Elastically averaged alignment systems and methods

Information

  • Patent Grant
  • 9463829
  • Patent Number
    9,463,829
  • Date Filed
    Thursday, February 20, 2014
    10 years ago
  • Date Issued
    Tuesday, October 11, 2016
    8 years ago
Abstract
In one aspect, an elastically averaged alignment system includes a first component having an interior cavity and an alignment member positioned at least partially within the interior cavity, a second component having an inner wall defining an alignment aperture, the alignment aperture configured to receive the alignment member to couple the first component and the second component, and a third component seated within the interior cavity. The alignment member is an elastically deformable material such that (a) when the third component is inserted into the interior cavity, the alignment member elastically deforms to an elastically averaged configuration to facilitate aligning the third component and the first component in a desired orientation, and (b) when the alignment member is inserted into the alignment aperture, the alignment member further elastically deforms to an elastically averaged final configuration to facilitate aligning the first component and the second component in a desired orientation.
Description
FIELD OF THE INVENTION

The subject invention relates to matable components and, more specifically, to elastically averaged matable components for alignment and retention.


BACKGROUND

Components, in particular vehicular components used in automotive vehicles, which are to be mated together in a manufacturing process may be mutually located with respect to each other by alignment features that are oversized holes and/or undersized upstanding bosses. Such alignment features are typically sized to provide spacing to freely move the components relative to one another to align them without creating an interference therebetween that would hinder the manufacturing process. One such example includes two-way and/or four-way male alignment features; typically upstanding bosses, which are received into corresponding female alignment features, typically apertures in the form of slots or holes. The components are formed with a predetermined clearance between the male alignment features and their respective female alignment features to match anticipated size and positional variation tolerances of the male and female alignment features that result from manufacturing (or fabrication) variances.


As a result, significant positional variation can occur between two mated components having the aforementioned alignment features, which may contribute to the presence of undesirably large variation in their alignment, particularly with regard to gaps and/or spacing therebetween. In the case where misaligned components are also part of another assembly, such misalignment may also affect the function and/or aesthetic appearance of the entire assembly. Regardless of whether such misalignment is limited to two components or an entire assembly, it can negatively affect function and result in a perception of poor quality. Moreover, clearance between misaligned components may lead to relative motion therebetween, which may cause undesirable noise such as squeaking, rattling, and slapping, and further result in the perception of poor quality.


SUMMARY OF THE INVENTION

In one aspect, an elastically averaged alignment system is provided. The system includes a first component having an interior cavity and an alignment member positioned at least partially within the interior cavity, a second component having an inner wall defining an alignment aperture, the alignment aperture configured to receive the alignment member to couple the first component and the second component, and a third component seated within the interior cavity. The alignment member is an elastically deformable material such that (a) when the third component is inserted into the interior cavity, the alignment member elastically deforms to an elastically averaged configuration to facilitate aligning the third component and the first component in a desired orientation, and (b) when the alignment member is inserted into the alignment aperture, the alignment member further elastically deforms to an elastically averaged final configuration to facilitate aligning the first component and the second component in a desired orientation.


In another aspect, a vehicle is provided. The vehicle includes a body and an elastically averaged alignment system integrally arranged within the body. The elastically averaged alignment system includes a first component having an interior cavity and an alignment member positioned at least partially within the interior cavity, a second component having an inner wall defining an alignment aperture, the alignment aperture configured to receive the alignment member to couple the first component and the second component, and a third component seated within the interior cavity. The alignment member is an elastically deformable material such that (a) when the third component is inserted into the interior cavity, the alignment member elastically deforms to an elastically averaged configuration to facilitate aligning the third component and the first component in a desired orientation, and (b) when the alignment member is inserted into the alignment aperture, the alignment member further elastically deforms to an elastically averaged final configuration to facilitate aligning the first component and the second component in a desired orientation.


In yet another aspect, a method of manufacturing an elastically averaged alignment system is provided. The method includes fabricating a first component having in interior cavity and an alignment member positioned at least partially within the interior cavity, and providing a second component having an inner wall defining an alignment aperture, the alignment aperture configured to receive the alignment member to couple the first component and the second component. The method further includes fabricating a third component, seating the third component within the interior cavity, and fabricating the alignment member from an elastically deformable material such that (a) when the third component is seated in the interior cavity, the alignment member elastically deforms to an elastically averaged configuration to facilitate aligning the third component and the first component in a desired orientation, and (b) when the alignment member is inserted into the alignment aperture, the alignment member further elastically deforms to an elastically averaged final configuration to facilitate aligning the first component and the second component in a desired orientation.


The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:



FIG. 1 is a perspective view of an exemplary elastically averaging mating system and before assembly;



FIG. 2 is a cross-sectional view of the system shown in FIG. 1 taken along section 2-2 and after assembly; and



FIG. 3 is a front view of a vehicle that may use the elastically averaged alignment system shown in FIGS. 1 and 2.





DETAILED DESCRIPTION

The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. For example, the embodiments shown are applicable to vehicle components, but the system disclosed herein may be used with any suitable components to provide securement and elastic averaging for precision location and alignment of all manner of mating components and component applications, including many industrial, consumer product (e.g., consumer electronics, various appliances and the like), transportation, energy and aerospace applications, and particularly including many other types of vehicular components and applications, such as various interior, exterior, electrical and under hood vehicular components and applications. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.


As used herein, the term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to the application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.


Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, published as U.S. Pub. No. 2013/0019455, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles, or that would be further aided with the inclusion of a four-way elastic averaging system as herein disclosed, to an assembly that does facilitate elastic averaging and the benefits associated therewith.


Any suitable elastically deformable material may be used for the mating components and alignment features disclosed herein and discussed further below, particularly those materials that are elastically deformable when formed into the features described herein. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof suitable for a purpose disclosed herein. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS). The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The elastically deformable alignment features and associated component may be formed in any suitable manner. For example, the elastically deformable alignment features and the associated component may be integrally formed, or they may be formed entirely separately and subsequently attached together. When integrally formed, they may be formed as a single part from a plastic injection molding machine, for example. When formed separately, they may be formed from different materials to provide a predetermined elastic response characteristic, for example. The material, or materials, may be selected to provide a predetermined elastic response characteristic of any or all of the elastically deformable alignment features, the associated component, or the mating component. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.


As used herein, the term vehicle is not limited to just an automobile, truck, van or sport utility vehicle, but includes any self-propelled or towed conveyance suitable for transporting a burden.


Described herein are elastic averaging alignment systems and methods. The alignment systems include a component with alignment aperture(s) to receive elastically deformable alignment member(s) of another component. An additional component is inserted within an interior cavity of the component with the alignment aperture(s). The alignment member(s) is configured to be inserted into one alignment aperture(s), and the alignment member(s) elastically deforms to facilitate precisely aligning and securing the components together in a desired orientation.



FIGS. 1 and 2 illustrate an exemplary elastically averaged alignment system 10 that generally includes a first component 100 to be mated to a second component 200 and a third component 300.


In the exemplary embodiment, first component 100 includes at least one elastically deformable alignment member 102, and second component includes an inner wall 202 defining at least one alignment aperture 204. Alignment member 102 and alignment aperture 204 are fixedly disposed on or formed integrally with their respective component 100, 200 for proper alignment and orientation when components 100 and 200 are mated. Although two alignment members 102 and two corresponding alignment apertures 204 are illustrated in FIG. 1, components 100 and 200 may have any number and combination of corresponding alignment members 102 and alignment apertures 204.


Elastically deformable alignment member 102 is configured and disposed to interferingly, deformably, and matingly engage alignment aperture 204, as discussed herein in more detail, to precisely align first component 100 with second component 200 in two or four directions, such as the +/−x-direction and the +/−y-direction of an orthogonal coordinate system, for example, which is herein referred to as two-way and four-way alignment. Alignment member 102 is also configured and disposed to interferingly, deformably, and matingly engage third component 300, as discussed herein in more detail, to precisely align first component 100 and third component 300 in two or four directions (e.g., +/−x-direction and the +/−y-direction of an orthogonal coordinate system). Moreover, elastically deformable alignment member 102 matingly engages alignment aperture 204 and third component 300 to facilitate a stiff and rigid connection between first component 100 and second component 200 and between first component 100 and third component 300, thereby reducing or preventing relative movement therebetween.


In the exemplary embodiment, first component 100 generally includes an outer face 104 and an inner face 106 from which alignment member 102 extends Inner face 106 and/or alignment member 102 define an interior cavity 108, and alignment member 102 is disposed at least partially within interior cavity 108. Alignment member 102 is a generally circular hollow tube having a central axis 110, a proximal end 112 coupled to inner face 106, and a distal end 114. However, alignment member 102 may have any cross-sectional shape that enables system 10 to function as described herein. First component 100 includes an outer flange 116 and an inner flange 118 that defines an aperture 120. In the exemplary embodiment, first component 100 is fabricated from a rigid material such as plastic. However, first component 100 may be fabricated from any suitable material that enables system 10 to function as described herein.


Second component 200 generally includes an outer face 206 and an inner face 208. In the exemplary embodiment, alignment aperture 204 is illustrated as having a generally circular cross-section. Alternatively, alignment aperture 204 may have any shape that enables system 10 to function as described herein. For example, alignment aperture 204 may be an elongated slot (e.g., similar to the shape of elastic tube alignment system described in co-pending U.S. patent application Ser. No. 13/187,675 and particularly illustrated in FIG. 13 of the same). Second component 200 further includes support members 210 extending into contact with component 300 for support thereof (FIG. 2). In the exemplary embodiment, support members 210 define a generally V-shaped support 212. However, second component may have any other suitable shape such as, for example, a corrugated or rectangular shape defined by the support members. Further, while two supports 212 are illustrated, second component 200 may be formed with any suitable number of supports that enables system 10 to function as described herein. In the exemplary embodiment, second component 200 is fabricated from a rigid material such as sheet metal. However, second component 200 may be fabricated from any suitable material that enables system 10 to function as described herein.


In the exemplary embodiment, third component 300 generally includes an outer edge 302, an outer face 304, and an inner face 306. As illustrated in FIG. 2, outer edge 302 may include a chamfer 308 to facilitate insertion of third component 300 into interior cavity 108 of first component 100. Although third component 300 is illustrated as generally rectangular, third component 300 may have any suitable shape that enables system 10 to function as described herein. In the exemplary embodiment, third component 300 is fabricated from a rigid material such as plastic. However, third component 300 may be fabricated from any suitable material that enables system 10 to function as described herein.


While not being limited to any particular structure, first component 100 may be a bezel or an intermediate component of a vehicle with the customer-visible side being outer face 104. Second component 200 may be a supporting substructure that is part of, or is attached to, the vehicle and on which first component 100 is fixedly mounted in precise alignment. Component 300 may be a decorative insert or trim component with the customer-visible side being outer face 304.


To provide an arrangement where elastically deformable alignment member 102 is configured and disposed to interferingly, deformably and matingly engage alignment aperture 204, a diameter or cross-section of alignment aperture 204 is less than the diameter or cross-section of alignment member 102, which necessarily creates a purposeful interference fit between the elastically deformable alignment member 102 and alignment aperture 204. Further, second component 200 may include a chamfer 214 to facilitate insertion of alignment member 102. As such, when inserted into alignment aperture 204, portions of the elastically deformable alignment member 102 elastically deform to an elastically averaged final configuration that aligns alignment member 102 with the alignment aperture 204 in four planar orthogonal directions (the +/−x-direction and the +/−y-direction). Where alignment aperture 204 is an elongated slot (not shown), alignment member 102 is aligned in two planar orthogonal directions (the +/−x-direction or the +/−y-direction).


To provide an arrangement where elastically deformable alignment member 102 is configured and disposed to interferingly, deformably and matingly engage third component 300, a cross-section of at least a portion of interior cavity 108 (e.g. between opposed alignment members 102, between alignment member 102 and another portion of first component 100, etc.) is less than a length “L” or cross-section of third component 300, which necessarily creates a purposeful interference fit between the elastically deformable alignment member 102 and third component 300. Further, third component 300 may include chamfer 308 to facilitate insertion of third component. As such, when third component 300 is inserted into interior cavity 108, portions of the elastically deformable alignment member 102 elastically deform to an elastically averaged configuration that aligns third component 300 with first component 100 in two or four planar orthogonal directions (the +/−x-direction and the +/−y-direction). As such, in the exemplary embodiment, at least a portion of outer face 304 is visible through aperture 120.


As shown in FIGS. 1 and 2, alignment member 102 includes retention features 130 to facilitate retention of alignment member 102 within alignment aperture 204 and to facilitate retention of third component 300 within first component interior cavity 108. In the exemplary embodiment, retention feature 130 includes a first lip or rib 132 extending from an outer wall 103 of alignment member 102 proximate distal end 114, and a second lip or rib 134 extending from outer wall 103 proximate proximal end 112. Rib 132 extends at least partially about the circumference of outer wall 103 and is configured to engage outer face 206 and/or inner wall 202. For example, retention rib 132 interferingly engages outer face 206 to increase the amount of force required to disengage or otherwise remove alignment member 102 from within alignment aperture 204. Rib 134 extends at least partially about the circumference of outer wall 103 and is configured to engage third component inner face 306 and/or outer edge 302. For example, retention rib 134 interferingly engages inner face 306 to increase the amount of force required to disengage or otherwise remove third component 300 from within first component interior cavity 108. Alternatively, retention feature 130 may have any suitable shape that enables system 10 to function as described herein. Accordingly, retention features 130 facilitate improved retention of alignment member 102 within alignment aperture 204 and improved retention of third component 300 within interior cavity 108. In addition, retention rib 134 and support 212 facilitate holding third component 300 in the +/−z-direction.


While FIG. 1 depicts two elastically deformable alignment members 102 for corresponding alignment apertures 204 to provide four-way alignment of first component 100 relative to second component 200, it will be appreciated that the scope of invention is not so limited and encompasses other quantities and types of elastically deformable alignment elements used in conjunction with the elastically deformable alignment member 102 and corresponding alignment aperture 204. Moreover, third component 300 may include any number of individual elements that together comprise third component 300.


In an exemplary construction, third component 300 is inserted into interior cavity 108 between opposed alignment members 102 such that outer edge 302 passes over retention rib 134. Third component 300 is seated or secured within first component 100 such that outer edge 302 abuts against alignment member 102 below rib 134, inner face 306 abuts against retention rib 134, and/or a portion of outer face 304 abuts against inner flange 118. Because the length or cross-section of third component 300 is larger than that of interior cavity 108 between opposed alignment members 102, alignment members 102 are elastically deformed outward toward respective outer flanges 116.


First component 100 is coupled to second component 200 by inserting each alignment member 102 into a corresponding alignment aperture 204 until support 212 rests against third component inner face 306 to further facilitate securing third component 300 within interior cavity 108. Support 212 provides a support platform at a height “h” below second component inner face 208 upon which third component inner face 306 rests when elastically deformable alignment member 102 is configured and disposed to interferingly, deformably and matingly engage alignment aperture 204. Accordingly, alignment member 102 elastically deforms within alignment aperture 204 to precisely align components 100, 200. Additionally, alignment member distal end 114 is elastically deformed and forced away from outer flange 116 by alignment aperture 204, thereby facilitating securing third component 300 and precisely aligning components 100, 300.


In view of the foregoing, and with reference now to FIG. 3, it will be appreciated that an embodiment of the invention also includes a vehicle 40 having a body 42 with an elastically averaging alignment system 10 as herein disclosed integrally arranged with the body 42. In the embodiment of FIG. 3, elastically averaging alignment system 10 is depicted forming at least a portion of a front grill 44 of the vehicle 40. However, it is contemplated that an elastically averaging alignment system 10 as herein disclosed may be utilized with other multi-layered components of the vehicle 40, such as exterior decorative trim and inserts, interior decorative trim, instrument panel decorative trim, multi-layer trim doors, and console component stacks.


An exemplary method of fabricating elastically averaged alignment system 10 includes forming first component 100 with at least one alignment member 102, forming or providing second component with inner wall 202 defining at least one alignment aperture 204, and forming third component 300. Alignment member 102 is formed to be elastically deformable such that when alignment member 102 is inserted into alignment aperture 204, alignment member 102 elastically deforms to an elastically averaged final configuration to facilitate aligning first component 100 and second component 200 in a desired orientation. When third component 300 is inserted into interior cavity 108, alignment member 102 elastically deforms to an elastically averaged final configuration to facilitate aligning first component 100 and third component 300 in a desired orientation. Alignment member 102 may be formed with one or more retention member 130 extending from outer surface 103. For example, alignment member 102 may be formed with first retention rib 132 at least partially circumscribing distal end 114 and/or second retention rib 134 at least partially circumscribing proximal end 112.


Systems and methods for elastically averaging mating and alignment systems are described herein. The systems generally include a first component with an elastically deformable alignment member positioned for insertion into an alignment aperture of a second component, as well as a third component configured for insertion into a portion of the first component. The mating of the first and second components is elastically averaged over each pair of corresponding alignment member and alignment aperture to precisely mate the components in a desired orientation. The mating of the first and third components is elastically averaged over at least one alignment member to precisely mate the components in a desired orientation. As such, the systems provide superior alignment because both second and third components are elastically located to the first component. Moreover, the systems include retention members to facilitate retention of the alignment member within the alignment aperture and retention of the third component within the first component. Accordingly, the described systems and methods facilitate precise alignment of three or more components in a desired orientation.


While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.

Claims
  • 1. An elastically averaged alignment system comprising: a first component comprising an interior cavity and a pair of alignment members positioned at least partially within the interior cavity and spaced from each other;a second component comprising a pair of inner walls defining a pair of alignment apertures, the alignment apertures configured to receive the alignment members to couple the first component and the second component;a third component seated within the interior cavity and disposed between the first component and the second component, the third component disposed completely between the pair of alignment members;a first retaining rib extending from an outer surface of each of the alignment members at a first axial location of the alignment members, each first retaining rib abutting against the third component to facilitate securing the third component within the interior cavity; anda second retaining rib extending from the outer surface of each of the alignment members at a second axial location of the alignment members, each second retaining rib engaging the second component to facilitate retaining at least a portion of the alignment members within the alignment apertures,wherein each of the alignment members is an elastically deformable material such that (a) when the third component is inserted into the interior cavity, the alignment members elastically deform to an elastically averaged configuration to facilitate aligning the third component and the first component in a desired orientation, and (b) when each of the alignment members is inserted into the alignment apertures, the alignment members further elastically deforming to an elastically averaged final configuration to facilitate aligning the first component and the second component in a desired orientation, wherein the third component comprises an outer edge, the outer edge abutting against the pair of alignment members to elastically deform the alignment members to the elastically averaged configuration, wherein a portion of the second component abuts against the third component to support the third component when each of the alignment members is inserted into the alignment apertures.
  • 2. The alignment system of claim 1, wherein portions of the elastically deformable alignment member of respective ones of the more than one elastically deformable alignment members, when engaged with respective ones of the more than one elastically deformable alignment apertures, elastically deform to an elastically averaged final configuration that further aligns the first component and the second component in at least two of four planar orthogonal directions.
  • 3. A vehicle comprising: a body; andan elastically averaged alignment system integrally arranged within the body, the elastically averaged alignment system comprising: a first component comprising an interior cavity and a pair of alignment members positioned at least partially within the interior cavity and spaced from each other;a second component comprising a pair of inner walls defining a pair of alignment apertures, the alignment apertures configured to receive the alignment members to couple the first component and the second component;a third component seated within the interior cavity and disposed between the first component and the second component, the third component disposed completely between the pair of alignment members;a first retaining rib extending from an outer surface of each of the alignment members at a first axial location of the alignment members, each first retaining rib abutting against the third component to facilitate securing the third component within the interior cavity; anda second retaining rib extending from the outer surface of each of the alignment members at a second axial location of the alignment members, each second retaining rib engaging the second component to facilitate retaining at least a portion of the alignment members within the alignment apertures,wherein each of the alignment members is an elastically deformable material such that (a) when the third component is inserted into the interior cavity, the alignment members elastically deforming to an elastically averaged configuration to facilitate aligning the third component and the first component in a desired orientation, and (b) when each of the alignment members is inserted into the alignment apertures, the alignment members further elastically deforming to an elastically averaged final configuration to facilitate aligning the first component and the second component in a desired orientation, wherein the third component comprises an outer edge, the outer edge abutting against the pair of alignment members to elastically deform the alignment members to the elastically averaged configuration, wherein a portion of the second component abuts against the third component to support the third component when each of the alignment members is inserted into the alignment apertures.
  • 4. The vehicle of claim 3, wherein each of the alignment members, when inserted into one of the alignment apertures, elastically deforms to the elastically averaged final configuration such that a manufacturing variance of each of the first and second components is averaged over the total of the alignment members.
  • 5. A method of manufacturing an elastically averaged alignment system, the method comprising: fabricating a first component comprising an interior cavity and a pair of alignment members positioned at least partially within the interior cavity and spaced from each other;providing a second component comprising a pair of inner walls defining a pair of alignment apertures, the alignment apertures configured to receive the alignment members to couple the first component and the second component;fabricating a third component;seating the third component within the interior cavity between the first component and the second component, the third component positioned to be completely disposed between the pair of alignment members;forming a first retaining rib extending from an outer surface of each of the alignment members at a first axial location of the alignment members, each first retaining rib abutting against the third component to facilitate securing the third component within the interior cavity; andforming a second retaining rib extending from the outer surface of each of the alignment members at a second axial location of the alignment members, each second retaining rib engaging the second component to facilitate retaining at least a portion of the alignment members within the alignment apertures,wherein each of the alignment members is fabricated from an elastically deformable material such that (a) when the third component is seated in the interior cavity, the alignment members elastically deform to an elastically averaged configuration to facilitate aligning the third component and the first component in a desired orientation, and (b) when each of the alignment member is inserted into the alignment apertures, the alignment members further elastically deform to an elastically averaged final configuration to facilitate aligning the first component and the second component in a desired orientation, wherein the third component comprises an outer edge, the outer edge abutting against the pair of alignment members to elastically deform the alignment members to the elastically averaged configuration, wherein a portion of the second component abuts against the third component to support the third component when each of the alignment members is inserted into the alignment apertures.
  • 6. The method of claim 5, wherein each of the alignment members, when inserted into one of the alignment apertures, elastically deforms to the elastically averaged final configuration such that a manufacturing variance of each of the first and second components is averaged over the total of the alignment members.
US Referenced Citations (353)
Number Name Date Kind
1219398 Huntsman Mar 1917 A
1261036 Kerns Apr 1918 A
1301302 Nolan Apr 1919 A
1556233 Maise Oct 1925 A
1819126 Scheibe Aug 1931 A
1929848 Neely Oct 1933 A
1968168 Place Jul 1934 A
1982076 Spahn Nov 1934 A
2006525 Thal Jul 1935 A
2267558 Fernberg Dec 1941 A
2275103 Gooch et al. Mar 1942 A
2275900 Hall Mar 1942 A
2482488 Franc Sep 1949 A
2612139 Collins Sep 1952 A
2688894 Modrey Sep 1954 A
2707607 O'Connor May 1955 A
2778399 Mroz Jan 1957 A
2780128 Rapata Feb 1957 A
2862040 Curran Nov 1958 A
2902902 Slone Sep 1959 A
2946612 Ahlgren Jul 1960 A
3005282 Christiansen Oct 1961 A
3014563 Bratton Dec 1961 A
3087352 Daniel Apr 1963 A
3089269 McKiernan May 1963 A
3130512 Van Buren, Jr. Apr 1964 A
3168961 Yates Feb 1965 A
3169004 Rapata Feb 1965 A
3169439 Rapata Feb 1965 A
3188731 Sweeney Jun 1965 A
3194292 Borowsky Jul 1965 A
3213189 Mitchell et al. Oct 1965 A
3230592 Hosea Jan 1966 A
3233358 Dehm Feb 1966 A
3233503 Birger Feb 1966 A
3244057 Mathison Apr 1966 A
3248995 Meyer May 1966 A
3291495 Liebig Dec 1966 A
3310929 Garvey Mar 1967 A
3413752 Perry Dec 1968 A
3473283 Meyer Oct 1969 A
3531850 Durand Oct 1970 A
3643968 Horvath Feb 1972 A
3680272 Meyer Aug 1972 A
3842565 Brown et al. Oct 1974 A
3845961 Byrd, III Nov 1974 A
3847492 Kennicutt et al. Nov 1974 A
3895408 Leingang Jul 1975 A
3905570 Nieuwveld Sep 1975 A
3972550 Boughton Aug 1976 A
4035874 Liljendahl Jul 1977 A
4039215 Minhinnick Aug 1977 A
4042307 Jarvis Aug 1977 A
4043585 Yamanaka Aug 1977 A
4158511 Herbenar Jun 1979 A
4169297 Weihrauch Oct 1979 A
4213675 Pilhall Jul 1980 A
4237573 Weihrauch Dec 1980 A
4300851 Thelander Nov 1981 A
4313609 Clements Feb 1982 A
4314417 Cain Feb 1982 A
4318208 Borja Mar 1982 A
4325574 Umemoto et al. Apr 1982 A
4363839 Watanabe et al. Dec 1982 A
4364150 Remington Dec 1982 A
4384803 Cachia May 1983 A
4394853 Lopez-Crevillen et al. Jul 1983 A
4406033 Chisholm et al. Sep 1983 A
4477142 Cooper Oct 1984 A
4481160 Bree Nov 1984 A
4575060 Kitagawa Mar 1986 A
4605575 Auld et al. Aug 1986 A
4616951 Maatela Oct 1986 A
4648649 Beal Mar 1987 A
4654760 Matheson et al. Mar 1987 A
4745656 Revlett May 1988 A
4767647 Bree Aug 1988 A
4805272 Yamaguchi Feb 1989 A
4807335 Candea Feb 1989 A
4817999 Drew Apr 1989 A
4819983 Alexander et al. Apr 1989 A
4881764 Takahashi et al. Nov 1989 A
4973212 Jacobs Nov 1990 A
4977648 Eckerud Dec 1990 A
5139285 Lasinski Aug 1992 A
5154479 Sautter, Jr. Oct 1992 A
5170985 Killworth et al. Dec 1992 A
5180219 Geddie Jan 1993 A
5208507 Jung May 1993 A
5212853 Kaneko May 1993 A
5234122 Cherng Aug 1993 A
5297322 Kraus Mar 1994 A
5342139 Hoffman Aug 1994 A
5368797 Quentin et al. Nov 1994 A
5397206 Sihon Mar 1995 A
5407310 Kassouni Apr 1995 A
5446965 Makridis Sep 1995 A
5507610 Benedetti et al. Apr 1996 A
5513603 Ang et al. May 1996 A
5524786 Skudlarek Jun 1996 A
5538079 Pawlick Jul 1996 A
5556808 Williams et al. Sep 1996 A
5575601 Skufca Nov 1996 A
5577301 Demaagd Nov 1996 A
5577779 Dangel Nov 1996 A
5580204 Hultman Dec 1996 A
5586372 Eguchi et al. Dec 1996 A
5601453 Horchler Feb 1997 A
5634757 Schanz Jun 1997 A
5657516 Berg et al. Aug 1997 A
5666749 Waters Sep 1997 A
5667271 Booth Sep 1997 A
5670013 Huang et al. Sep 1997 A
5698276 Mirabitur Dec 1997 A
5736221 Hardigg et al. Apr 1998 A
5765942 Shirai et al. Jun 1998 A
5795118 Osada et al. Aug 1998 A
5797170 Akeno Aug 1998 A
5803646 Weihrauch Sep 1998 A
5806915 Takabatake Sep 1998 A
5810535 Fleckenstein et al. Sep 1998 A
5820292 Fremstad Oct 1998 A
5846631 Nowosiadly Dec 1998 A
5941673 Hayakawa et al. Aug 1999 A
6073315 Rasmussen Jun 2000 A
6095594 Riddle et al. Aug 2000 A
6164603 Kawai Dec 2000 A
6193430 Culpepper et al. Feb 2001 B1
6202962 Snyder Mar 2001 B1
6209175 Gershenson Apr 2001 B1
6209178 Wiese et al. Apr 2001 B1
6264869 Notarpietro et al. Jul 2001 B1
6299478 Jones et al. Oct 2001 B1
6321495 Oami Nov 2001 B1
6349904 Polad Feb 2002 B1
6354815 Svihla et al. Mar 2002 B1
6378931 Kolluri et al. Apr 2002 B1
6398449 Loh Jun 2002 B1
6484370 Kanie et al. Nov 2002 B2
6485241 Oxford Nov 2002 B1
6523817 Landry, Jr. Feb 2003 B1
6533391 Pan Mar 2003 B1
6543979 Iwatsuki Apr 2003 B2
6557260 Morris May 2003 B1
6568701 Burdack et al. May 2003 B1
6579397 Spain et al. Jun 2003 B1
6591801 Fonville Jul 2003 B1
6609717 Hinson Aug 2003 B2
6658698 Chen Dec 2003 B2
6662411 Rubenstein Dec 2003 B2
6664470 Nagamoto Dec 2003 B2
6677065 Blauer Jan 2004 B2
6692016 Yokota Feb 2004 B2
6712329 Ishigami et al. Mar 2004 B2
6746172 Culpepper Jun 2004 B2
6799758 Fries Oct 2004 B2
6840969 Kobayashi et al. Jan 2005 B2
6857676 Kawaguchi et al. Feb 2005 B2
6857809 Granata Feb 2005 B2
6908117 Pickett, Jr. et al. Jun 2005 B1
6932416 Clauson Aug 2005 B2
6948753 Yoshida et al. Sep 2005 B2
6951349 Yokota Oct 2005 B2
6959954 Brandt et al. Nov 2005 B2
6966601 Matsumoto et al. Nov 2005 B2
6971831 Fattori et al. Dec 2005 B2
6997487 Kitzis Feb 2006 B2
7000941 Yokota Feb 2006 B2
7008003 Hirose et al. Mar 2006 B1
7014094 Alcoe Mar 2006 B2
7017239 Kurily et al. Mar 2006 B2
7036779 Kawaguchi et al. May 2006 B2
7055849 Yokota Jun 2006 B2
7059628 Yokota Jun 2006 B2
7073260 Jensen Jul 2006 B2
7089998 Crook Aug 2006 B2
7097198 Yokota Aug 2006 B2
7121611 Hirotani et al. Oct 2006 B2
7144183 Lian et al. Dec 2006 B2
7172210 Yokota Feb 2007 B2
7178855 Catron et al. Feb 2007 B2
7198315 Cass et al. Apr 2007 B2
7234852 Nishizawa et al. Jun 2007 B2
7306418 Kornblum Dec 2007 B2
7322500 Maierholzner Jan 2008 B2
7344056 Shelmon et al. Mar 2008 B2
7360964 Tsuya Apr 2008 B2
7369408 Chang May 2008 B2
7435031 Granata Oct 2008 B2
7454105 Yi Nov 2008 B2
7487884 Kim Feb 2009 B2
7493716 Brown Feb 2009 B2
7557051 Ryu et al. Jul 2009 B2
7568316 Choby et al. Aug 2009 B2
D602349 Andersson Oct 2009 S
7672126 Yeh Mar 2010 B2
7677650 Huttenlocher Mar 2010 B2
7764853 Yi et al. Jul 2010 B2
7793998 Matsui et al. Sep 2010 B2
7802831 Isayama et al. Sep 2010 B2
7828372 Ellison Nov 2010 B2
7862272 Nakajima Jan 2011 B2
7869003 Van Doren et al. Jan 2011 B2
7883137 Bar Feb 2011 B2
7922415 Rudduck et al. Apr 2011 B2
7946684 Drury et al. May 2011 B2
2010239 Huang Oct 2011 A1
8029222 Nitsche Oct 2011 B2
8061861 Paxton et al. Nov 2011 B2
8101264 Pace et al. Jan 2012 B2
8136819 Yoshitsune et al. Mar 2012 B2
8162375 Gurtatowski et al. Apr 2012 B2
8203496 Miller et al. Jun 2012 B2
8203843 Chen Jun 2012 B2
8261581 Cerruti et al. Sep 2012 B2
8276961 Kwolek Oct 2012 B2
8297137 Dole Oct 2012 B2
8297661 Proulx et al. Oct 2012 B2
8414048 Kwolek Apr 2013 B1
8444199 Takeuchi et al. May 2013 B2
8677573 Lee Mar 2014 B2
8695201 Morris Apr 2014 B2
8720016 Beaulieu May 2014 B2
8726473 Dole May 2014 B2
8773846 Wang Jul 2014 B2
8826499 Tempesta Sep 2014 B2
8833832 Whipps Sep 2014 B2
8834058 Woicke Sep 2014 B2
9039318 Mantei et al. May 2015 B2
9050690 Hammer et al. Jun 2015 B2
9061715 Morris Jun 2015 B2
9067625 Morris Jun 2015 B2
20010030414 Yokota Oct 2001 A1
20010045757 Kanie et al. Nov 2001 A1
20020045086 Tsuji et al. Apr 2002 A1
20020060275 Polad May 2002 A1
20020092598 Jones et al. Jul 2002 A1
20020136617 Imahigashi Sep 2002 A1
20030007831 Lian et al. Jan 2003 A1
20030080131 Fukuo May 2003 A1
20030082986 Wiens et al. May 2003 A1
20030087047 Blauer May 2003 A1
20030108401 Agha et al. Jun 2003 A1
20030180122 Dobson Sep 2003 A1
20040037637 Lian et al. Feb 2004 A1
20040131896 Blauer Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040140651 Yokota Jul 2004 A1
20040208728 Fattori et al. Oct 2004 A1
20050016116 Scherff Jan 2005 A1
20050031946 Kruger et al. Feb 2005 A1
20050054229 Tsuya Mar 2005 A1
20050082449 Kawaguchi et al. Apr 2005 A1
20050156409 Yokota Jul 2005 A1
20050156410 Yokota Jul 2005 A1
20050156416 Yokota Jul 2005 A1
20050244250 Okada et al. Nov 2005 A1
20060102214 Clemons May 2006 A1
20060110109 Yi et al. May 2006 A1
20060113755 Yokota Jun 2006 A1
20060141318 MacKinnon et al. Jun 2006 A1
20060197356 Catron et al. Sep 2006 A1
20060202449 Yokota Sep 2006 A1
20060237995 Huttenlocher Oct 2006 A1
20060249520 DeMonte Nov 2006 A1
20060264076 Chen Nov 2006 A1
20070040411 Dauvergne Feb 2007 A1
20070113483 Hernandez May 2007 A1
20070113485 Hernandez May 2007 A1
20070126211 Moerke et al. Jun 2007 A1
20070144659 De La Fuente Jun 2007 A1
20070292205 Duval Dec 2007 A1
20080014508 Van Doren et al. Jan 2008 A1
20080018128 Yamagiwa et al. Jan 2008 A1
20080073888 Enriquez Mar 2008 A1
20080094447 Drury et al. Apr 2008 A1
20080128346 Bowers Jun 2008 A1
20080217796 Van Bruggen et al. Sep 2008 A1
20080260488 Scroggie et al. Oct 2008 A1
20090028506 Yi et al. Jan 2009 A1
20090072591 Baumgartner Mar 2009 A1
20090091156 Neubrand Apr 2009 A1
20090134652 Araki May 2009 A1
20090141449 Yeh Jun 2009 A1
20090174207 Lota Jul 2009 A1
20090265896 Beak Oct 2009 A1
20100001539 Kikuchi et al. Jan 2010 A1
20100021267 Nitsche Jan 2010 A1
20100061045 Chen Mar 2010 A1
20100102538 Paxton et al. Apr 2010 A1
20100134128 Hobbs Jun 2010 A1
20100147355 Shimizu et al. Jun 2010 A1
20100247034 Yi et al. Sep 2010 A1
20100270745 Hurlbert et al. Oct 2010 A1
20110012378 Ueno et al. Jan 2011 A1
20110076588 Yamaura Mar 2011 A1
20110119875 Iwasaki May 2011 A1
20110131918 Glynn Jun 2011 A1
20110175376 Whitens et al. Jul 2011 A1
20110207024 Bogumil et al. Aug 2011 A1
20110239418 Huang Oct 2011 A1
20110296764 Sawatani et al. Dec 2011 A1
20110311332 Ishman Dec 2011 A1
20120020726 Jan Jan 2012 A1
20120073094 Bishop Mar 2012 A1
20120115010 Smith et al. May 2012 A1
20120240363 Lee Sep 2012 A1
20120251226 Liu et al. Oct 2012 A1
20120261951 Mildner et al. Oct 2012 A1
20120321379 Wang et al. Dec 2012 A1
20130019454 Colombo et al. Jan 2013 A1
20130019455 Morris Jan 2013 A1
20130027852 Wang Jan 2013 A1
20130071181 Herzinger et al. Mar 2013 A1
20130157015 Morris Jun 2013 A1
20130212858 Herzinger et al. Aug 2013 A1
20130269873 Herzinger et al. Oct 2013 A1
20130287992 Morris Oct 2013 A1
20140033493 Morris et al. Feb 2014 A1
20140041176 Morris Feb 2014 A1
20140041185 Morris et al. Feb 2014 A1
20140041199 Morris Feb 2014 A1
20140042704 Polewarczyk Feb 2014 A1
20140047691 Colombo et al. Feb 2014 A1
20140047697 Morris Feb 2014 A1
20140080036 Smith et al. Mar 2014 A1
20140132023 Watanabe May 2014 A1
20140157578 Morris et al. Jun 2014 A1
20140159412 Morris et al. Jun 2014 A1
20140175774 Kansteiner Jun 2014 A1
20140202628 Sreetharan et al. Jul 2014 A1
20140208561 Colombo et al. Jul 2014 A1
20140208572 Colombo et al. Jul 2014 A1
20140220267 Morris et al. Aug 2014 A1
20140292013 Colombo et al. Oct 2014 A1
20140298638 Colombo et al. Oct 2014 A1
20140298640 Morris et al. Oct 2014 A1
20140298962 Morris et al. Oct 2014 A1
20140300130 Morris et al. Oct 2014 A1
20140301103 Colombo et al. Oct 2014 A1
20140301777 Morris et al. Oct 2014 A1
20140301778 Morris et al. Oct 2014 A1
20140360824 Morris et al. Dec 2014 A1
20140360826 Morris et al. Dec 2014 A1
20140366326 Colombo et al. Dec 2014 A1
20140369742 Morris et al. Dec 2014 A1
20140369743 Morris et al. Dec 2014 A1
20150016864 Morris et al. Jan 2015 A1
20150016918 Colombo Jan 2015 A1
20150023724 Morris et al. Jan 2015 A1
20150050068 Morris et al. Feb 2015 A1
20150069779 Morris et al. Mar 2015 A1
20150078805 Morris et al. Mar 2015 A1
Foreign Referenced Citations (66)
Number Date Country
1036250 Oct 1989 CN
1205285 Jan 1999 CN
1328521 Dec 2001 CN
1426872 Jul 2003 CN
2661972 Dec 2004 CN
1670986 Sep 2005 CN
1693721 Nov 2005 CN
1774580 May 2006 CN
2888807 Apr 2007 CN
2915389 Jun 2007 CN
200957794 Oct 2007 CN
101250964 Apr 2008 CN
201259846 Jun 2009 CN
201268336 Jul 2009 CN
201310827 Sep 2009 CN
201540513 Aug 2010 CN
101821534 Sep 2010 CN
201703439 Jan 2011 CN
201737062 Feb 2011 CN
201792722 Apr 2011 CN
201890285 Jul 2011 CN
102144102 Aug 2011 CN
202079532 Dec 2011 CN
102313952 Jan 2012 CN
102756633 Oct 2012 CN
202686206 Jan 2013 CN
1220673 Feb 1959 DE
2736012 Aug 1976 DE
2809746 Sep 1979 DE
3704190 Dec 1987 DE
3711696 Oct 1988 DE
3805693 Feb 1989 DE
3815927 Nov 1989 DE
4002443 Aug 1991 DE
4111245 Oct 1991 DE
9201258 Feb 1992 DE
29714892 Oct 1997 DE
29800379 May 1998 DE
69600357 Dec 1998 DE
10234253 Apr 2004 DE
102008005618 Jul 2009 DE
102010028323 Nov 2011 DE
102011050003 Oct 2012 DE
102012212101 Jul 2013 DE
0118796 Sep 1984 EP
1132263 Sep 2001 EP
1273766 Jan 2003 EP
1293384 Mar 2003 EP
1384536 Jan 2004 EP
1388449 Feb 2004 EP
2166235 Mar 2010 EP
2450259 May 2012 EP
2458454 May 2012 EP
1369198 Aug 1964 FR
2009941 Feb 1970 FR
2750177 Dec 1997 FR
2958696 Oct 2011 FR
2281950 Mar 1995 GB
2001171554 Jun 2001 JP
2006205918 Aug 2006 JP
2008307938 Dec 2008 JP
2009084844 Apr 2009 JP
2009187789 Aug 2009 JP
2012060791 Mar 2012 JP
2008140659 Nov 2008 WO
WO 2013191622 Dec 2013 WO
Non-Patent Literature Citations (67)
Entry
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/elastic—averaging.html>.
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and Edip Sevincer, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechanical Engineers (ASME), Sep. 2006.
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002.
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007.
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechanical Engineering, Dec. 2007.
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of Technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004.
U.S. Appl. No. 13/229,926, filed Sep. 12, 2011, entitled “Using Elastic Averaging for Alignment of Battery Stack, Fuel Cell Stack, or Other Vehicle Assembly”, inventors: Mark A. Smith, Ronald Daul, Xiang Zhao, David Okonski, Elmer Santos, Lane Lindstrom, and Jeffrey A. Abell.
U.S. Appl. No. 13/330,718, filed Dec. 20, 2011, entitled “Precisely Locating Components in an Infrared Welded Assembly”, inventor: Steven E. Morris.
U.S. Appl. No. 13/459,118, filed Apr. 28, 2012, entitled “Stiffened Multi-Layer Compartment Door Assembly Utilizing Elastic Averaging,” inventor: Steven E. Morris.
U.S. Appl. No. 13/567,580, filed Aug. 6, 2012, entitled “Semi-Circular Alignment Features of an Elastic Averaging Alignment System”, inventors: Steven E. Morris and Thomas F. Bowles.
U.S. Appl. No. 13/570,959, filed Aug. 9, 2012, entitled “Elastic Cantilever Beam Alignment System for Precisely Aligning Components”, inventor: Steven E. Morris.
U.S. Appl. No. 13/571,030, filed Aug. 9, 2012, entitled “Elastic Tube Alignment System for Precisely Locating an Emblem Lens to an Outer Bezel”, inventors: Joel Colombo, Steven E. Morris, and Michael D. Richardson.
U.S. Appl. No. 13/752,449, filed Jan. 29, 2013, entitled “Elastic Insert Alignment Assembly and Method of Reducing Positional Variation”, inventors: Steven E. Morris and Michael D. Richardson.
U.S. Appl. No. 13/755,759, filed Jan. 31, 2013, entitled “Elastic Alignment Assembly for Aligning Mated Components and Method of Reducing Positional Variation”, inventors: Joel Colombo, Michael D. Richardson, and Steven E. Morris.
U.S. Appl. No. 13/851,222, filed Mar. 27, 2013, entitled “Elastically Averaged Alignment System”, inventors: Joel Colombo and Steven E. Morris.
U.S. Appl. No. 13/855,928, filed Apr. 3, 2013, entitled “Elastic Averaging Alignment System, Method of Making the Same and Cutting Punch Therefor”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Jeffrey L. Konchan.
U.S. Appl. No. 13/856,888, filed Apr. 4, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Toure D. Lee.
U.S. Appl. No. 13/856,927, filed Apr. 4, 2013, entitled “Elastic Tubular Attachment Assembly for Mating Components and Method of Mating Components”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/856,956, filed Apr. 4, 2013, entitled “Elastic Clip Retaining Arrangement and Method of Mating Structures with an Elastic Clip Retaining Arrangement”, inventors: Joel Colombo, Steven E. Morris and Jeffrey L. Konchan.
U.S. Appl. No. 13/856,973, filed Apr. 4, 2013, entitled “Elastically Deformable Flange Locator Arrangement and Method of Reducing Positional Variation”, inventors: Joel Colombo, Steven E. Morris and Michael D. Richardson.
U.S. Appl. No. 13/858,478, filed Apr. 8, 2013, entitled “Elastic Mating Assembly and Method of Elastically Assembling Matable Components”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/859,109, filed Apr. 9, 2013, entitled “Elastic Retaining Arrangement for Jointed Components and Method of Reducing a Gap Between Jointed Components,” inventors: Steven E. Morris, James M. Kushner, Victoria L. Enyedy, Jennifer P. Lawall, and Piotr J. Ogonek.
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall.
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Jennifer P. Lawall, and Randy Johnson.
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Steve J. Briggs.
U.S. Appl. No. 13/918,183, filed Jun. 14, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo.
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E. Morris, Edward D. Groninger, and Raymond J. Chess.
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo.
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap Member Aligning and Fastening System”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/012,205, filed Aug. 28, 2013, entitled “Elastically Deformable Alignment Fastener and System,” inventors: Steven E. Morris, Marc J. Tahnoose, Michael E. McGuire and Jennifer P. Lawall.
U.S. Appl. No. 14/021,282, filed Sep. 9, 2013, entitled “Elastic Tube Alignment and Fastening System for Providing Precise Alignment and Fastening of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/031,647, filed Sep. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris, Joel Colombo, Jennifer P. Lawall, Jeffrey L. Konchan, and Steve J. Briggs.
U.S. Appl. No. 14/038,241, filed Sep. 26, 2013, entitled “Serviceable Aligning and Self-Retaining Elastic Arrangement for Mated Components and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo.
U.S. Appl. No. 14/039,614, filed Sep. 27, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Steven E. Morris.
U.S. Appl. No. 14/044,199, filed Oct. 2, 2013, entitled “Lobular Elastic Tube Alignment and Retention System for Providing Precise Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/044,207, filed Oct. 2, 2013, entitled “Elastic Aperture Alignment System for Providing Precise Four-Way Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/045,463, filed Oct. 3, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/081,361, filed Nov. 15, 2013, entitled “Elastically Deformable Clip and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Jeffrey M. Gace.
U.S. Appl. No. 14/104,321, filed Dec. 12, 2013, entitled “Alignment and Retention System for a Flexible Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/104,327, filed Dec. 12, 2013, entitled “Self-Retaining Alignment System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris, Jennifer P. Lawall and Toure D. Lee.
U.S. Appl. No. 14/104,333, filed Dec. 12, 2013, entitled “Alignment System for Providing Precise Alignment and Retention of Components of a Sealable Compartment,” inventors: Steven E. Morris, Christopher J. Georgi, Jennifer P. Lawall and Gordan N. Noll.
U.S. Appl. No. 14/104,541, filed Dec. 12, 2013, entitled “Alignment and Retention System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/104,549, filed Dec. 12, 2013, entitled “Alignment System for Providing Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/108,921, filed Dec. 17, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/108,931, filed Dec. 17, 2013, entitled “Elastically Averaged Strap Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/109,296, filed Dec. 17, 2013, entitled “Fastener for Operatively Coupling Matable Components, ” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,801, filed Dec. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,888, filed Dec. 19, 2013, entitled “Elastic Retaining Assembly and Method,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/136,502, filed Dec. 20, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Timothy A. Kiester, Steven E. Morris, Kenton L. West, Scott J. Fast, and Evan Phillips.
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/153,741, filed Jan. 13, 2014, entitled “Elastically Averaged Assembly for Closure Applications,” inventors: Steven E. Morris, Jeffrey A. Abell, Jennifer P. Lawall, and Jeffrey L. Konchan.
U.S. Appl. No. 14/180,882, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris.
U.S. Appl. No. 14/181,142, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris.
U.S. Appl. No. 14/185,422, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall and Ashish M. Gollapalli.
U.S. Appl. No. 14/185,472, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Kee Hyuk Im.
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall, and Ashish M. Gollapalli.
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander.
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010.
Office Action regarding related CN Application No. 201510087137.X; dated Jun. 3, 2016; 8 pgs.
Related Publications (1)
Number Date Country
20150232130 A1 Aug 2015 US