The subject invention relates to matable components and, more specifically, to elastically averaged matable components for precise alignment therebetween.
Components, in particular vehicular components used in automotive vehicles, which are to be mated together in a manufacturing process may be mutually located with respect to each other by alignment features that are oversized holes and/or undersized upstanding bosses. Such alignment features are typically sized to provide spacing to freely move the components relative to one another to align them without creating an interference therebetween that would hinder the manufacturing process. One such example includes two-way and/or four-way male alignment features; typically upstanding bosses, which are received into corresponding female alignment features, typically apertures in the form of slots or holes. The components are formed with a predetermined clearance between the male alignment features and their respective female alignment features to match anticipated size and positional variation tolerances of the male and female alignment features that result from manufacturing (or fabrication) variances.
As a result, significant positional variation can occur between two mated components having the aforementioned alignment features, which may contribute to the presence of undesirably large variation in their alignment, particularly with regard to gaps and/or spacing therebetween. In the case where misaligned components are also part of another assembly, such misalignment may also affect the function and/or aesthetic appearance of the entire assembly. Regardless of whether such misalignment is limited to two components or an entire assembly, it can negatively affect function and result in a perception of poor quality. Moreover, clearance between misaligned components may lead to relative motion therebetween, which may cause undesirable noise such as squeaking, and rattling.
In one aspect, an elastically averaged alignment system is provided. The system includes a first component having a first alignment member and a second alignment member extending outwardly away from each other, and a second component having an inner wall defining an alignment aperture, the inner wall having a first wall and an opposite second wall. The first and second alignment members are an elastically deformable material such that when the first and second alignment members are inserted into the alignment aperture, the first and second alignment members elastically deform to an elastically averaged final configuration to facilitate aligning the first component with the second component in a desired orientation.
In another aspect, a vehicle is provided. The vehicle includes a body and an elastically averaged alignment system integrally arranged within the body. The elastically averaged alignment system includes a first component having a first alignment member and a second alignment member extending outwardly away from each other, and a second component having an inner wall defining an alignment aperture, the inner wall having a first wall and an opposite second wall. The first and second alignment members are an elastically deformable material such that when the first and second alignment members are inserted into the alignment aperture, the first and second alignment members elastically deform to an elastically averaged final configuration to facilitate aligning the first component with the second component in a desired orientation.
In yet another aspect, a method of manufacturing an elastically averaged alignment system is provided. The system includes forming a first component having a first alignment member and a second alignment member extending outwardly away from each other, forming a second component having an inner wall defining an alignment aperture, the inner wall having a first wall and an opposite second wall, and forming the first and second alignment members from an elastically deformable material such that when the first and second alignment members are inserted into the alignment aperture, the first and second alignment members elastically deform to an elastically averaged final configuration to facilitate aligning the first component and the second component in a desired orientation.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. For example, the embodiments shown are applicable to vehicle components, but the system disclosed herein may be used with any suitable components to provide securement and elastic averaging for precision location and alignment of all manner of mating components and component applications, including many industrial, consumer product (e.g., consumer electronics, various appliances and the like), transportation, energy and aerospace applications, and particularly including many other types of vehicular components and applications, such as various interior, exterior, electrical and under hood vehicular components and applications. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to the application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.
Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. In some embodiments, the elastically deformable component configured to have the at least one feature and associated mating feature disclosed herein may require more than one of such features, depending on the requirements of a particular embodiment. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned U.S. Pat. No. 8,695,201, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles, or that would be further aided with the inclusion of an elastic averaging system as herein disclosed, to an assembly that does facilitate elastic averaging and the benefits associated therewith.
Any suitable elastically deformable material may be used for the mating components and alignment features disclosed herein and discussed further below, particularly those materials that are elastically deformable when formed into the features described herein. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof suitable for a purpose disclosed herein. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS). The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The elastically deformable alignment features and associated component may be formed in any suitable manner. For example, the elastically deformable alignment features and the associated component may be integrally formed, or they may be formed entirely separately and subsequently attached together. When integrally formed, they may be formed as a single part from a plastic injection molding machine, for example. When formed separately, they may be formed from different materials to provide a predetermined elastic response characteristic, for example. The material, or materials, may be selected to provide a predetermined elastic response characteristic of any or all of the elastically deformable alignment features, the associated component, or the mating component. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.
As used herein, the term vehicle is not limited to just an automobile, truck, van or sport utility vehicle, but includes any self-propelled or towed conveyance suitable for transporting a burden.
Described herein are elastic averaging alignment systems and methods. The alignment systems include a first component with a plurality of alignment members, and a second component having alignment apertures to receive the alignment members. The alignment members and/or the second component elastically deforms to facilitate precisely aligning the two components together in a desired orientation.
In the exemplary embodiment, first component 100 includes a plurality of alignment tabs or members 102 and 104, and second component 200 includes a plurality of inner walls 202 each defining an alignment aperture 204. Alignment members 102, 104 and alignment aperture 204 are fixedly disposed on or formed integrally with their respective component 100, 200 for proper alignment and orientation when components 100 and 200 are mated. First component 100 includes three alignment member groupings 106 that each include two alignment members 102 and one alignment member 104. However, component 100 may have any number of alignment member groupings 106, and each alignment member grouping 106 may include any number and combination of alignment members 102 and 104.
Elastically deformable alignment members 102, 104 are configured and disposed to interferingly, deformably, and matingly engage alignment aperture 204, as discussed herein in more detail, to precisely align first component 100 with second component 200 in four directions, such as the +/−x-direction and the +/−y-direction of an orthogonal coordinate system, for example, which is herein referred to as four-way alignment. Elastically deformable alignment members 102, 104 matingly engage alignment aperture 204 to facilitate a stiff and rigid connection between first component 100 and second component 200, thereby reducing or preventing relative movement therebetween.
With additional reference to
In the embodiment shown in
Second component 200 generally includes an outer face 206 and an inner face 208. Inner wall 202 includes opposed first and second walls 210 and 212, and opposed third and fourth walls 214 and 216 (
While not being limited to any particular structure, first component 100 may be a narrow trim bezel/strip that outlines a vehicle door, with the customer-visible side being outer face 108. Second component 200 may be a supporting substructure that is part of, or is attached to, the vehicle and on which first component 100 is fixedly mounted in precise alignment.
To provide an arrangement where elastically deformable alignment members 102, 104 are configured and disposed to interferingly, deformably and matingly engage alignment aperture 204, portions of alignment members 102, 104 are geometrically positioned in locations slightly beyond the size of a perimeter 218 of alignment aperture 204, which necessarily creates a purposeful interference fit between the elastically deformable alignment members 102, 104 and alignment aperture 204. For example, a distance ‘D1’ (
In an exemplary embodiment, alignment members 102, 104 are ramped or angled outwardly from a central axis ‘C’ (
In the exemplary embodiment shown in
In view of the foregoing, and with reference now to
An exemplary method of manufacturing elastically averaged alignment system 10 includes forming first component 100 with a plurality of alignment member groupings 106 having alignment members 102, 104, and forming or providing second component 200 with inner walls 202 defining alignment apertures 204. Alignment members 102, 104 are formed from an elastically deformable material such that when alignment members 102, 104 are inserted into alignment aperture 204, alignment members 102, 104 elastically deform against inner wall 202 to an elastically averaged final configuration to facilitate aligning first component 100 with respect to second component 200 in a desired orientation. Alignment members 102 may be oriented at angle ‘α’, and alignment members 104 may be oriented at angle ‘β’, and each of alignment members 102 and 104 may be formed with lead-in surface 116 and/or retention member 118.
Systems and methods for elastically averaging mating and alignment systems are described herein. The systems generally include a thin, narrow first component having groupings of oppositely angled elastically deformable alignment members positioned for insertion into an alignment aperture of a second component. The mating of the first and second components is elastically averaged over the alignment members and respective alignment apertures to precisely mate the components in a desired orientation. Accordingly, the described systems and method facilitate precise alignment of small, thin components in tight spaces that do not allow packaging space for larger coupling features, and provide increased stiffness between coupled components.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
Number | Name | Date | Kind |
---|---|---|---|
419358 | Raymond et al. | Jan 1890 | A |
1219398 | Huntsman | Mar 1917 | A |
1261036 | Kerns | Aug 1918 | A |
1301302 | Nolan | Apr 1919 | A |
1556233 | Maise | Oct 1925 | A |
1819126 | Scheibe | Aug 1931 | A |
1929848 | Neely | Oct 1933 | A |
1968168 | Place | Jul 1934 | A |
1982076 | Spahn | Nov 1934 | A |
1999990 | Carr | Apr 1935 | A |
2006525 | Thal | Jul 1935 | A |
2267558 | Birger et al. | Dec 1941 | A |
2275103 | Gooch et al. | Mar 1942 | A |
2275900 | Hall | Mar 1942 | A |
2385180 | Allen | Sep 1945 | A |
2482488 | Franc | Sep 1949 | A |
2560530 | Burdick | Jul 1951 | A |
2612139 | Collins | Sep 1952 | A |
2688894 | Modrey | Sep 1954 | A |
2693014 | Monahan | Nov 1954 | A |
2707607 | O'Connor | May 1955 | A |
2778399 | Mroz | Jan 1957 | A |
2780128 | Rapata | Feb 1957 | A |
2788046 | Joseph | Apr 1957 | A |
2862040 | Curran | Nov 1958 | A |
2902902 | Slone | Sep 1959 | A |
2940149 | O'Connor | Jun 1960 | A |
2946612 | Ahlgren | Jul 1960 | A |
2958230 | Haroldson | Nov 1960 | A |
3005282 | Christiansen | Oct 1961 | A |
3014563 | Bratton | Dec 1961 | A |
3087352 | Daniel | Apr 1963 | A |
3089269 | McKiernan | May 1963 | A |
3130512 | Van Buren, Jr. | Apr 1964 | A |
3152376 | Boser | Oct 1964 | A |
3168961 | Yates | Feb 1965 | A |
3169004 | Rapata | Feb 1965 | A |
3169439 | Rapata | Feb 1965 | A |
3188731 | Sweeney | Jun 1965 | A |
3194292 | Borowsky | Jul 1965 | A |
3213189 | Mitchell et al. | Oct 1965 | A |
3230592 | Hosea | Jan 1966 | A |
3233358 | Dehm | Feb 1966 | A |
3233503 | Birger | Feb 1966 | A |
3244057 | Mathison | Apr 1966 | A |
3248995 | Meyer | May 1966 | A |
3291495 | Liebig | Dec 1966 | A |
3310929 | Garvey | Mar 1967 | A |
3413752 | Perry | Dec 1968 | A |
3473283 | Meyer | Oct 1969 | A |
3531850 | Durand | Oct 1970 | A |
3551963 | Long | Jan 1971 | A |
3643968 | Horvath | Feb 1972 | A |
3669484 | Bernitz | Jun 1972 | A |
3680272 | Meyer | Aug 1972 | A |
3733655 | Kolibar | May 1973 | A |
3800369 | Nikolits | Apr 1974 | A |
3841044 | Brown | Oct 1974 | A |
3841682 | Church | Oct 1974 | A |
3842565 | Brown et al. | Oct 1974 | A |
3845961 | Byrd, III | Nov 1974 | A |
3847492 | Kennicutt et al. | Nov 1974 | A |
3860209 | Strecker | Jan 1975 | A |
3868804 | Tantlinger | Mar 1975 | A |
3895408 | Leingang | Jul 1975 | A |
3897967 | Barenyl | Aug 1975 | A |
3905570 | Nieuwveld | Sep 1975 | A |
3972550 | Boughton | Aug 1976 | A |
3988808 | Poe et al. | Nov 1976 | A |
4035874 | Liljendahl | Jul 1977 | A |
4039215 | Minhinnick | Aug 1977 | A |
4042307 | Jarvis | Aug 1977 | A |
4043585 | Yamanaka | Aug 1977 | A |
4158511 | Herbenar | Jun 1979 | A |
4169297 | Weihrauch | Oct 1979 | A |
4193588 | Doneaux | Mar 1980 | A |
4213675 | Pilhall | Jul 1980 | A |
4237573 | Weihrauch | Dec 1980 | A |
4267680 | Delattre | May 1981 | A |
4300851 | Thelander | Nov 1981 | A |
4313609 | Clements | Feb 1982 | A |
4314417 | Cain | Feb 1982 | A |
4318208 | Borja | Mar 1982 | A |
4325574 | Umemoto et al. | Apr 1982 | A |
4358166 | Antoine | Nov 1982 | A |
4363839 | Watanabe et al. | Dec 1982 | A |
4364150 | Remington | Dec 1982 | A |
4384803 | Cachia | May 1983 | A |
4394853 | Lopez-Crevillen et al. | Jul 1983 | A |
4406033 | Chisholm et al. | Sep 1983 | A |
4407413 | Jansson | Oct 1983 | A |
4477142 | Cooper | Oct 1984 | A |
4481160 | Bree | Nov 1984 | A |
4527760 | Salacuse | Jul 1985 | A |
4564232 | Fujimori et al. | Jan 1986 | A |
4575060 | Kitagawa | Mar 1986 | A |
4591203 | Furman | May 1986 | A |
4599768 | Doyle | Jul 1986 | A |
4605575 | Auld et al. | Aug 1986 | A |
4616951 | Maatela | Oct 1986 | A |
4648649 | Beal | Mar 1987 | A |
4654760 | Matheson et al. | Mar 1987 | A |
4672732 | Ramspacher | Jun 1987 | A |
4745656 | Revlett | May 1988 | A |
4757655 | Nentoft | Jul 1988 | A |
4767647 | Bree | Aug 1988 | A |
4805272 | Yamaguchi | Feb 1989 | A |
4807335 | Candea | Feb 1989 | A |
4817999 | Drew | Apr 1989 | A |
4819983 | Alexander et al. | Apr 1989 | A |
4843975 | Welsch | Jul 1989 | A |
4843976 | Pigott et al. | Jul 1989 | A |
4865502 | Maresch | Sep 1989 | A |
4881764 | Takahashi et al. | Nov 1989 | A |
4917426 | Copp | Apr 1990 | A |
4973212 | Jacobs | Nov 1990 | A |
4977648 | Eckerud | Dec 1990 | A |
5005265 | Muller | Apr 1991 | A |
5039267 | Wollar | Aug 1991 | A |
5100015 | Vanderstuyf | Mar 1992 | A |
5111557 | Baum | May 1992 | A |
5139285 | Lasinski | Aug 1992 | A |
5154479 | Sautter, Jr. | Oct 1992 | A |
5165749 | Sheppard | Nov 1992 | A |
5170985 | Killworth et al. | Dec 1992 | A |
5180219 | Geddie | Jan 1993 | A |
5208507 | Jung | May 1993 | A |
5212853 | Kaneko | May 1993 | A |
5234122 | Cherng | Aug 1993 | A |
5250001 | Hansen | Oct 1993 | A |
5297322 | Kraus | Mar 1994 | A |
5309663 | Shirley | May 1994 | A |
5333965 | Mailey | Aug 1994 | A |
5339491 | Sims | Aug 1994 | A |
5342139 | Hoffman | Aug 1994 | A |
5348356 | Moulton | Sep 1994 | A |
5368427 | Pfaffinger | Nov 1994 | A |
5368797 | Quentin et al. | Nov 1994 | A |
5397206 | Sihon | Mar 1995 | A |
5407310 | Kassouni | Apr 1995 | A |
5446965 | Makridis | Sep 1995 | A |
5507610 | Benedetti et al. | Apr 1996 | A |
5513603 | Ang et al. | May 1996 | A |
5524786 | Skudlarek | Jun 1996 | A |
5538079 | Pawlick | Jul 1996 | A |
5556808 | Williams et al. | Sep 1996 | A |
5566840 | Waldner | Oct 1996 | A |
5575601 | Skufca | Nov 1996 | A |
5577301 | DeMaagd | Nov 1996 | A |
5577779 | Dangel | Nov 1996 | A |
5580204 | Hultman | Dec 1996 | A |
5586372 | Eguchi et al. | Dec 1996 | A |
5593265 | Kizer | Jan 1997 | A |
5601453 | Horchler | Feb 1997 | A |
5629823 | Mizuta | May 1997 | A |
5634757 | Schanz | Jun 1997 | A |
5639140 | Labrash | Jun 1997 | A |
5657516 | Berg et al. | Aug 1997 | A |
5666749 | Waters | Sep 1997 | A |
5667271 | Booth | Sep 1997 | A |
5670013 | Huang et al. | Sep 1997 | A |
5698276 | Mirabitur | Dec 1997 | A |
5702779 | Siebelink, Jr. et al. | Dec 1997 | A |
5706559 | Oliver | Jan 1998 | A |
5736221 | Hardigg et al. | Apr 1998 | A |
5765942 | Shirai et al. | Jun 1998 | A |
5775860 | Meyer | Jul 1998 | A |
5795118 | Osada et al. | Aug 1998 | A |
5797170 | Akeno | Aug 1998 | A |
5797714 | Oddenino | Aug 1998 | A |
5803646 | Weihrauch | Sep 1998 | A |
5806915 | Takabatake | Sep 1998 | A |
5810535 | Fleckenstein et al. | Sep 1998 | A |
5820292 | Fremstad | Oct 1998 | A |
5915678 | Slocum et al. | Jun 1999 | A |
5920200 | Pendse | Jul 1999 | A |
5929382 | Moore | Jul 1999 | A |
5931514 | Chung | Aug 1999 | A |
5934729 | Baack | Aug 1999 | A |
5941673 | Hayakawa et al. | Aug 1999 | A |
5988678 | Nakamura | Nov 1999 | A |
6006941 | Hitchings | Dec 1999 | A |
6010306 | Bucher | Jan 2000 | A |
6062763 | Sirois et al. | May 2000 | A |
6073315 | Rasmussen | Jun 2000 | A |
6079083 | Akashi | Jun 2000 | A |
6095594 | Riddle et al. | Aug 2000 | A |
6103987 | Nordquist | Aug 2000 | A |
6109882 | Popov | Aug 2000 | A |
6152436 | Sonderegger et al. | Nov 2000 | A |
6164603 | Kawai | Dec 2000 | A |
6193430 | Culpepper et al. | Feb 2001 | B1 |
6199248 | Akashi | Mar 2001 | B1 |
6202962 | Snyder | Mar 2001 | B1 |
6209175 | Gershenson | Apr 2001 | B1 |
6209178 | Wiese et al. | Apr 2001 | B1 |
6254304 | Takizawa et al. | Jul 2001 | B1 |
6264869 | Notarpietro et al. | Jul 2001 | B1 |
6283540 | Siebelink, Jr. et al. | Sep 2001 | B1 |
6286214 | Bean | Sep 2001 | B1 |
6289560 | Guyot | Sep 2001 | B1 |
6299478 | Jones et al. | Oct 2001 | B1 |
6311960 | Pierman et al. | Nov 2001 | B1 |
6318585 | Asagiri | Nov 2001 | B1 |
6321495 | Oami | Nov 2001 | B1 |
6336767 | Nordquist et al. | Jan 2002 | B1 |
6345420 | Nabeshima | Feb 2002 | B1 |
6349904 | Polad | Feb 2002 | B1 |
6351380 | Curlee | Feb 2002 | B1 |
6354574 | Oliver et al. | Mar 2002 | B1 |
6354815 | Svihla et al. | Mar 2002 | B1 |
6378931 | Kolluri et al. | Apr 2002 | B1 |
6398449 | Loh | Jun 2002 | B1 |
6470540 | Aamodt et al. | Oct 2002 | B2 |
6478102 | Puterbaugh | Nov 2002 | B1 |
6484370 | Kanie et al. | Nov 2002 | B2 |
6485241 | Oxford | Nov 2002 | B1 |
6498297 | Samhammer | Dec 2002 | B2 |
6523229 | Severson | Feb 2003 | B2 |
6523817 | Landry, Jr. | Feb 2003 | B1 |
6533391 | Pan | Mar 2003 | B1 |
6543979 | Iwatsuki | Apr 2003 | B2 |
6557260 | Morris | May 2003 | B1 |
6568701 | Burdack et al. | May 2003 | B1 |
6579397 | Spain et al. | Jun 2003 | B1 |
6591801 | Fonville | Jul 2003 | B1 |
6609717 | Hinson | Aug 2003 | B2 |
6637095 | Stumpf et al. | Oct 2003 | B2 |
6658698 | Chen | Dec 2003 | B2 |
6662411 | Rubenstein | Dec 2003 | B2 |
6664470 | Nagamoto | Dec 2003 | B2 |
6668424 | Allen | Dec 2003 | B1 |
6677065 | Blauer | Jan 2004 | B2 |
6692016 | Yokota | Feb 2004 | B2 |
6712329 | Ishigami et al. | Mar 2004 | B2 |
6746172 | Culpepper | Jun 2004 | B2 |
6757942 | Matsui | Jul 2004 | B2 |
6799758 | Fries | Oct 2004 | B2 |
6821091 | Lee | Nov 2004 | B2 |
6840969 | Kobayashi et al. | Jan 2005 | B2 |
6857676 | Kawaguchi et al. | Feb 2005 | B2 |
6857809 | Granata | Feb 2005 | B2 |
6872053 | Bucher | Mar 2005 | B2 |
6908117 | Pickett, Jr. et al. | Jun 2005 | B1 |
6932416 | Clauson | Aug 2005 | B2 |
6948753 | Yoshida et al. | Sep 2005 | B2 |
6951349 | Yokota | Oct 2005 | B2 |
6957939 | Wilson | Oct 2005 | B2 |
6959954 | Brandt et al. | Nov 2005 | B2 |
6966601 | Matsumoto et al. | Nov 2005 | B2 |
6971831 | Fattori et al. | Dec 2005 | B2 |
6997487 | Kitzis | Feb 2006 | B2 |
7000941 | Yokota | Feb 2006 | B2 |
7008003 | Hirose et al. | Mar 2006 | B1 |
7014094 | Alcoe | Mar 2006 | B2 |
7017239 | Kurily et al. | Mar 2006 | B2 |
7036779 | Kawaguchi et al. | May 2006 | B2 |
7055785 | Diggle, III | Jun 2006 | B1 |
7055849 | Yokota | Jun 2006 | B2 |
7059628 | Yokota | Jun 2006 | B2 |
7073260 | Jensen | Jul 2006 | B2 |
7089998 | Crook | Aug 2006 | B2 |
7097198 | Yokota | Aug 2006 | B2 |
7121611 | Hirotani et al. | Oct 2006 | B2 |
7144183 | Lian et al. | Dec 2006 | B2 |
7165310 | Murakami et al. | Jan 2007 | B2 |
7172210 | Yokota | Feb 2007 | B2 |
7178855 | Catron et al. | Feb 2007 | B2 |
7198315 | Cass et al. | Apr 2007 | B2 |
7207758 | Leon et al. | Apr 2007 | B2 |
7234852 | Nishizawa et al. | Jun 2007 | B2 |
7275296 | DiCesare | Oct 2007 | B2 |
7306418 | Kornblum | Dec 2007 | B2 |
7322500 | Maierholzner | Jan 2008 | B2 |
7344056 | Shelmon et al. | Mar 2008 | B2 |
7360964 | Tsuya | Apr 2008 | B2 |
7369408 | Chang | May 2008 | B2 |
7435031 | Granata | Oct 2008 | B2 |
7454105 | Yi | Nov 2008 | B2 |
7487884 | Kim | Feb 2009 | B2 |
7493716 | Brown | Feb 2009 | B2 |
7500440 | Chiu | Mar 2009 | B2 |
7547061 | Horimatsu | Jun 2009 | B2 |
7557051 | Ryu et al. | Jul 2009 | B2 |
7568316 | Choby et al. | Aug 2009 | B2 |
7591573 | Maliar et al. | Sep 2009 | B2 |
D602349 | Andersson | Oct 2009 | S |
7614836 | Mohiuddin | Nov 2009 | B2 |
7672126 | Yeh | Mar 2010 | B2 |
7677650 | Huttenlocher | Mar 2010 | B2 |
7727667 | Sakurai | Jun 2010 | B2 |
7764853 | Yi et al. | Jul 2010 | B2 |
7793998 | Matsui et al. | Sep 2010 | B2 |
7802831 | Isayama et al. | Sep 2010 | B2 |
7803015 | Pham | Sep 2010 | B2 |
7828372 | Ellison | Nov 2010 | B2 |
7832693 | Moerke et al. | Nov 2010 | B2 |
7862272 | Nakajima | Jan 2011 | B2 |
7869003 | Van Doren et al. | Jan 2011 | B2 |
7883137 | Bar | Feb 2011 | B2 |
7891926 | Jackson, Jr. | Feb 2011 | B2 |
7922415 | Rudduck et al. | Apr 2011 | B2 |
7946684 | Drury et al. | May 2011 | B2 |
7959214 | Salhoff | Jun 2011 | B2 |
8029222 | Nitsche | Oct 2011 | B2 |
8061861 | Paxton et al. | Nov 2011 | B2 |
8101264 | Pace et al. | Jan 2012 | B2 |
8136819 | Yoshitsune et al. | Mar 2012 | B2 |
8162375 | Gurtatowski et al. | Apr 2012 | B2 |
8203496 | Miller et al. | Jun 2012 | B2 |
8203843 | Chen | Jun 2012 | B2 |
8206029 | Vaucher et al. | Jun 2012 | B2 |
8228640 | Woodhead et al. | Jul 2012 | B2 |
8249679 | Cui | Aug 2012 | B2 |
8261581 | Cerruti et al. | Sep 2012 | B2 |
8263889 | Takahashi et al. | Sep 2012 | B2 |
8276961 | Kwolek | Oct 2012 | B2 |
8291553 | Moberg | Oct 2012 | B2 |
8297137 | Dole | Oct 2012 | B2 |
8297661 | Proulx et al. | Oct 2012 | B2 |
8312887 | Dunn et al. | Nov 2012 | B2 |
8371788 | Lange | Feb 2013 | B2 |
8414048 | Kwolek | Apr 2013 | B1 |
8424173 | Shiba | Apr 2013 | B2 |
8444199 | Takeuchi et al. | May 2013 | B2 |
8474214 | Dawe | Jul 2013 | B2 |
8480186 | Wang | Jul 2013 | B2 |
8511707 | Amamori | Aug 2013 | B2 |
8572818 | Hofmann | Nov 2013 | B2 |
8579141 | Tejima | Nov 2013 | B2 |
8619504 | Wyssbrod | Dec 2013 | B2 |
8677573 | Lee | Mar 2014 | B2 |
8695201 | Morris | Apr 2014 | B2 |
8720016 | Beaulieu | May 2014 | B2 |
8726473 | Dole | May 2014 | B2 |
8746801 | Nakata | Jun 2014 | B2 |
8773846 | Wang | Jul 2014 | B2 |
8811004 | Liu | Aug 2014 | B2 |
8826499 | Tempesta | Sep 2014 | B2 |
8833771 | Lesnau | Sep 2014 | B2 |
8833832 | Whipps | Sep 2014 | B2 |
8834058 | Woicke | Sep 2014 | B2 |
8905812 | Pai-Chen | Dec 2014 | B2 |
8910350 | Poulakis | Dec 2014 | B2 |
9003891 | Frank | Apr 2015 | B2 |
9039318 | Mantei et al. | May 2015 | B2 |
9050690 | Hammer et al. | Jun 2015 | B2 |
9061403 | Colombo et al. | Jun 2015 | B2 |
9061715 | Morris | Jun 2015 | B2 |
9062991 | Kanagaraj | Jun 2015 | B2 |
9067625 | Morris | Jun 2015 | B2 |
9194413 | Christoph | Nov 2015 | B2 |
20010016986 | Bean | Aug 2001 | A1 |
20010030414 | Yokota | Oct 2001 | A1 |
20010045757 | Hideki et al. | Nov 2001 | A1 |
20020045086 | Tsuji et al. | Apr 2002 | A1 |
20020060275 | Polad | May 2002 | A1 |
20020092598 | Jones et al. | Jul 2002 | A1 |
20020136617 | Imahigashi | Sep 2002 | A1 |
20030007831 | Lian et al. | Jan 2003 | A1 |
20030059255 | Kirchen | Mar 2003 | A1 |
20030080131 | Fukuo | May 2003 | A1 |
20030082986 | Wiens et al. | May 2003 | A1 |
20030085618 | Rhodes | May 2003 | A1 |
20030087047 | Blauer | May 2003 | A1 |
20030108401 | Agha et al. | Jun 2003 | A1 |
20030180122 | Dobson | Sep 2003 | A1 |
20040028503 | Charles | Feb 2004 | A1 |
20040037637 | Lian et al. | Feb 2004 | A1 |
20040052574 | Grubb | Mar 2004 | A1 |
20040131896 | Blauer | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040140651 | Yokota | Jul 2004 | A1 |
20040208728 | Fattori et al. | Oct 2004 | A1 |
20040262873 | Wolf et al. | Dec 2004 | A1 |
20050016116 | Scherff | Jan 2005 | A1 |
20050031946 | Kruger et al. | Feb 2005 | A1 |
20050042057 | Konig et al. | Feb 2005 | A1 |
20050054229 | Tsuya | Mar 2005 | A1 |
20050082449 | Kawaguchi et al. | Apr 2005 | A1 |
20050109489 | Kobayashi | May 2005 | A1 |
20050156409 | Yokota | Jul 2005 | A1 |
20050156410 | Yokota | Jul 2005 | A1 |
20050156416 | Yokota | Jul 2005 | A1 |
20050217088 | Lin | Oct 2005 | A1 |
20050244250 | Okada et al. | Nov 2005 | A1 |
20060082187 | Hernandez et al. | Apr 2006 | A1 |
20060092653 | Tachiiwa et al. | May 2006 | A1 |
20060102214 | Clemons | May 2006 | A1 |
20060110109 | Yu | May 2006 | A1 |
20060113755 | Yokota | Jun 2006 | A1 |
20060125286 | Horimatsu et al. | Jun 2006 | A1 |
20060141318 | MacKinnon et al. | Jun 2006 | A1 |
20060163902 | Engel | Jul 2006 | A1 |
20060170242 | Forrester et al. | Aug 2006 | A1 |
20060197356 | Catron et al. | Sep 2006 | A1 |
20060202449 | Yokota | Sep 2006 | A1 |
20060237995 | Huttenlocher | Oct 2006 | A1 |
20060249520 | DeMonte | Nov 2006 | A1 |
20060264076 | Chen | Nov 2006 | A1 |
20070034636 | Fukuo | Feb 2007 | A1 |
20070040411 | Dauvergne | Feb 2007 | A1 |
20070051572 | Beri | Mar 2007 | A1 |
20070113483 | Hernandez | May 2007 | A1 |
20070113485 | Hernandez | May 2007 | A1 |
20070126211 | Moerke et al. | Jun 2007 | A1 |
20070137018 | Aigner et al. | Jun 2007 | A1 |
20070144659 | De La Fuente | Jun 2007 | A1 |
20070205627 | Ishiguro | Sep 2007 | A1 |
20070227942 | Hirano | Oct 2007 | A1 |
20070251055 | Gerner | Nov 2007 | A1 |
20070258756 | Olshausen | Nov 2007 | A1 |
20070274777 | Winkler | Nov 2007 | A1 |
20070292205 | Duval | Dec 2007 | A1 |
20080014508 | Van Doren et al. | Jan 2008 | A1 |
20080018128 | Yamagiwa et al. | Jan 2008 | A1 |
20080073888 | Enriquez | Mar 2008 | A1 |
20080094447 | Drury et al. | Apr 2008 | A1 |
20080128346 | Bowers | Jun 2008 | A1 |
20080196535 | Dole | Aug 2008 | A1 |
20080217796 | Van Bruggen et al. | Sep 2008 | A1 |
20080260488 | Scroggie et al. | Oct 2008 | A1 |
20090028506 | Yi et al. | Jan 2009 | A1 |
20090072591 | Baumgartner | Mar 2009 | A1 |
20090091156 | Neubrand | Apr 2009 | A1 |
20090093111 | Buchwalter et al. | Apr 2009 | A1 |
20090126168 | Kobe et al. | May 2009 | A1 |
20090134652 | Araki | May 2009 | A1 |
20090140112 | Carnevali | Jun 2009 | A1 |
20090141449 | Yeh | Jun 2009 | A1 |
20090154303 | Vaucher et al. | Jun 2009 | A1 |
20090174207 | Lota | Jul 2009 | A1 |
20090243172 | Ting et al. | Oct 2009 | A1 |
20090265896 | Beak | Oct 2009 | A1 |
20090309388 | Ellison | Dec 2009 | A1 |
20100000156 | Salhoff | Jan 2010 | A1 |
20100001539 | Kikuchi et al. | Jan 2010 | A1 |
20100021267 | Nitsche | Jan 2010 | A1 |
20100061045 | Chen | Mar 2010 | A1 |
20100102538 | Paxton et al. | Apr 2010 | A1 |
20100134128 | Hobbs | Jun 2010 | A1 |
20100147355 | Shimizu et al. | Jun 2010 | A1 |
20100162537 | Shiba | Jul 2010 | A1 |
20100232171 | Cannon | Sep 2010 | A1 |
20100247034 | Yi et al. | Sep 2010 | A1 |
20100263417 | Schoenow | Oct 2010 | A1 |
20100270745 | Hurlbert et al. | Oct 2010 | A1 |
20100307848 | Hashimoto | Dec 2010 | A1 |
20110012378 | Ueno et al. | Jan 2011 | A1 |
20110036542 | Woicke | Feb 2011 | A1 |
20110076588 | Yamaura | Mar 2011 | A1 |
20110083392 | Timko | Apr 2011 | A1 |
20110103884 | Shiomoto et al. | May 2011 | A1 |
20110119875 | Iwasaki | May 2011 | A1 |
20110131918 | Glynn | Jun 2011 | A1 |
20110154645 | Morgan | Jun 2011 | A1 |
20110175376 | Whitens et al. | Jul 2011 | A1 |
20110183152 | Lanham | Jul 2011 | A1 |
20110191990 | Beaulieu | Aug 2011 | A1 |
20110191993 | Forrest | Aug 2011 | A1 |
20110207024 | Bogumil et al. | Aug 2011 | A1 |
20110239375 | Huang | Oct 2011 | A1 |
20110239418 | Huang | Oct 2011 | A1 |
20110296764 | Sawatani et al. | Dec 2011 | A1 |
20110311332 | Ishman | Dec 2011 | A1 |
20120000291 | Christoph | Jan 2012 | A1 |
20120000409 | Railey | Jan 2012 | A1 |
20120020726 | Jan et al. | Jan 2012 | A1 |
20120073094 | Bishop | Mar 2012 | A1 |
20120112489 | Okimoto | May 2012 | A1 |
20120115010 | Smith et al. | May 2012 | A1 |
20120187812 | Gerst | Jul 2012 | A1 |
20120240363 | Lee | Sep 2012 | A1 |
20120251226 | Liu et al. | Oct 2012 | A1 |
20120261951 | Mildner et al. | Oct 2012 | A1 |
20120301067 | Morgan | Nov 2012 | A1 |
20120311829 | Dickinson | Dec 2012 | A1 |
20120321379 | Wang et al. | Dec 2012 | A1 |
20120324795 | Krajenke et al. | Dec 2012 | A1 |
20130010413 | Kim | Jan 2013 | A1 |
20130017038 | Kestner et al. | Jan 2013 | A1 |
20130019454 | Colombo et al. | Jan 2013 | A1 |
20130019455 | Morris | Jan 2013 | A1 |
20130027852 | Wang | Jan 2013 | A1 |
20130055822 | Frank | Mar 2013 | A1 |
20130071181 | Herzinger et al. | Mar 2013 | A1 |
20130157015 | Morris | Jun 2013 | A1 |
20130212858 | Herzinger et al. | Aug 2013 | A1 |
20130269873 | Herzinger et al. | Oct 2013 | A1 |
20130287992 | Morris | Oct 2013 | A1 |
20140033493 | Morris et al. | Feb 2014 | A1 |
20140041176 | Morris | Feb 2014 | A1 |
20140041185 | Morris et al. | Feb 2014 | A1 |
20140041199 | Morris | Feb 2014 | A1 |
20140042704 | Polewarczyk | Feb 2014 | A1 |
20140047691 | Colombo et al. | Feb 2014 | A1 |
20140047697 | Morris | Feb 2014 | A1 |
20140080036 | Smith et al. | Mar 2014 | A1 |
20140132023 | Watanabe | May 2014 | A1 |
20140157578 | Morris et al. | Jun 2014 | A1 |
20140159412 | Morris et al. | Jun 2014 | A1 |
20140172112 | Marter | Jun 2014 | A1 |
20140175774 | Kansteiner | Jun 2014 | A1 |
20140199116 | Metten et al. | Jul 2014 | A1 |
20140202628 | Sreetharan et al. | Jul 2014 | A1 |
20140208561 | Colombo et al. | Jul 2014 | A1 |
20140208572 | Colombo et al. | Jul 2014 | A1 |
20140220267 | Morris et al. | Aug 2014 | A1 |
20140264206 | Morris | Sep 2014 | A1 |
20140292013 | Colombo et al. | Oct 2014 | A1 |
20140298638 | Colombo et al. | Oct 2014 | A1 |
20140298640 | Morris et al. | Oct 2014 | A1 |
20140298962 | Morris et al. | Oct 2014 | A1 |
20140300130 | Morris et al. | Oct 2014 | A1 |
20140301103 | Colombo et al. | Oct 2014 | A1 |
20140301777 | Morris et al. | Oct 2014 | A1 |
20140301778 | Morris et al. | Oct 2014 | A1 |
20140360824 | Morris et al. | Dec 2014 | A1 |
20140360826 | Morris et al. | Dec 2014 | A1 |
20140366326 | Colombo et al. | Dec 2014 | A1 |
20140369742 | Morris et al. | Dec 2014 | A1 |
20140369743 | Morris et al. | Dec 2014 | A1 |
20150016864 | Morris et al. | Jan 2015 | A1 |
20150016918 | Colombo | Jan 2015 | A1 |
20150023724 | Morris et al. | Jan 2015 | A1 |
20150043959 | Morris | Feb 2015 | A1 |
20150050068 | Morris et al. | Feb 2015 | A1 |
20150052725 | Morris et al. | Feb 2015 | A1 |
20150056009 | Morris | Feb 2015 | A1 |
20150063943 | Morris | Mar 2015 | A1 |
20150069779 | Morris et al. | Mar 2015 | A1 |
20150078805 | Morris et al. | Mar 2015 | A1 |
20150086265 | Morris | Mar 2015 | A1 |
20150093177 | Morris | Apr 2015 | A1 |
20150093178 | Morris | Apr 2015 | A1 |
20150093179 | Morris et al. | Apr 2015 | A1 |
20150098748 | Morris et al. | Apr 2015 | A1 |
20150115656 | Lungershausen | Apr 2015 | A1 |
20150135509 | Morris et al. | May 2015 | A1 |
20150165609 | Morris et al. | Jun 2015 | A1 |
20150165985 | Morris | Jun 2015 | A1 |
20150165986 | Morris | Jun 2015 | A1 |
20150166124 | Morris | Jun 2015 | A1 |
20150167717 | Morris | Jun 2015 | A1 |
20150167718 | Morris et al. | Jun 2015 | A1 |
20150174740 | Morris et al. | Jun 2015 | A1 |
20150175091 | Morris et al. | Jun 2015 | A1 |
20150175217 | Morris et al. | Jun 2015 | A1 |
20150175219 | Kiester | Jun 2015 | A1 |
20150176759 | Morris et al. | Jun 2015 | A1 |
20150194650 | Morris et al. | Jul 2015 | A1 |
20150197970 | Morris et al. | Jul 2015 | A1 |
20150232130 | Colombo | Aug 2015 | A1 |
20150232131 | Morris et al. | Aug 2015 | A1 |
20150274217 | Colombo | Oct 2015 | A1 |
20150291222 | Colombo et al. | Oct 2015 | A1 |
20150375798 | Morris et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
842302 | Sep 1976 | BE |
1036250 | Oct 1989 | CN |
2285844 | Jul 1998 | CN |
1205285 | Jan 1999 | CN |
1204744 | Jul 1999 | CN |
1328521 | Dec 2001 | CN |
1426872 | Jul 2003 | CN |
1496451 | May 2004 | CN |
2661972 | Dec 2004 | CN |
2679409 | Feb 2005 | CN |
1670986 | Sep 2005 | CN |
100573975 | Sep 2005 | CN |
1693721 | Nov 2005 | CN |
1771399 | May 2006 | CN |
1774580 | May 2006 | CN |
2872795 | Feb 2007 | CN |
1933747 | Mar 2007 | CN |
2888807 | Apr 2007 | CN |
1961157 | May 2007 | CN |
2915389 | Jun 2007 | CN |
200941716 | Aug 2007 | CN |
200957794 | Oct 2007 | CN |
101250964 | Apr 2008 | CN |
101390022 | Mar 2009 | CN |
201259846 | Jun 2009 | CN |
201268336 | Jul 2009 | CN |
201310827 | Sep 2009 | CN |
201540513 | Aug 2010 | CN |
101821534 | Sep 2010 | CN |
101821534 | Sep 2010 | CN |
101930253 | Dec 2010 | CN |
201703439 | Jan 2011 | CN |
201737062 | Feb 2011 | CN |
201792722 | Apr 2011 | CN |
201818606 | May 2011 | CN |
201890285 | Jul 2011 | CN |
102144102 | Aug 2011 | CN |
102235402 | Nov 2011 | CN |
202079532 | Dec 2011 | CN |
102313952 | Jan 2012 | CN |
202132326 | Feb 2012 | CN |
102540855 | Jul 2012 | CN |
102756633 | Oct 2012 | CN |
102756633 | Oct 2012 | CN |
102803753 | Nov 2012 | CN |
202561269 | Nov 2012 | CN |
102817892 | Dec 2012 | CN |
102869891 | Jan 2013 | CN |
102904128 | Jan 2013 | CN |
202686206 | Jan 2013 | CN |
102939022 | Feb 2013 | CN |
202764872 | Mar 2013 | CN |
202987018 | Jun 2013 | CN |
103201525 | Jul 2013 | CN |
103206595 | Jul 2013 | CN |
203189459 | Sep 2013 | CN |
203344856 | Dec 2013 | CN |
203991175 | Dec 2014 | CN |
1220673 | Jul 1966 | DE |
2527023 | Dec 1976 | DE |
2736012 | Feb 1978 | DE |
2809746 | Sep 1979 | DE |
3704190 | Dec 1987 | DE |
3711696 | Oct 1988 | DE |
3805693 | Feb 1989 | DE |
3815927 | Nov 1989 | DE |
9109276 | Jul 1991 | DE |
4002443 | Aug 1991 | DE |
4111245 | Oct 1991 | DE |
9201258 | Mar 1992 | DE |
29714892 | Oct 1997 | DE |
29800379 | May 1998 | DE |
69600357 | Dec 1998 | DE |
10202644 | Jun 2003 | DE |
10234253 | Apr 2004 | DE |
10333540 | Feb 2005 | DE |
60105817 | Feb 2006 | DE |
202007006175 | Aug 2007 | DE |
102008005618 | Jul 2009 | DE |
102008063920 | Sep 2009 | DE |
102008047464 | Apr 2010 | DE |
102010028323 | Nov 2011 | DE |
102011050003 | Oct 2012 | DE |
102012212101 | Jul 2013 | DE |
102013003028 | Mar 2014 | DE |
0118796 | Sep 1984 | EP |
0616140 | Sep 1994 | EP |
1132263 | Sep 2001 | EP |
1243471 | Sep 2002 | EP |
1273766 | Jan 2003 | EP |
1293384 | Mar 2003 | EP |
1384536 | Jan 2004 | EP |
1388449 | Feb 2004 | EP |
1452745 | Sep 2004 | EP |
2166235 | Mar 2010 | EP |
2450259 | May 2012 | EP |
2458454 | May 2012 | EP |
1369198 | Aug 1964 | FR |
2009941 | Feb 1970 | FR |
2750177 | Dec 1997 | FR |
2942749 | Sep 2010 | FR |
2958696 | Oct 2011 | FR |
155838 | Mar 1922 | GB |
994891 | Jun 1965 | GB |
2281950 | Mar 1995 | GB |
2348924 | Oct 2000 | GB |
H08200420 | Aug 1996 | JP |
H0942233 | Feb 1997 | JP |
2000010514 | Jan 2000 | JP |
2001141154 | May 2001 | JP |
2001171554 | Jun 2001 | JP |
2003153387 | May 2003 | JP |
2003314515 | Nov 2003 | JP |
2005268004 | Sep 2005 | JP |
2006205918 | Aug 2006 | JP |
2008307938 | Dec 2008 | JP |
2009084844 | Apr 2009 | JP |
2009187789 | Aug 2009 | JP |
2011085174 | Apr 2011 | JP |
2012060791 | Mar 2012 | JP |
2012112533 | Jun 2012 | JP |
20030000251 | Jan 2003 | KR |
100931019 | Dec 2009 | KR |
9602963 | Feb 1996 | WO |
9822739 | May 1998 | WO |
0055517 | Mar 2000 | WO |
0132454 | Nov 2001 | WO |
2004010011 | Jan 2004 | WO |
2007126201 | Nov 2007 | WO |
2008140659 | Nov 2008 | WO |
2010105354 | Sep 2010 | WO |
2011025606 | Mar 2011 | WO |
2013088447 | Jun 2013 | WO |
2013191622 | Dec 2013 | WO |
Entry |
---|
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002. |
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/elastic—averaging.html>. |
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and Edip Sevincer, Proceeding of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechnical Engineers (ASME), Sep. 2006. |
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechnical Engineering, Dec. 2007. |
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004. |
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007. |
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010. |
Rojas, F.E., et al., “Kinematic Coupling for Precision Fixturing & Assembly” MIT Precision Engineering Research Group, Apr. 2013, 24 pages. |
Slocum, A.H., et al., “Kinematic and Elastically Averaged Joints: Connecting the Past, Present and Future” International Symposium on Ultraprecision Engineering and Nanotechnology, Tokyo, Japan, Mar. 13, 2013, 4 pages. |
Willoughby, Patrick, “Elastically Averaged Precision Alignment”, Degree of Doctor of Philosophy in Mechanical Engineering Dissertation, Massachusetts Institute of Technology, 2005, 158 pages. |
Number | Date | Country | |
---|---|---|---|
20150375797 A1 | Dec 2015 | US |