 1998 A
5773374 Wood et al. Jun 1998 A
5780155 Ishizawa et al. Jul 1998 A
5788804 Horsting Aug 1998 A
5789065 Haffner et al. Aug 1998 A
5789328 Kurihara et al. Aug 1998 A
5789474 Lu et al. Aug 1998 A
5800903 Wood et al. Sep 1998 A
5804021 Abuto et al. Sep 1998 A
5804286 Quantrille et al. Sep 1998 A
5814176 Proulx Sep 1998 A
5817087 Takabayashi et al. Oct 1998 A
5818719 Brandon et al. Oct 1998 A
5830203 Suzuki et al. Nov 1998 A
5834089 Jones et al. Nov 1998 A
5836931 Toyoda et al. Nov 1998 A
5836932 Buell et al. Nov 1998 A
5840412 Wood et al. Nov 1998 A
5840633 Kurihara et al. Nov 1998 A
5846232 Serbiak et al. Dec 1998 A
5849001 Torimae et al. Dec 1998 A
5856387 Sasaki et al. Jan 1999 A
5858528 Tashiro et al. Jan 1999 A
5860945 Cramer et al. Jan 1999 A
5865933 Morin et al. Feb 1999 A
5876392 Hisada Mar 1999 A
5879776 Nakata Mar 1999 A
5882573 Kwok et al. Mar 1999 A
5883028 Morman et al. Mar 1999 A
5885656 Goldwasser Mar 1999 A
5885686 Cederblad et al. Mar 1999 A
5895382 Popp et al. Apr 1999 A
5897546 Kido et al. Apr 1999 A
5899895 Robles et al. May 1999 A
5902540 Kwok May 1999 A
5904298 Kwok et al. May 1999 A
5906879 Huntoon et al. May 1999 A
5916206 Otsubo et al. Jun 1999 A
5921973 Newkirk et al. Jul 1999 A
5930139 Chapdelaine et al. Jul 1999 A
5931581 Garberg et al. Aug 1999 A
5932039 Popp et al. Aug 1999 A
5941865 Otsubo et al. Aug 1999 A
D414262 Ashton et al. Sep 1999 S
5952252 Shawver et al. Sep 1999 A
5964970 Woolwine et al. Oct 1999 A
5964973 Heath et al. Oct 1999 A
5990377 Chen et al. Nov 1999 A
5993433 St. Louis et al. Nov 1999 A
5993944 Honna et al. Nov 1999 A
5997521 Robles et al. Dec 1999 A
6001752 Ishizawa et al. Dec 1999 A
6004306 Robles et al. Dec 1999 A
6009558 Rosch et al. Jan 2000 A
6033502 Coenen et al. Mar 2000 A
6045543 Pozniak et al. Apr 2000 A
6048326 Davis et al. Apr 2000 A
6057024 Mleziva et al. May 2000 A
6066369 Schulz et al. May 2000 A
6087550 Anderson-Fischer et al. Jul 2000 A
6090234 Barone et al. Jul 2000 A
6092002 Kastman et al. Jul 2000 A
6093663 Ouellette et al. Jul 2000 A
6096668 Abuto et al. Aug 2000 A
6123694 Pieniak et al. Sep 2000 A
6132410 Van Gompel et al. Oct 2000 A
6152904 Matthews et al. Nov 2000 A
6169848 Henry Jan 2001 B1
6183587 McFall et al. Feb 2001 B1
6183847 Goldwasser Feb 2001 B1
6197012 Mishima et al. Mar 2001 B1
6214476 Ikeda et al. Apr 2001 B1
6217690 Rajala et al. Apr 2001 B1
6221483 Hilston et al. Apr 2001 B1
6231557 Krautkramer et al. May 2001 B1
6238379 Keuhn, Jr. et al. May 2001 B1
6245050 Odorzynski et al. Jun 2001 B1
6245168 Coenen et al. Jun 2001 B1
6260211 Rajala et al. Jul 2001 B1
6279807 Crowley et al. Aug 2001 B1
6290979 Roe et al. Sep 2001 B1
6310164 Morizono et al. Oct 2001 B1
6316013 Paul et al. Nov 2001 B1
6316687 Davis et al. Nov 2001 B1
6316688 Hammons et al. Nov 2001 B1
6320096 Inoue et al. Nov 2001 B1
6323389 Thomas et al. Nov 2001 B1
6329459 Kang et al. Dec 2001 B1
6364863 Yamamoto et al. Apr 2002 B1
6365659 Aoyama et al. Apr 2002 B1
6417121 Newkirk et al. Jul 2002 B1
6475600 Morman et al. Nov 2002 B1
6537935 Seth et al. Mar 2003 B1
6562167 Coenen et al. May 2003 B2
20020002021 May et al. Jan 2002 A1
20020009940 May et al. Jan 2002 A1
20020019616 Thomas Feb 2002 A1
20020104608 Welch et al. Aug 2002 A1
20020138063 Kuen et al. Sep 2002 A1
20020164465 Curro et al. Nov 2002 A1
Foreign Referenced Citations (85)
Number Date Country
2 165 486 Jun 1996 CA
34 23 644 Jan 1986 DE
37 34 963 Apr 1988 DE
0 155 636 Sep 1985 EP
0 172 037 Feb 1986 EP
0 217 032 Apr 1987 EP
0 239 080 Sep 1987 EP
0 380 781 Aug 1990 EP
0 396 800 Nov 1990 EP
0 456 885 Nov 1991 EP
0 547 497 Jun 1993 EP
0 582 569 Feb 1994 EP
0 604 731 Jul 1994 EP
0 617 939 Oct 1994 EP
0 688 550 Dec 1995 EP
0 689 815 Jan 1996 EP
0 713 546 May 1996 EP
0 743 052 Nov 1996 EP
0 747 521 Dec 1996 EP
0 753 292 Jan 1997 EP
0 761 193 Mar 1997 EP
0 761 194 Mar 1997 EP
0 763 353 Mar 1997 EP
0 787 474 Aug 1997 EP
0 806 196 Nov 1997 EP
0 814 189 Dec 1997 EP
0 873 738 Oct 1998 EP
0 888 101 Jan 1999 EP
0 901 780 Mar 1999 EP
1 013 251 Jun 2000 EP
WO0037723 Aug 2000 EP
2 244 422 Dec 1991 GB
2 250 921 Jun 1992 GB
2 253 131 Sep 1992 GB
2 267 024 Nov 1993 GB
2 266 389 Jan 1994 GB
92891 Feb 1992 IS
61194221 Aug 1986 JP
3000814 Jan 1991 JP
03-067646 Mar 1991 JP
3069614 Mar 1991 JP
3161330 Jul 1991 JP
6306708 Nov 1994 JP
2000154428 Jun 2000 JP
WO 9003464 Apr 1990 WO
WO 9107277 May 1991 WO
WO 9216371 Oct 1992 WO
WO 9315247 Aug 1993 WO
WO 9315249 Aug 1993 WO
WO 9317648 Sep 1993 WO
WO 9409736 May 1994 WO
WO 9503443 Feb 1995 WO
WO 9504182 Feb 1995 WO
WO 9516425 Jun 1995 WO
WO 9516562 Jun 1995 WO
WO 9522644 Aug 1995 WO
WO 9534264 Dec 1995 WO
WO 9613989 May 1996 WO
WO 9623466 Aug 1996 WO
WO 9635402 Nov 1996 WO
WO 9717046 May 1997 WO
WO 9814156 Apr 1998 WO
WO 9849988 Nov 1998 WO
WO 9855062 Dec 1998 WO
WO 9917926 Apr 1999 WO
WO 9924519 May 1999 WO
WO 9947590 Sep 1999 WO
WO 9960969 Dec 1999 WO
WO 9960970 Dec 1999 WO
WO 9960971 Dec 1999 WO
WO 0010500 Mar 2000 WO
WO 0028123 May 2000 WO
WO 0029199 May 2000 WO
WO 0029655 May 2000 WO
WO 0029657 May 2000 WO
WO 0037003 Jun 2000 WO
WO 0037005 Jun 2000 WO
WO 0037723 Jun 2000 WO
WO 0059429 Oct 2000 WO
WO 0100053 Jan 2001 WO
WO 0132116 May 2001 WO
WO 0149907 Jul 2001 WO
WO 0187214 Nov 2001 WO
WO 0234184 May 2002 WO
WO 02060690 Aug 2002 WO
Related Publications (1)
Number Date Country
20030124331 A1 Jul 2003 US