The subject invention relates to matable components and, more specifically, to elastically averaged matable components for bundling and securing objects.
Components, in particular vehicular components used in automotive vehicles, which are to be mated together in a manufacturing process may be mutually located with respect to each other by alignment features that are oversized holes and/or undersized upstanding bosses. Such alignment features are typically sized to provide spacing to freely move the components relative to one another to align them without creating an interference therebetween that would hinder the manufacturing process. One such example includes two-way and/or four-way male alignment features; typically upstanding bosses, which are received into corresponding female alignment features, typically apertures in the form of slots or holes. The components are formed with a predetermined clearance between the male alignment features and their respective female alignment features to match anticipated size and positional variation tolerances of the male and female alignment features that result from manufacturing (or fabrication) variances.
As a result, significant positional variation can occur between two mated components having the aforementioned alignment features, which may contribute to the presence of undesirably large variation in their alignment, particularly with regard to gaps and/or spacing therebetween. In the case where misaligned components are also part of another assembly, such misalignment may also affect the function and/or aesthetic appearance of the entire assembly. Regardless of whether such misalignment is limited to two components or an entire assembly, it can negatively affect function and result in a perception of poor quality. Moreover, clearance between misaligned components may lead to relative motion therebetween, which may cause undesirable noise such as squeaking, rattling, and slapping.
Further, to align and secure components, the aforementioned male and female alignment features may be employed in combination with separate securing features, such as nuts and bolts, snap/push-in fasteners, plastic rivets, and snap rivets, to name a few, that serve to secure the components to each other. In such an assembly, the mating components are located relative to each other by the alignment features, and are fixed relative to each other by the securing features.
Additionally, some vehicles may include components such as wiring, drain hoses, conduit, etc., and it may be desirable to bundle and/or secure such components within the vehicle so they do not get in the way or get damaged. Some known vehicles utilize electrical tape or other similar wrap with x-mas tree-type fasteners to secure these components. For example, x-mas tree or fir tree fastener designs have fingers or tabs extending from a base, and the x-mas tree is pushed in to a component by an operator. Some of the fingers will overlap a mating hole to keep the fastener within the mating hole. However, the base typically has a clearance condition to the mating hole and allows the fastener to move in the hole, resulting in a slipping condition. Additionally, wrap and/or fasteners may become loose and wear out during their life (e.g., adhesive degrades, plastic tabs break off), which may result in component movement and undesirable buzz, squeak, or rattle noises.
In one aspect, an elastic averaging strap system for securing an object to a component having an aperture is provided. The system includes a strap having a first end and a second end. The strap second end couples to the strap first end such that the strap forms a loop around the object to retain the object therein. An alignment member extends from the first end, and the alignment member is an elastically deformable material such that when the alignment member is inserted into the component aperture, the alignment member elastically deforms to an elastically averaged final configuration to facilitate positioning the object in a desired orientation relative to the component.
In another aspect, a vehicle is provided. The vehicle includes a body having at least one component with an aperture, an object to be secured, and an elastically averaged strap system integrally arranged with the body. The elastically averaged strap system includes a strap having a first end and a second end, wherein the strap second end couples to the strap first end such that the strap forms a loop around the object to retain the object therein. An alignment member extends from the first end, and the alignment member is an elastically deformable material such that when the alignment member is inserted into the component aperture, the alignment member elastically deforms to an elastically averaged final configuration to facilitate positioning the object in a desired orientation relative to the component.
In yet another aspect, a method of manufacturing an elastic averaging strap system for securing an object to a component having an aperture is provided. The method includes forming a strap having a first end and a second end, wherein the strap second end couples to the strap first end such that the strap forms a loop around the object to retain the object therein. The method further includes forming at least one alignment member extending from the first end, and forming the at least one alignment member from an elastically deformable material such that when the alignment member is inserted into the component aperture, the alignment member elastically deforms to an elastically averaged final configuration to facilitate positioning the object in a desired orientation relative to the component.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. For example, the embodiments shown are applicable to vehicle components, but the system disclosed herein may be used with any suitable components to provide securement and elastic averaging for precision location and alignment of all manner of mating components and component applications, including many industrial, consumer product (e.g., consumer electronics, various appliances and the like), transportation, energy and aerospace applications, and particularly including many other types of vehicular components and applications, such as various interior, exterior, electrical and under hood vehicular components and applications. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to the application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.
Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles, or that would be further aided with the inclusion of a four-way elastic averaging system as herein disclosed, to an assembly that does facilitate elastic averaging and the benefits associated therewith.
Any suitable elastically deformable material may be used for the mating components and alignment features disclosed herein and discussed further below, particularly those materials that are elastically deformable when formed into the features described herein. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof suitable for a purpose disclosed herein. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS). The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The elastically deformable alignment features and associated component may be formed in any suitable manner. For example, the elastically deformable alignment features and the associated component may be integrally formed, or they may be formed entirely separately and subsequently attached together. When integrally formed, they may be formed as a single part from a plastic injection molding machine, for example. When formed separately, they may be formed from different materials to provide a predetermined elastic response characteristic, for example. The material, or materials, may be selected to provide a predetermined elastic response characteristic of any or all of the elastically deformable alignment features, the associated component, or the mating component. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.
As used herein, the term vehicle is not limited to just an automobile, truck, van or sport utility vehicle, but includes any self-propelled or towed conveyance suitable for transporting a burden.
Described herein are elastic averaging strap systems, as well as methods for elastically averaged strap systems. The strap systems include straps to bundle and secure objects, and include elastically deformable alignment member(s) for coupling the strap system to a component. As such, the systems facilitate securing the objects to another component in a desired orientation and also facilitate precisely aligning the objects, strap system, and/or additional component.
In the exemplary embodiment, first component 100 generally includes an outer face 112 and an inner face 114 from which alignment member 106 extends. Alignment member 106 is a generally circular hollow tube having a central axis 116, a proximal end 118 coupled to inner face 114, and a distal end 120. However, alignment member 106 may have any cross-sectional shape that enables system 10 to function as described herein. In the exemplary embodiment, first component 100 is fabricated from a material such as plastic. However, first component 100 may be fabricated from any suitable material that enables system 10 to function as described herein.
In the exemplary embodiment, receiving aperture 110 includes an insertion portion 122 and a locking portion 124. Insertion portion 122 has a cross-sectional shape that is larger than a cross-sectional shape of alignment member 106, and locking portion 124 has a cross-sectional shape that is smaller than the cross-sectional shape of alignment member 106. Further, a deformable member 123 is located between insertion portion 122 and locking portion 124. As such, strap first end 102 is looped toward strap second end 104 such that alignment member 106 is inserted into insertion portion 122 (
Second component 200 generally includes an inner wall 202 defining alignment aperture 204, an outer face 206, and an inner face 208. In the exemplary embodiment, alignment aperture 204 is illustrated as having a generally circular cross-section. Alternatively, alignment aperture 204 may have any shape that enables system 10 to function as described herein. For example, alignment aperture 204 may be an elongated slot (e.g., similar to the shape of elastic tube alignment system described in co-pending U.S. patent application Ser. No. 13/187,675 and particularly illustrated in
While not being limited to any particular structure, object 14 may be a bundle of wires 16, and second component 200 may be a supporting substructure that is part of, or is attached to, a vehicle and on which first component 100 is fixedly mounted in precise alignment. However, first component 100 may wrap about or receive any suitable object. For example, object 14 may be a drain hose, a conduit, a portion of an airbag, an airbag inflator cylinder, under hood components, electrical wiring, etc. Further, second component 200 may be any suitable component that object 14 can be secured to.
To provide an arrangement where elastically deformable alignment member 106 is configured and disposed to interferingly, deformably and matingly engage alignment aperture 204, the diameter of alignment aperture 204 is less than the diameter of alignment member 106, which necessarily creates a purposeful interference fit between the elastically deformable alignment member 106 and alignment aperture 204. Further, second component 200 may include a chamfer 210 to facilitate insertion of alignment member 106. As such, when inserted into alignment aperture 204, portions of the elastically deformable alignment member 106 elastically deform to an elastically averaged final configuration that aligns alignment member 106 with the alignment aperture 204 in four planar orthogonal directions (the +/− x-direction and the +/− y-direction). Where alignment aperture 204 is an elongated slot (not shown), alignment member 106 is aligned in two planar orthogonal directions (the +/− x-direction or the +/− y-direction).
As shown in
While
In the exemplary embodiment, first component 100 generally includes an outer face 312 from which alignment member 306 extends, and an inner face 314 from which receiving member 328 extends. Alignment member 306 is a generally circular hollow tube having a central axis 316, a proximal end 318 coupled to outer face 312, and a distal end 320. However, alignment member 306 may have any cross-sectional shape that enables system 10 to function as described herein. In the exemplary embodiment, first component 100 is fabricated from more than one material. For example, first end 302 is fabricated from a rigid material such as plastic, and second end 304 is fabricated from a flexible material such as rubber. However, first component 100 may be fabricated from any suitable material that enables system 10 to function as described herein.
In the exemplary embodiment, receiving member 328 includes converging walls 332 that at least partially define receiving slot 330. As such, receiving slot includes a first end 334 that has a larger cross-section than a second end 336. Alternatively, receiving member 328 may have any suitable converging shape such as, for example, a substantially conical shape. Strap second end 304 may include an enlarged portion 338 that has a cross-section that is larger than the cross-section of slot second end 336; whereas a portion 340 of second end 304 has a cross-section smaller than the cross-section of slot second end 336. Accordingly, when strap second end 304 is looped toward strap first end 302, such that portion 340 is inserted into receiving slot 330 and through slot second end 336, enlarged portion 338 will cause interference with slot second end 336. Moreover, as shown, strap second end 304 may have tapered lead-in edges 337 to facilitate insertion into receiving slot 330. In the exemplary embodiment, strap second end 304 is subsequently stretched (due to its material properties) to reduce the size of the cross-section of enlarged portion 338, which enables enlarged portion to pass through receiving slot 330. The stretching force on strap second end 304 is then removed and strap second end 304 returns to its original shape and enlarged portion 338 again has a cross-section that is larger than slot second end 336, thereby securing object 14 within loop 12 and preventing strap second end 304 from backing out of or removed from receiving member 328,
To provide an arrangement where elastically deformable alignment member 306 is configured and disposed to interferingly, deformably and matingly engage alignment aperture 204, the diameter of alignment aperture 204 is less than the diameter of alignment member 306, which necessarily creates a purposeful interference fit between the elastically deformable alignment member 306 and alignment aperture 204. Further, chamfer 210 may be formed to facilitate insertion of alignment member 306. As such, when inserted into alignment aperture 204, portions of the elastically deformable alignment member 306 elastically deform to an elastically averaged final configuration that aligns alignment member 306 with the alignment aperture 204 in four planar orthogonal directions (the +/− x-direction and the +/− y-direction). Where alignment aperture 204 is an elongated slot (not shown), alignment member 306 is aligned in two planar orthogonal directions (the +/− x-direction or the +/− y-direction). Further, alignment member 306 may also include one or more retention feature 130 described herein.
As shown in
In the exemplary embodiment, first component 100 generally includes an outer face 412 from which alignment member 406 extends, and an inner face 414. Alignment member 406 is a generally circular hollow tube having a central axis 416, a proximal end 418 coupled to outer face 412, and a distal end 420. However, alignment member 406 may have any cross-sectional shape that enables system 10 to function as described herein. In the exemplary embodiment, first component 100 is fabricated from more than one material. For example, first end 402 is fabricated from a rigid material such as plastic, and second end 404 is fabricated from a flexible material such as rubber. However, first component 100 may be fabricated from any suitable material that enables system 10 to function as described herein.
Moreover, one or more standoffs 421 may be spaced relative to alignment member 406 such that they provide a support platform at a height “h” above first component outer face 412 upon which second component inner face 206 rests when elastically deformable alignment member 406 is configured and disposed to interferingly, deformably and matingly engage alignment aperture 204. Stated alternatively, standoffs 421 are disposed and configured to provide a point of engagement between alignment aperture 204 and elastically deformable alignment member 406 at an elevation “h” above the base, outer face 412, of elastically deformable alignment member 406. While
In the exemplary embodiment, receiving aperture 410 is a keyhole 448 that extends through an edge 450 of strap first end 402. Receiving aperture 410 includes an insertion portion 422 and a locking portion 424. Insertion portion 422 has a cross-sectional shape that is smaller than a thickness “t” of strap second end 404, and locking portion 424 has a cross-sectional shape that is smaller than the cross-sectional shape of end knob 446. As such, strap second end 404 is looped toward strap first end 402, and strap second end 404 is subsequently stretched (due to its material properties) to reduce the thickness of strap second end 404 proximate end knob 446, which enables the stretched portion to pass through insertion portion 422 to locking portion 424. The stretching force on strap second end 404 is then removed and strap second end 404 returns to its original shape, thereby preventing strap second end 404 from passing back through insertion portion 422. Moreover, because the cross-section of end knob 446 is larger than the cross-section of locking portion 424, strap second end 404 is also prevented from backing out of receiving aperture 410, which secures object 14 within loop 12. Alternatively, strap second end 404 may be tubular and have a cross-section that is larger than both insertion portion 422 and locking portion 424. Similarly, when stretched, the cross-section of strap second end 404 becomes smaller and may be inserted through insertion portion 422 and into locking portion 424, where the cross-section of strap second end 404 returns to its original shape to secure strap second end 404 within locking portion 424. Accordingly, a desired length of strap second end 404 may be inserted into locking portion 424 to conform to and secure varying sized object(s) 14.
To provide an arrangement where elastically deformable alignment member 406 is configured and disposed to interferingly, deformably and matingly engage alignment aperture 204 (e.g., as seen in
An exemplary method of fabricating elastically averaged strap and alignment system 10 includes forming first component 100 to include a strap 101, 300, 400 with first end 102, 302, 402 and second end 104, 304, 404 such that the strap second end couples to the strap first end to form loop 12, which may retain object(s) 14. At least one alignment member 106, 306, 406 is formed extending from strap first end 102, 302, 402, and the at least one alignment member is formed from an elastically deformable material such that when the alignment member is inserted into second component aperture 204, the at least one alignment member elastically deforms to an elastically averaged final configuration to facilitate securing and positioning object 14 in a desired orientation relative to second component 200.
In one embodiment, strap 101 is formed with inner wall 108 defining receiving aperture 110, which includes insertion portion 122 and locking portion 124. In another embodiment, strap 300 is formed with receiving member 328 on an opposite side of strap 300 from alignment member 306. Receiving member 328 includes converging walls 332 that define receiving slot 330 and slot first end 334, which is larger than opposed slot second end 336. Strap second end 304 may be formed with enlarged portion 338, strap second end 304 may be formed with teeth 342, and/or receiving member 328 may be formed with notches 344. In yet another embodiment, strap first end 402 is formed with inner wall 408 defining receiving aperture 410, and strap second end 404 is formed with end knob 446.
Systems and methods for elastically averaged strap assemblies are described herein. The systems generally include a first component with an elastically deformable alignment member positioned for insertion into an alignment aperture of a second component. The mating of the first and second components is elastically averaged over each pair of corresponding alignment member and alignment aperture to precisely mate the components in a desired orientation. Moreover, the systems include a strap that forms a loop around an object to retain that object and to secure the object to the second component. Accordingly, the described systems facilitate grouping or bundling a plurality of objects and/or securing an object so that they not get in the way of other components.
Moreover, the various embodiments of system 10 and first component straps 101, 300, 400 may be used as temporary hangers. For example, an air bag inflator module could be temporarily attached to a component and stay in position until fasteners permanently attach the module thereto. However, system 10 and/or first component straps 101, 300, 400 may be used to temporarily or permanently secure objects in many other applications. Further, system 10 and/or first component straps 101, 300, 400 may be used to replace damaged fasteners such as damaged x-mas tree type-fasteners or rubber bands.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
Number | Name | Date | Kind |
---|---|---|---|
1219398 | Huntsman | Mar 1917 | A |
1261036 | Kerns | Apr 1918 | A |
1301302 | Nolan | Apr 1919 | A |
1556233 | Maise | Oct 1925 | A |
1819126 | Scheibe | Aug 1931 | A |
1929848 | Neely | Oct 1933 | A |
1968168 | Place | Jul 1934 | A |
1982076 | Spahn | Nov 1934 | A |
2006525 | Thal | Jul 1935 | A |
2267558 | Birger et al. | Dec 1941 | A |
2275103 | Gooch et al. | Mar 1942 | A |
2275900 | Hall | Mar 1942 | A |
2482488 | Franc | Sep 1949 | A |
2612139 | Collins | Sep 1952 | A |
2688894 | Modrey | Sep 1954 | A |
2707607 | O'Connor | May 1955 | A |
2778399 | Mroz | Jan 1957 | A |
2780128 | Rapata | Feb 1957 | A |
2862040 | Curran | Nov 1958 | A |
2902902 | Slone | Sep 1959 | A |
2946612 | Ahlgren | Jul 1960 | A |
3005282 | Christiansen | Oct 1961 | A |
3014563 | Bratton | Dec 1961 | A |
3087352 | Daniel | Apr 1963 | A |
3089269 | McKiernan | May 1963 | A |
3130512 | Van Buren, Jr. | Apr 1964 | A |
3168961 | Yates | Feb 1965 | A |
3169004 | Rapata | Feb 1965 | A |
3169439 | Rapata | Feb 1965 | A |
3188731 | Sweeney | Jun 1965 | A |
3194292 | Borowsky | Jul 1965 | A |
3213189 | Mitchell et al. | Oct 1965 | A |
3230592 | Hosea | Jan 1966 | A |
3233358 | Dehm | Feb 1966 | A |
3233503 | Birger | Feb 1966 | A |
3244057 | Mathison | Apr 1966 | A |
3248995 | Meyer | May 1966 | A |
3291495 | Liebig | Dec 1966 | A |
3310929 | Garvey | Mar 1967 | A |
3413752 | Perry | Dec 1968 | A |
3473283 | Meyer | Oct 1969 | A |
3531850 | Durand | Oct 1970 | A |
3643968 | Horvath | Feb 1972 | A |
3680272 | Meyer | Aug 1972 | A |
3842565 | Brown et al. | Oct 1974 | A |
3845961 | Byrd, III | Nov 1974 | A |
3847492 | Kennicutt et al. | Nov 1974 | A |
3895408 | Leingang | Jul 1975 | A |
3905570 | Nieuwveld | Sep 1975 | A |
3972550 | Boughton | Aug 1976 | A |
4035874 | Liljendahl | Jul 1977 | A |
4039215 | Minhinnick | Aug 1977 | A |
4042307 | Jarvis | Aug 1977 | A |
4043585 | Yamanaka | Aug 1977 | A |
4158511 | Herbenar | Jun 1979 | A |
4169297 | Weihrauch | Oct 1979 | A |
4213675 | Pilhall | Jul 1980 | A |
4237573 | Weihrauch | Dec 1980 | A |
4300851 | Thelander | Nov 1981 | A |
4313609 | Clements | Feb 1982 | A |
4318208 | Borja | Mar 1982 | A |
4325574 | Umemoto et al. | Apr 1982 | A |
4363839 | Watanabe et al. | Dec 1982 | A |
4364150 | Remington | Dec 1982 | A |
4384803 | Cachia | May 1983 | A |
4394853 | Lopez-Crevillen et al. | Jul 1983 | A |
4406033 | Chisholm et al. | Sep 1983 | A |
4477142 | Cooper | Oct 1984 | A |
4481160 | Bree | Nov 1984 | A |
4575060 | Kitagawa | Mar 1986 | A |
4605575 | Auld et al. | Aug 1986 | A |
4616951 | Maatela | Oct 1986 | A |
4648649 | Beal | Mar 1987 | A |
4654760 | Matheson et al. | Mar 1987 | A |
4745656 | Revlett | May 1988 | A |
4767647 | Bree | Aug 1988 | A |
4805272 | Yamaguchi | Feb 1989 | A |
4807335 | Candea | Feb 1989 | A |
4817999 | Drew | Apr 1989 | A |
4819983 | Alexander et al. | Apr 1989 | A |
4881764 | Takahashi et al. | Nov 1989 | A |
4973212 | Jacobs | Nov 1990 | A |
4977648 | Eckerud | Dec 1990 | A |
5139285 | Lasinski | Aug 1992 | A |
5154479 | Sautter, Jr. | Oct 1992 | A |
5170985 | Killworth et al. | Dec 1992 | A |
5180219 | Geddie | Jan 1993 | A |
5208507 | Jung | May 1993 | A |
5212853 | Kaneko | May 1993 | A |
5234122 | Cherng | Aug 1993 | A |
5297322 | Kraus | Mar 1994 | A |
5342139 | Hoffman | Aug 1994 | A |
5368797 | Quentin et al. | Nov 1994 | A |
5397206 | Sihon | Mar 1995 | A |
5446965 | Makridis | Sep 1995 | A |
5507610 | Benedetti et al. | Apr 1996 | A |
5513603 | Ang et al. | May 1996 | A |
5524786 | Skudlarek | Jun 1996 | A |
5538079 | Pawlick | Jul 1996 | A |
5556808 | Williams et al. | Sep 1996 | A |
5575601 | Skufca | Nov 1996 | A |
5577301 | Demaagd | Nov 1996 | A |
5577779 | Dangel | Nov 1996 | A |
5580204 | Hultman | Dec 1996 | A |
5586372 | Eguchi et al. | Dec 1996 | A |
5601453 | Horchler | Feb 1997 | A |
5634757 | Schanz | Jun 1997 | A |
5657516 | Berg et al. | Aug 1997 | A |
5667271 | Booth | Sep 1997 | A |
5670013 | Huang et al. | Sep 1997 | A |
5698276 | Mirabitur | Dec 1997 | A |
5736221 | Hardigg et al. | Apr 1998 | A |
5765942 | Shirai et al. | Jun 1998 | A |
5795118 | Osada et al. | Aug 1998 | A |
5797170 | Akeno | Aug 1998 | A |
5803646 | Weihrauch | Sep 1998 | A |
5806915 | Takabatake | Sep 1998 | A |
5810535 | Fleckenstein et al. | Sep 1998 | A |
5820292 | Fremstad | Oct 1998 | A |
5846631 | Nowosiadly | Dec 1998 | A |
5941673 | Hayakawa et al. | Aug 1999 | A |
6073315 | Rasmussen | Jun 2000 | A |
6095594 | Riddle et al. | Aug 2000 | A |
6164603 | Kawai | Dec 2000 | A |
6193430 | Culpepper et al. | Feb 2001 | B1 |
6202962 | Snyder | Mar 2001 | B1 |
6209175 | Gershenson | Apr 2001 | B1 |
6209178 | Wiese et al. | Apr 2001 | B1 |
6264869 | Notarpietro et al. | Jul 2001 | B1 |
6299478 | Jones et al. | Oct 2001 | B1 |
6321495 | Oami | Nov 2001 | B1 |
6349904 | Polad | Feb 2002 | B1 |
6354815 | Svihla et al. | Mar 2002 | B1 |
6378931 | Kolluri et al. | Apr 2002 | B1 |
6398449 | Loh | Jun 2002 | B1 |
6484370 | Kanie et al. | Nov 2002 | B2 |
6485241 | Oxford | Nov 2002 | B1 |
6523817 | Landry, Jr. | Feb 2003 | B1 |
6533391 | Pan | Mar 2003 | B1 |
6543979 | Iwatsuki | Apr 2003 | B2 |
6557260 | Morris | May 2003 | B1 |
6568701 | Burdack et al. | May 2003 | B1 |
6579397 | Spain et al. | Jun 2003 | B1 |
6591801 | Fonville | Jul 2003 | B1 |
6609717 | Hinson | Aug 2003 | B2 |
6658698 | Chen | Dec 2003 | B2 |
6662411 | Rubenstein | Dec 2003 | B2 |
6664470 | Nagamoto | Dec 2003 | B2 |
6677065 | Blauer | Jan 2004 | B2 |
6692016 | Yokota | Feb 2004 | B2 |
6712329 | Ishigami et al. | Mar 2004 | B2 |
6746172 | Culpepper | Jun 2004 | B2 |
6799758 | Fries | Oct 2004 | B2 |
6840969 | Kobayashi et al. | Jan 2005 | B2 |
6857676 | Kawaguchi et al. | Feb 2005 | B2 |
6857809 | Granata | Feb 2005 | B2 |
6908117 | Pickett, Jr. et al. | Jun 2005 | B1 |
6932416 | Clauson | Aug 2005 | B2 |
6948753 | Yoshida et al. | Sep 2005 | B2 |
6951349 | Yokota | Oct 2005 | B2 |
6959954 | Brandt et al. | Nov 2005 | B2 |
6966601 | Matsumoto et al. | Nov 2005 | B2 |
6971831 | Fattori et al. | Dec 2005 | B2 |
6997487 | Kitzis | Feb 2006 | B2 |
7000941 | Yokota | Feb 2006 | B2 |
7008003 | Hirose et al. | Mar 2006 | B1 |
7014094 | Alcoe | Mar 2006 | B2 |
7017239 | Kurily et al. | Mar 2006 | B2 |
7036779 | Kawaguchi et al. | May 2006 | B2 |
7055849 | Yokota | Jun 2006 | B2 |
7059628 | Yokota | Jun 2006 | B2 |
7073260 | Jensen | Jul 2006 | B2 |
7089998 | Crook | Aug 2006 | B2 |
7097198 | Yokota | Aug 2006 | B2 |
7121611 | Hirotani et al. | Oct 2006 | B2 |
7144183 | Lian et al. | Dec 2006 | B2 |
7172210 | Yokota | Feb 2007 | B2 |
7178855 | Catron et al. | Feb 2007 | B2 |
7198315 | Cass et al. | Apr 2007 | B2 |
7234852 | Nishizawa et al. | Jun 2007 | B2 |
7306418 | Kornblum | Dec 2007 | B2 |
7322500 | Maierholzner | Jan 2008 | B2 |
7344056 | Shelmon et al. | Mar 2008 | B2 |
7360964 | Tsuya | Apr 2008 | B2 |
7369408 | Chang | May 2008 | B2 |
7435031 | Granata | Oct 2008 | B2 |
7454105 | Yi | Nov 2008 | B2 |
7487884 | Kim | Feb 2009 | B2 |
7493716 | Brown | Feb 2009 | B2 |
7557051 | Ryu et al. | Jul 2009 | B2 |
7568316 | Choby et al. | Aug 2009 | B2 |
D602349 | Andersson | Oct 2009 | S |
7672126 | Yeh | Mar 2010 | B2 |
7677650 | Huttenlocher | Mar 2010 | B2 |
7764853 | Yi | Jul 2010 | B2 |
7793998 | Matsui et al. | Sep 2010 | B2 |
7802831 | Isayama et al. | Sep 2010 | B2 |
7828372 | Ellison | Nov 2010 | B2 |
7862272 | Nakajima | Jan 2011 | B2 |
7869003 | Van Doren et al. | Jan 2011 | B2 |
7883137 | Bar | Feb 2011 | B2 |
7922415 | Rudduck et al. | Apr 2011 | B2 |
7946684 | Drury et al. | May 2011 | B2 |
8029222 | Nitsche | Oct 2011 | B2 |
8061861 | Paxton et al. | Nov 2011 | B2 |
8101264 | Pace et al. | Jan 2012 | B2 |
8136819 | Yoshitsune et al. | Mar 2012 | B2 |
8162375 | Gurtatowski et al. | Apr 2012 | B2 |
8203496 | Miller et al. | Jun 2012 | B2 |
8203843 | Chen | Jun 2012 | B2 |
8261581 | Cerruti et al. | Sep 2012 | B2 |
8276961 | Kwolek | Oct 2012 | B2 |
8297137 | Dole | Oct 2012 | B2 |
8297661 | Proulx et al. | Oct 2012 | B2 |
8414048 | Kwolek | Apr 2013 | B1 |
8444199 | Takeuchi et al. | May 2013 | B2 |
8677573 | Lee | Mar 2014 | B2 |
8695201 | Morris | Apr 2014 | B2 |
8720016 | Beaulieu | May 2014 | B2 |
8726473 | Dole | May 2014 | B2 |
8826499 | Tempesta | Sep 2014 | B2 |
8833832 | Whipps | Sep 2014 | B2 |
8834058 | Woicke | Sep 2014 | B2 |
9039318 | Mantei et al. | May 2015 | B2 |
9050690 | Hammer et al. | Jun 2015 | B2 |
9061715 | Morris | Jun 2015 | B2 |
9067625 | Morris | Jun 2015 | B2 |
20010030414 | Yokota | Oct 2001 | A1 |
20010045757 | Kanie et al. | Nov 2001 | A1 |
20020045086 | Tsuji et al. | Apr 2002 | A1 |
20020060275 | Polad | May 2002 | A1 |
20020092598 | Jones et al. | Jul 2002 | A1 |
20020136617 | Imahigashi | Sep 2002 | A1 |
20030007831 | Lian et al. | Jan 2003 | A1 |
20030080131 | Fukuo | May 2003 | A1 |
20030082986 | Wiens et al. | May 2003 | A1 |
20030087047 | Blauer | May 2003 | A1 |
20030108401 | Agha et al. | Jun 2003 | A1 |
20030180122 | Dobson | Sep 2003 | A1 |
20040037637 | Lian et al. | Feb 2004 | A1 |
20040131896 | Blauer | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040140651 | Yokota | Jul 2004 | A1 |
20040208728 | Fattori et al. | Oct 2004 | A1 |
20050016116 | Scherff | Jan 2005 | A1 |
20050031946 | Kruger et al. | Feb 2005 | A1 |
20050054229 | Tsuya | Mar 2005 | A1 |
20050082449 | Kawaguchi et al. | Apr 2005 | A1 |
20050156409 | Yokota | Jul 2005 | A1 |
20050156410 | Yokota | Jul 2005 | A1 |
20050156416 | Yokota | Jul 2005 | A1 |
20050244250 | Okada et al. | Nov 2005 | A1 |
20060102214 | Clemons | May 2006 | A1 |
20060110109 | Yu | May 2006 | A1 |
20060113755 | Yokota | Jun 2006 | A1 |
20060141318 | MacKinnon et al. | Jun 2006 | A1 |
20060197356 | Catron et al. | Sep 2006 | A1 |
20060202449 | Yokota | Sep 2006 | A1 |
20060237995 | Huttenlocher | Oct 2006 | A1 |
20060249520 | Demonte | Nov 2006 | A1 |
20060264076 | Chen | Nov 2006 | A1 |
20070040411 | Dauvergne | Feb 2007 | A1 |
20070113483 | Hernandez | May 2007 | A1 |
20070113485 | Hernandez | May 2007 | A1 |
20070126211 | Moerke et al. | Jun 2007 | A1 |
20070144659 | De La Fuente | Jun 2007 | A1 |
20070292205 | Duval | Dec 2007 | A1 |
20080014508 | Van Doren et al. | Jan 2008 | A1 |
20080018128 | Yamagiwa et al. | Jan 2008 | A1 |
20080073888 | Enriquez | Mar 2008 | A1 |
20080094447 | Drury et al. | Apr 2008 | A1 |
20080128346 | Bowers | Jun 2008 | A1 |
20080217796 | Van Bruggen et al. | Sep 2008 | A1 |
20080260488 | Scroggie et al. | Oct 2008 | A1 |
20090028506 | Yi et al. | Jan 2009 | A1 |
20090072591 | Baumgartner | Mar 2009 | A1 |
20090091156 | Neubrand | Apr 2009 | A1 |
20090134652 | Araki | May 2009 | A1 |
20090141449 | Yeh | Jun 2009 | A1 |
20090174207 | Lota | Jul 2009 | A1 |
20090265896 | Beak | Oct 2009 | A1 |
20100001539 | Kikuchi et al. | Jan 2010 | A1 |
20100021267 | Nitsche | Jan 2010 | A1 |
20100061045 | Chen | Mar 2010 | A1 |
20100102538 | Paxton et al. | Apr 2010 | A1 |
20100134128 | Hobbs | Jun 2010 | A1 |
20100147355 | Shimizu et al. | Jun 2010 | A1 |
20100247034 | Yi et al. | Sep 2010 | A1 |
20100270745 | Hurlbert et al. | Oct 2010 | A1 |
20110012378 | Ueno et al. | Jan 2011 | A1 |
20110076588 | Yamaura | Mar 2011 | A1 |
20110119875 | Iwasaki | May 2011 | A1 |
20110131918 | Glynn | Jun 2011 | A1 |
20110175376 | Whitens et al. | Jul 2011 | A1 |
20110207024 | Bogumil et al. | Aug 2011 | A1 |
20110239418 | Huang | Oct 2011 | A1 |
20110296764 | Sawatani et al. | Dec 2011 | A1 |
20110311332 | Ishman | Dec 2011 | A1 |
20120020726 | Jan | Jan 2012 | A1 |
20120073094 | Bishop | Mar 2012 | A1 |
20120115010 | Smith et al. | May 2012 | A1 |
20120240363 | Lee | Sep 2012 | A1 |
20120251226 | Liu et al. | Oct 2012 | A1 |
20120261951 | Mildner et al. | Oct 2012 | A1 |
20120321379 | Wang et al. | Dec 2012 | A1 |
20130019454 | Colombo et al. | Jan 2013 | A1 |
20130019455 | Morris | Jan 2013 | A1 |
20130027852 | Wang | Jan 2013 | A1 |
20130071181 | Herzinger et al. | Mar 2013 | A1 |
20130157015 | Morris | Jun 2013 | A1 |
20130212858 | Herzinger et al. | Aug 2013 | A1 |
20130269873 | Herzinger et al. | Oct 2013 | A1 |
20130287992 | Morris | Oct 2013 | A1 |
20140033493 | Morris et al. | Feb 2014 | A1 |
20140041176 | Morris | Feb 2014 | A1 |
20140041185 | Morris et al. | Feb 2014 | A1 |
20140041199 | Morris | Feb 2014 | A1 |
20140042704 | Polewarczyk | Feb 2014 | A1 |
20140047691 | Colombo et al. | Feb 2014 | A1 |
20140047697 | Morris | Feb 2014 | A1 |
20140080036 | Smith et al. | Mar 2014 | A1 |
20140132023 | Watanabe | May 2014 | A1 |
20140157578 | Morris et al. | Jun 2014 | A1 |
20140159412 | Morris et al. | Jun 2014 | A1 |
20140175774 | Kansteiner | Jun 2014 | A1 |
20140202628 | Sreetharan et al. | Jul 2014 | A1 |
20140208561 | Colombo et al. | Jul 2014 | A1 |
20140208572 | Colombo et al. | Jul 2014 | A1 |
20140220267 | Morris et al. | Aug 2014 | A1 |
20140292013 | Colombo et al. | Oct 2014 | A1 |
20140298638 | Colombo et al. | Oct 2014 | A1 |
20140298640 | Morris et al. | Oct 2014 | A1 |
20140298962 | Morris et al. | Oct 2014 | A1 |
20140300130 | Morris et al. | Oct 2014 | A1 |
20140301103 | Colombo et al. | Oct 2014 | A1 |
20140301777 | Morris et al. | Oct 2014 | A1 |
20140301778 | Morris et al. | Oct 2014 | A1 |
20140360824 | Morris et al. | Dec 2014 | A1 |
20140360826 | Morris et al. | Dec 2014 | A1 |
20140366326 | Colombo et al. | Dec 2014 | A1 |
20140369742 | Morris et al. | Dec 2014 | A1 |
20140369743 | Morris et al. | Dec 2014 | A1 |
20150016864 | Morris et al. | Jan 2015 | A1 |
20150016918 | Colombo | Jan 2015 | A1 |
20150023724 | Morris et al. | Jan 2015 | A1 |
20150050068 | Morris et al. | Feb 2015 | A1 |
20150069779 | Morris et al. | Mar 2015 | A1 |
20150078805 | Morris et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1036250 | Oct 1989 | CN |
1129162 | Aug 1996 | CN |
1205285 | Jan 1999 | CN |
1328521 | Dec 2001 | CN |
1426872 | Jul 2003 | CN |
2661972 | Dec 2004 | CN |
1670986 | Sep 2005 | CN |
100573975 | Sep 2005 | CN |
1693721 | Nov 2005 | CN |
1771399 | May 2006 | CN |
1774580 | May 2006 | CN |
2888807 | Apr 2007 | CN |
2915389 | Jun 2007 | CN |
101250964 | Apr 2008 | CN |
201259846 | Jun 2009 | CN |
201268336 | Jul 2009 | CN |
201310827 | Sep 2009 | CN |
201540513 | Aug 2010 | CN |
101821534 | Sep 2010 | CN |
201703439 | Jan 2011 | CN |
201737062 | Feb 2011 | CN |
201792722 | Apr 2011 | CN |
201890285 | Jul 2011 | CN |
102144102 | Aug 2011 | CN |
202079532 | Dec 2011 | CN |
102313952 | Jan 2012 | CN |
102756633 | Oct 2012 | CN |
202686206 | Jan 2013 | CN |
1220673 | Jul 1966 | DE |
2736012 | Feb 1978 | DE |
3704190 | Dec 1987 | DE |
3711696 | Oct 1988 | DE |
3805693 | Feb 1989 | DE |
3815927 | Nov 1989 | DE |
9109276 | Jul 1991 | DE |
4002443 | Aug 1991 | DE |
4111245 | Oct 1991 | DE |
9201258 | Mar 1992 | DE |
29714892 | Oct 1997 | DE |
29800379 | May 1998 | DE |
69600357 | Dec 1998 | DE |
10234253 | Apr 2004 | DE |
102008005618 | Jul 2009 | DE |
102010028323 | Nov 2011 | DE |
102011050003 | Oct 2012 | DE |
102012212101 | Jul 2013 | DE |
0118796 | Sep 1984 | EP |
1132263 | Sep 2001 | EP |
1273766 | Jan 2003 | EP |
1293384 | Mar 2003 | EP |
1384536 | Jan 2004 | EP |
1388449 | Feb 2004 | EP |
2166235 | Mar 2010 | EP |
2450259 | May 2012 | EP |
2458454 | May 2012 | EP |
1369198 | Aug 1964 | FR |
2009941 | Feb 1970 | FR |
2750177 | Dec 1997 | FR |
2958696 | Oct 2011 | FR |
2281950 | Mar 1995 | GB |
2001171554 | Jun 2001 | JP |
2005268004 | Sep 2005 | JP |
2006205918 | Aug 2006 | JP |
2008307938 | Dec 2008 | JP |
2009084844 | Apr 2009 | JP |
2009187789 | Aug 2009 | JP |
2008140659 | Nov 2008 | WO |
2013191622 | Dec 2013 | WO |
Entry |
---|
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/elastic—averaging.html>. |
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and Edip Sevincer, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechanical Engineers (ASME), Sep. 2006. |
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002. |
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007. |
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechanical Engineering, Dec. 2007. |
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of Technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004. |
U.S. Appl. No. 13/229,926, filed Sep. 12, 2011, entitled “Using Elastic Averaging for Alignment of Battery Stack, Fuel Cell Stack, or Other Vehicle Assembly”, inventors: Mark A. Smith, Ronald Daul, Xiang Zhao, David Okonski, Elmer Santos, Lane Lindstrom, and Jeffrey A. Abell. |
U.S. Appl. No. 13/330,718, filed Dec. 20, 2011, entitled “Precisely Locating Components in an Infrared Welded Assembly”, inventor: Steven E. Morris. |
U.S. Appl. No. 13/459,118, filed Apr. 28, 2012, entitled “Stiffened Multi-Layer Compartment Door Assembly Utilizing Elastic Averaging,” inventor: Steven E. Morris. |
U.S. Appl. No. 13/567,580, filed Aug. 6, 2012, entitled “Semi-Circular Alignment Features of an Elastic Averaging Alignment System”, inventors: Steven E. Morris and Thomas F. Bowles. |
U.S. Appl. No. 13/570,959, filed Aug. 9, 2012, entitled “Elastic Cantilever Beam Alignment System for Precisely Aligning Components”, inventor: Steven E. Morris. |
U.S. Appl. No. 13/571,030, filed Aug. 9, 2012, entitled “Elastic Tube Alignment System for Precisely Locating an Emblem Lens to an Outer Bezel”, inventors: Joel Colombo, Steven E. Morris, and Michael D. Richardson. |
U.S. Appl. No. 13/752,449, filed Jan. 29, 2013, entitled “Elastic Insert Alignment Assembly and Method of Reducing Positional Variation”, inventors: Steven E. Morris and Michael D. Richardson. |
U.S. Appl. No. 13/755,759, filed Jan. 31, 2013, entitled “Elastic Alignment Assembly for Aligning Mated Components and Method of Reducing Positional Variation”, inventors: Joel Colombo, Michael D. Richardson, and Steven E. Morris. |
U.S. Appl. No. 13/851,222, filed Mar. 27, 2013, entitled “Elastically Averaged Alignment System”, inventors: Joel Colombo and Steven E Morris. |
U.S. Appl. No. 13/855,928, filed Apr. 3, 2013, entitled “Elastic Averaging Alignment System, Method of Making the Same and Cutting Punch Therefor”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Jeffrey L. Konchan. |
U.S. Appl. No. 13/856,888, filed Apr. 4, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Toure D. Lee. |
U.S. Appl. No. 13/856,927, filed Apr. 4, 2013, entitled “Elastic Tubular Attachment Assembly for Mating Components and Method of Mating Components”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/856,956, filed Apr. 4, 2013, entitled “Elastic Clip Retaining Arrangement and Method of Mating Structures with an Elastic Clip Retaining Arrangement”, inventors: Joel Colombo, Steven E. Morris and Jeffrey L. Konchan. |
U.S. Appl. No. 13/856,973, filed Apr. 4, 2013, entitled “Elastically Deformable Flange Locator Arrangement and Method of Reducing Positional Variation”, inventors: Joel Colombo, Steven E. Morris and Michael D. Richardson. |
U.S. Appl. No. 13/858,478, filed Apr. 8, 2013, entitled “Elastic Mating Assembly and Method of Elastically Assembling Matable Components”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/859,109, filed Apr. 9, 2013, entitled “Elastic Retaining Arrangement for Jointed Components and Method of Reducing a Gap Between Jointed Components,” inventors: Steven E. Morris, James M. Kushner, Victoria L. Enyedy, Jennifer P. Lawall, and Piotr J. Ogonek. |
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall. |
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Jennifer P. Lawall, and Randy Johnson. |
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Steve J. Briggs. |
U.S. Appl. No. 13/918,183, filed Jun. 14, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo. |
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E. Morris, Edward D. Groninger, and Raymond J. Chess. |
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap Member Aligning and Fastening System”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/012,205, filed Aug. 28, 2013, entitled “Elastically Deformable Alignment Fastener and System,” inventors: Steven E. Morris, Marc J. Tahnoose, Michael E. McGuire and Jennifer P. Lawall. |
U.S. Appl. No. 14/021,282, filed Sep. 9, 2013, entitled “Elastic Tube Alignment and Fastening System for Providing Precise Alignment and Fastening of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/031,647, filed Sep. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris, Joel Colombo, Jennifer P. Lawall, Jeffrey L. Konchan, and Steve J. Briggs. |
U.S. Appl. No. 14/038,241, filed Sep. 26, 2013, entitled “Serviceable Aligning and Self-Retaining Elastic Arrangement for Mated Components and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 14/039,614, filed Sep. 27, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/044,199, filed Oct. 2, 2013, entitled “Lobular Elastic Tube Alignment and Retention System for Providing Precise Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/044,207, filed Oct. 2, 2013, entitled “Elastic Aperture Alignment System for Providing Precise Four-Way Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/045,463, filed Oct. 3, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/081,361, filed Nov. 15, 2013, entitled “Elastically Deformable Clip and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Jeffrey M. Gace. |
U.S. Appl. No. 14/104,321, filed Dec. 12, 2013, entitled “Alignment and Retention System for a Flexible Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,327, filed Dec. 12, 2013, entitled “Self-Retaining Alignment System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris, Jennifer P. Lawall and Toure D. Lee. |
U.S. Appl. No. 14/104,333, filed Dec. 12, 2013, entitled “Alignment System for Providing Precise Alignment and Retention of Components of a Sealable Compartment,” inventors: Steven E. Morris, Christopher J. Georgi, Jennifer P. Lawall and Gordan N. Noll. |
U.S. Appl. No. 14/104,541, filed Dec. 12, 2013, entitled “Alignment and Retention System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,549, filed Dec. 12, 2013, entitled “Alignment System for Providing Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,921, filed Dec. 17, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,931, filed Dec. 17, 2013, entitled “Elastically Averaged Strap Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/109,296, filed Dec. 17, 2013, entitled “Fastener for Operatively Coupling Matable Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment Member,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,801, filed Dec. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,888, filed Dec. 19, 2013, entitled “Elastic Retaining Assembly and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/136,502, filed Dec. 20, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Timothy A. Kiester, Steven E. Morris, Kenton L. West, Scott J. Fast, and Evan Phillips. |
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/153,741, filed Jan. 13, 2014, entitled “Elastically Averaged Assembly for Closure Applications,” inventors: Steven E. Morris, Jeffrey A. Abell, Jennifer P. Lawall, and Jeffrey L. Konchan. |
U.S. Appl. No. 14/180,882, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/181,142, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/185,422, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall and Ashish M. Gollapalli. |
U.S. Appl. No. 14/185,472, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Kee Hyuk Im. |
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall, and Ashish M. Gollapalli. |
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander. |
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010. |
Number | Date | Country | |
---|---|---|---|
20150165986 A1 | Jun 2015 | US |