The present invention relates to location features for aligning of components during a mating operation. More particularly, the present invention relates to a plurality of mutually spaced apart elastic tube alignment features of an emblem lens which elastically deform on average when mated to receiving aperture alignment features of an outer bezel to thereby precisely align the first and second components during a mating operation.
Currently, components which are to be mated together in a manufacturing process are mutually located with respect to each other by 2-way and/or 4-way male alignment features, typically upstanding bosses, which are received into corresponding female alignment features, typically apertures in the form of holes or slots. There is a clearance between the male alignment features and their respective female alignment features which is predetermined to match anticipated size and positional variation tolerances of the male and female alignment features as a result of manufacturing (or fabrication) variances. As a result, there can occur significant positional variation as between the mated first and second components which contributes to the presence of undesirably large and varying gaps and otherwise poor fit therebetween.
According to the prior art location modality for the aligning of an emblem lens to an outer bezel as they are being mutually mated, the emblem lens is located within a pocket of the outer bezel. The pocket sidewalls are configured to be oversized in relation to the perimeter of the emblem lens so that there is everywhere spacing therebetween. This clearance between the pocket sidewalls and the corresponding perimeter of the emblem lens is provided in order to accommodate manufacturing variation as between these two components as they are mated to one another. Problematically, this clearance between the emblem lens and the pocket allows positional variation as between the emblem lens and the outer bezel, and once the emblem lens is affixed to the outer bezel, as for example by two-sided tape or emblem adhesive, any misfit of alignment may render the fit unacceptable for a Class A finish.
Accordingly, what remains needed in the art is to somehow provide an alignment modality for the mating of components, in particular an emblem lens with respect to an outer bezel, wherein when mating is completed there is a lack of play therebetween and the alignment is precise.
The present invention is an elastic tube alignment system for the precise mating of two components, particularly an emblem lens with respect to an outer bezel, wherein when mating is completed there is a lack of float (or play) as between the male and female alignment features so as to provide a precision alignment with a stiffened positional constraint.
The elastic tube alignment system according to the present invention operates on the principle of elastic averaging as discussed in U.S. patent application Ser. No. 13/187,675, filed on Jul. 21, 2011, entitled Elastic Tube Alignment System for Precisely Locating Components, to Steven E. Morris and assigned to the assignee hereof, the entire disclosure of which is hereby incorporated herein by reference.
A plurality of geometrically separated elastic tube (male) alignment features are disposed on a first component, an emblem lens, while a plurality of one-to-one corresponding aperture (female) alignment features are provided on a second component, an outer bezel, wherein the elastic tube alignment features have a diameter exceeding a cross-section of the aperture alignment features. During the mating of the emblem lens to the outer bezel, each elastic tube alignment feature respectively engages its corresponding aperture alignment feature. As the elastic tube alignment features are received into the aperture alignment features, any manufacturing variance in terms of position and size of the elastic tube and aperture alignment features is accommodated by elastic deformation, on average, at the interface between the elastic tube and aperture alignment features. This elastic averaging across the plurality of elastic tube and aperture alignment features provides a precise alignment as between the emblem lens and the outer bezel when they are mated relative to each other, and yet the mating proceeds smoothly and easily.
In accordance with the present invention, the elastic averaging provides a precise alignment of the components within a variance X′, defined by X′=X/√N, where X is the average manufacturing variance of the elastic tube alignment features and the aperture alignment features, and N is the number thereof. Thus, the needed clearance for the male and female alignment features of the prior art is obviated by the present invention.
According to the present invention, the elastic tube alignment features are elastically deformable by elastic compression of the tube wall of the elastic tube, which deformation is preferably resiliently reversible. In an exemplar application of the present invention, the elastic tube alignment features are connected (typically integrally) to the emblem lens at a first (or rear) side thereof in upstanding, perpendicular relation thereto (the first side has a Class B finish which is not meant to be visible, wherein the opposite, second (or front) side, is meant to be visible and has a Class A finish). Further according to the present invention, it is possible, but not required, for the aperture alignment members to be elastically deformable by elastic expansion of the aperture wall of the aperture, which deformation is preferably resiliently reversible. In an exemplar application of the present invention, the aperture alignment features are disposed in the outer bezel, typically as a slot or a hole therein, wherein the diameter of the elastic tube alignment features exceeds the cross-section of the aperture alignment features, and whereby elastic deformation occurs as each elastic tube alignment feature is received into its respective aperture alignment feature. The process of mating with precise alignment is both smoothly and easily performed. This is enhanced by a tapering (smaller diameter with increasing height) of the elastic tube alignment features so as to facilitate their initial entry into the aperture alignment features, and by beveling of the aperture wall of the aperture alignment features so as to locally pronounce the elastic deformation at the interface of the aperture wall with the tube wall.
In operation, as the emblem lens and the outer bezel are mated together, the initial contact therebetween is at the plurality of geometrically spaced apart elastic tube alignment members passing into their one-to-one corresponding aperture alignment features. Because of the larger size of the diameter of elastic tube alignment features relative to the cross-section of the aperture alignment features, an elastic deformation occurs at the interface therebetween, and this deformation is averaged over the geometrical distribution of the plurality of elastic tube alignment features. The alignment becomes precise when the emblem lens and the outer bezel have fully mated because the tapering of the elastic tube alignment features provides a largest diameter to the cross-section of the aperture alignment features when the first and second components have arrived at final mating. When an affixment modality is implemented, such as for example an emblem adhesive, the precise alignment becomes manifest, and the visible joint between the emblem lens and the outer bezel is a perfect Class A finish.
Accordingly, it is an object of the present invention to provide an elastic tube alignment modality for the mating of an emblem lens to an outer bezel, wherein when mating is completed there is a lack of play as between the elastic tube and aperture alignment features so as to thereby provide a precision alignment, yet the mating proceeds smoothly and effortlessly.
This and additional objects, features and advantages of the present invention will become clearer from the following specification of a preferred embodiment.
Referring now to the Drawings,
A plurality of mutually separated elastic tube alignment features (serving as male alignment features) 102 (hereinafter referred to simply as “elastic tubes”) are disposed on a first side 104 of the emblem lens, wherein, typically, the first side is a Class B finish side that is not intended to be visible (the opposite side has a Class A finish that is intended to be visible). As best shown at
A plurality of aperture alignment features (serving as female alignment features) 110 (hereinafter referred to simply as “apertures”) are disposed in a first side 112 of the outer bezel 114, being located in one-to-one correspondence with the plurality of elastic tubes 102; that is, for each elastic tube is a respective aperture into which it is receivable. Thus, the plurality of apertures are geometrically distributed in coordinated relationship to a geometrical distribution of the plurality of elastic tubes such that each elastic tube is receivable into its respect aperture. As best shown at
As generally depicted at
As depicted at
The process of mating the emblem lens 106 to the outer bezel 114 is both smoothly and easily performed, facilitated by a tapering (smaller diameter with increasing height, as shown comparatively at
As mentioned above, the apertures 110 are elongated along the elongation axis 142. In that the elastic deformation as between the elastic tubes 102 and the apertures 110 occurs at the aperture cross-section 132 and not at the aperture elongation 140 (which is longer than the tube diameter 130), localized directional alignment of the emblem lens and the outer bezel is provided. For example, as best shown at
During the mating of the emblem lens 106 to the outer bezel 114, each elastic tube 102 respectively engages its corresponding aperture 110, wherein as the elastic tubes pass into the apertures, any manufacturing variance in terms of position and size thereof is accommodated by elastic deformation on average of the plurality of elastic tubes and apertures. This elastic averaging across the plurality of elastic tubes and apertures 102, 110 provides a precise alignment as between the emblem lens and the outer bezel 106, 114 when they are at the fully mated state relative to each other.
According to the present invention, the elastic averaging provides elastic deformation of the interface between the plurality of geometrically distributed elastic tube alignment features 102 and the aperture alignment features 110, wherein the average deformation provides a precise alignment, the manufacturing variance being minimized to X′, defined by X′=X/√N, where X is the manufacturing variance of the elastic tube and aperture alignment features and N is the number thereof.
Further according to the present invention, it is possible, but not required, for the aperture alignment members 110 to be also elastically deformable by elastic expansion of the aperture sidewall, which deformation is also preferably reversible.
Referring now to
As seen at
It will be understood from the foregoing description, several notable aspects of the present invention. The present invention: 1) eliminates the manufacturing variation associated with the clearances needed for a 2-way and 4-way locating schemes of the prior art; 2) reduces the manufacturing variation by elastically averaging the positional variation; 3) eliminates the float between the emblem lens and the outer bezel as is present in the perimeter to pocket sidewall float in the prior art; 4) provides an over constrained condition that reduces the positional variation by averaging out each locating features variation, and additionally stiffens the joint reducing the number of needed fasteners; 5) provides more precise location of emblem lens and the outer bezel; and, 6) provides a stiffened assembly of the mated emblem lens and the outer bezel with elimination of rattle between the components in elastic deformation with respect to each other.
To those skilled in the art to which this invention appertains, the above described preferred embodiment may be subject to change or modification. Such change or modification can be carried out without departing from the scope of the invention, which is intended to be limited only by the scope of the appended claims.
The present patent application is a Continuation-in-Part patent application of U.S. patent application Ser. No. 13/187,675, filed on Jul. 21, 2011, which is presently pending.
Number | Name | Date | Kind |
---|---|---|---|
1301302 | Nolan | Apr 1919 | A |
1819126 | Scheibe | Aug 1931 | A |
1982076 | Spahn | Nov 1934 | A |
2778399 | Mroz | Jan 1957 | A |
2780128 | Rapata | Feb 1957 | A |
2862040 | Curran | Nov 1958 | A |
2902902 | Slone | Sep 1959 | A |
3005282 | Christiansen | Oct 1961 | A |
3014563 | Bratton | Dec 1961 | A |
3168961 | Yates | Feb 1965 | A |
3194292 | Borowsky | Jul 1965 | A |
3213189 | Mitchell et al. | Oct 1965 | A |
3233358 | Dehm | Feb 1966 | A |
3233503 | Birger | Feb 1966 | A |
3244057 | Mathison | Apr 1966 | A |
3531850 | Durand | Oct 1970 | A |
3643968 | Horvath | Feb 1972 | A |
3842565 | Brown et al. | Oct 1974 | A |
3895408 | Leingang | Jul 1975 | A |
4158511 | Herbenar | Jun 1979 | A |
4213675 | Pilhall | Jul 1980 | A |
4394853 | Lopez-Crevillen et al. | Jul 1983 | A |
4406033 | Chisholm et al. | Sep 1983 | A |
4805272 | Yamaguchi | Feb 1989 | A |
5139285 | Lasinski | Aug 1992 | A |
5234122 | Cherng | Aug 1993 | A |
5397206 | Sihon | Mar 1995 | A |
5507610 | Benedetti et al. | Apr 1996 | A |
5513603 | Ang et al. | May 1996 | A |
5524786 | Skudlarek | Jun 1996 | A |
5538079 | Pawlick | Jul 1996 | A |
5577301 | De Maagd | Nov 1996 | A |
5577779 | Dangel | Nov 1996 | A |
5580204 | Hultman | Dec 1996 | A |
5634757 | Schanz | Jun 1997 | A |
5736221 | Hardigg et al. | Apr 1998 | A |
5806915 | Takabatake | Sep 1998 | A |
5941673 | Hayakawa et al. | Aug 1999 | A |
6193430 | Culpepper et al. | Feb 2001 | B1 |
6209178 | Wiese et al. | Apr 2001 | B1 |
6354815 | Svihla et al. | Mar 2002 | B1 |
6378931 | Kolluri et al. | Apr 2002 | B1 |
6398449 | Loh | Jun 2002 | B1 |
6484370 | Kanie et al. | Nov 2002 | B2 |
6485241 | Oxford | Nov 2002 | B1 |
6591801 | Fonville | Jul 2003 | B1 |
6609717 | Hinson | Aug 2003 | B2 |
6840969 | Kobayashi et al. | Jan 2005 | B2 |
6857676 | Kawaguchi et al. | Feb 2005 | B2 |
6932416 | Clauson | Aug 2005 | B2 |
6948753 | Yoshida et al. | Sep 2005 | B2 |
6959954 | Brandt et al. | Nov 2005 | B2 |
6971831 | Fattori et al. | Dec 2005 | B2 |
7008003 | Hirose et al. | Mar 2006 | B1 |
7036779 | Kawaguchi et al. | May 2006 | B2 |
7089998 | Crook | Aug 2006 | B2 |
7178855 | Catron et al. | Feb 2007 | B2 |
7306418 | Kornblum | Dec 2007 | B2 |
7322500 | Maierholzner | Jan 2008 | B2 |
7344056 | Shelmon et al. | Mar 2008 | B2 |
D602349 | Andersson | Oct 2009 | S |
7764853 | Yi et al. | Jul 2010 | B2 |
7793998 | Matsui et al. | Sep 2010 | B2 |
7802831 | Isayama et al. | Sep 2010 | B2 |
7828372 | Ellison | Nov 2010 | B2 |
7883137 | Bar | Feb 2011 | B2 |
8136819 | Yoshitsune et al. | Mar 2012 | B2 |
8162375 | Gurtatowski et al. | Apr 2012 | B2 |
8261581 | Cerruti et al. | Sep 2012 | B2 |
8297137 | Dole | Oct 2012 | B2 |
8444199 | Takeuchi et al. | May 2013 | B2 |
8695201 | Morris | Apr 2014 | B2 |
20020045086 | Tsuji et al. | Apr 2002 | A1 |
20020092598 | Jones et al. | Jul 2002 | A1 |
20020136617 | Imahigashi | Sep 2002 | A1 |
20030082986 | Wiens et al. | May 2003 | A1 |
20030108401 | Agha et al. | Jun 2003 | A1 |
20030180122 | Dobson | Sep 2003 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20050031946 | Kruger et al. | Feb 2005 | A1 |
20050244250 | Okada et al. | Nov 2005 | A1 |
20060102214 | Clemons | May 2006 | A1 |
20060141318 | MacKinnon et al. | Jun 2006 | A1 |
20070292205 | Duval | Dec 2007 | A1 |
20090134652 | Araki | May 2009 | A1 |
20090174207 | Lota | Jul 2009 | A1 |
20100021267 | Nitsche | Jan 2010 | A1 |
20100270745 | Hurlbert et al. | Oct 2010 | A1 |
20110076588 | Yamaura | Mar 2011 | A1 |
20110296764 | Sawatani et al. | Dec 2011 | A1 |
20120115010 | Smith et al. | May 2012 | A1 |
20130019454 | Colombo et al. | Jan 2013 | A1 |
20130019455 | Morris | Jan 2013 | A1 |
20130157015 | Morris | Jun 2013 | A1 |
20130287992 | Morris | Oct 2013 | A1 |
20140033493 | Morris et al. | Feb 2014 | A1 |
20140041176 | Morris | Feb 2014 | A1 |
20140157578 | Morris et al. | Jun 2014 | A1 |
20140159412 | Morris et al. | Jun 2014 | A1 |
20140208561 | Colombo et al. | Jul 2014 | A1 |
20140208572 | Colombo et al. | Jul 2014 | A1 |
20140220267 | Morris et al. | Aug 2014 | A1 |
20140292013 | Colombo et al. | Oct 2014 | A1 |
20140298638 | Colombo et al. | Oct 2014 | A1 |
20140298640 | Morris et al. | Oct 2014 | A1 |
20140298962 | Morris et al. | Oct 2014 | A1 |
20150016918 | Colombo | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1129162 | Aug 1996 | CN |
2888807 | Apr 2007 | CN |
2915389 | Jun 2007 | CN |
101250964 | Apr 2008 | CN |
201268336 | Jul 2009 | CN |
201703439 | Jan 2011 | CN |
201737062 | Feb 2011 | CN |
201792722 | Apr 2011 | CN |
202079532 | Dec 2011 | CN |
3711696 | Oct 1988 | DE |
69600357 | Dec 1998 | DE |
10234253 | Apr 2004 | DE |
102008005618 | Jul 2009 | DE |
102010028323 | Nov 2011 | DE |
102011050003 | Oct 2012 | DE |
0118796 | Sep 1984 | EP |
1132263 | Sep 2001 | EP |
1293384 | Mar 2003 | EP |
2450259 | May 2012 | EP |
2001171554 | Jun 2001 | JP |
2005268004 | Sep 2005 | JP |
2006205918 | Aug 2006 | JP |
2009084844 | Apr 2009 | JP |
2008140659 | Nov 2008 | WO |
Entry |
---|
U.S. Appl. No. 13/187,675, filed Jul. 21, 2011, titled “Elastic Tube Alignment System for Precisely Locating Components”—Inventor: Steven E. Morris. |
U.S. Appl. No. 13/229,926, filed Sep. 12, 2011, titled “Using Elastic Averaging for Alignment of Battery Stack, Fuel Cell Stack, or Other Vehicle Assembly”—Inventors: MArk A. Smith, Ronald Daul, Xiang Zhao, David Okonski, Elmer Santos, Lane Lindstrom and Jeffrey A. Abell. |
U.S. Appl. No. 13/330,718, filed Dec. 20, 2011, titled “Precisely Locating Components in an Infrared Welded Assembly”—Inventor: Steven E. Morris. |
U.S. Appl. No. 13/459,118, filed Apr. 28, 2012, titled “Stiffened Multi-layer Compartment Door Assembly Utilizing Elastic Averaging”—Inventor: Steven E. Morris. |
U.S. Appl. No. 13/567,580, filed Aug. 6, 2011, titled “Semi-Circular Alignment Features of an Elastic Averaging Alignment System”—Inventors: Steven E. Morris and Thomas F. Bowles. |
U.S. Appl. No. 13/570,959, filed Aug. 9, 2012, titled “Elastic Cantilever Beam Alignment System for Precisely Aligning Components”—Inventor: Steven E. Morris. |
Awtar, S. & Sevincer, E. (Sep. 2006). Elastic Averaging in Flexure Mechanisms: A Multi-Beam Parallelogram Flexure Case-Study. From the Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechanical Engineers (ASME). |
Balasubramaniam, M., Golaski, E., Son, S., Sriram, K. & Slocum, A. (Jul. 2002). An Anti Backlash Two-Part Shaft Coupling with Interlocking Elastically Averaged Teeth. Precision Engineering, vol. 26, No. 3, Elsevier Publishing. |
DeVita, L., Plante, J. & Dubowsky, S. (Jun. 2007). The Design of High Precision Parallel Mechanisms using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment., 12th IFToMM World Congress, Besancon (France). |
Gurung, S. (Dec. 2007). Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging. Thesis: Louisiana State University, Dept. of Mechanical Engineering. |
Willoughby, P. & Slocum, A. (2004). Precision Connector Assembly using Elastic Averaging. Massachusetts Institute of Technology (MIT), Cambridge, MA, American Society for Precision Engineering. |
Chinese Office Action for Application No. 201210255136.8; Issued Mar. 26, 2014. |
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/ elastic—averaging.html>. |
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010. |
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment Member,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris, Jennifer P. Lawall and Paul B. Stambaugh. |
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer Pl Lawall, and Ashish M. Collapalli. |
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander. |
Number | Date | Country | |
---|---|---|---|
20130019454 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13187675 | Jul 2011 | US |
Child | 13571030 | US |