Elastically deformable alignment fastener and system

Information

  • Patent Grant
  • 9458876
  • Patent Number
    9,458,876
  • Date Filed
    Wednesday, August 28, 2013
    11 years ago
  • Date Issued
    Tuesday, October 4, 2016
    8 years ago
Abstract
An elastically deformable alignment fastener has the form of a unitary object having a head portion and an integrally formed body portion. The body portion has an elastically deformable lobular hollow tube having a proximal end proximate the head portion and a distal end axially displaced from the head portion. The lobular hollow tube has an outer surface having one or more retention features oriented to provide a plurality of radially extending engagement surfaces along a length of the hollow tube. The head portion has a flange that circumscribes the proximal end of the lobular hollow tube. Portions of the elastically deformable lobular hollow tube when inserted into circular apertures of first and second components elastically deform to an elastically averaged final configuration that aligns the first and second components in four planar orthogonal directions.
Description
FIELD OF THE INVENTION

The subject invention relates to the art of alignment systems, more particularly to an elastically averaged alignment system, and even more particularly to an elastically averaging alignment fastener for use in an elastically averaged alignment system providing fastening and four-way alignment of mating components on which the alignment system is incorporated.


BACKGROUND

Currently, components, particularly vehicular components such as those found in automotive vehicles, which are to be mated and fastened together in a manufacturing process are mutually located with respect to each other by alignment features that are oversized and/or undersized to provide spacing to freely move the components relative to one another to align them without creating an interference therebetween that would hinder the manufacturing process. One example includes two-way and/or four-way female alignment features in each component, typically circular apertures, which are aligned to receive corresponding male alignment and attachment features. There is a clearance between the male alignment features and their respective female alignment features which is predetermined to match anticipated size and positional variation tolerances of the male and female alignment features as a result of manufacturing (or fabrication) variances. As a result, significant positional variation can occur between the mated first and second components having the aforementioned alignment features, which may contribute to the presence of undesirably large variation in their alignment, particularly with regard to the gaps and spacing between them. In the case where these misaligned components are also part of another assembly, such misalignments can also affect the function and/or aesthetic appearance of the entire assembly. Regardless of whether such misalignment is limited to two components or an entire assembly, it can negatively affect function and result in a perception of poor quality.


To align and secure components, the aforementioned male and female alignment features may be employed in combination with separate push pin components that serve to secure the components to each other. In such an assembly, the mating components are located relative to each other by the alignment features, and are fixed relative to each other by the separate push pin components. Use of separate alignment features and push pin components, one for alignment and the other for securement, may limit the effectiveness of each on a given assembly, as the alignment features cannot be employed where the securement components are employed.


Accordingly, the art of alignment and fastening systems can be enhanced by providing a precise alignment and fastening system that can ensure precise four-way alignment and fastening of two components via elastic averaging of a single elastically deformable alignment fastener disposed in fastening engagement with a corresponding single alignment feature.


SUMMARY OF THE INVENTION

In one exemplary embodiment of the invention an elastically deformable alignment fastener is provided in the form of a unitary object having a head portion and an integrally formed body portion. The body portion has an elastically deformable lobular hollow tube having a proximal end proximate the head portion and a distal end axially displaced from the head portion. The lobular hollow tube has an outer surface having one or more retention features oriented to provide a plurality of radially extending engagement surfaces along a length of the hollow tube. The head portion has a flange that circumscribes the proximal end of the lobular hollow tube. Portions of the elastically deformable lobular hollow tube when inserted into circular apertures of first and second components elastically deform to an elastically averaged final configuration that aligns the first and second components in four planar orthogonal directions.


In another exemplary embodiment of the invention an elastically averaged alignment system is provided having a first component, a second component, and an elastically deformable alignment fastener. The first component has a first alignment member and a first aperture. The second component has a second alignment member and a second aperture, the second aperture being configured and disposed to align with the first aperture when the first and second components are assembled together. The elastically deformable alignment fastener is in the form of a unitary object having a head portion and an integrally formed body portion. The body portion has an elastically deformable lobular hollow tube having a proximal end proximate the head portion and a distal end axially displaced from the head portion. The lobular hollow tube has an outer surface with one or more retention features oriented to provide a plurality of radially extending engagement surfaces along a length of the hollow tube. The head portion has a flange that circumscribes the proximal end of the lobular hollow tube. Portions of the elastically deformable lobular hollow tube when inserted into the first and second apertures of the first and second components elastically deform to an elastically averaged final configuration that aligns the first and second components in at least two planar orthogonal directions.


The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:



FIG. 1 depicts an isometric perspective view of a disassembled assembly of an elastically averaged alignment system having an elastically averaging alignment fastener, in accordance with an embodiment of the invention;



FIG. 2 depicts an isometric perspective view of an elastically averaging alignment fastener, in accordance with an embodiment of the invention;



FIG. 3 depicts an isometric perspective view of another elastically averaging alignment fastener, in accordance with an embodiment of the invention;



FIG. 4 depicts an isometric perspective view of another elastically averaging alignment fastener, in accordance with an embodiment of the invention;



FIG. 5 depicts an isometric perspective view of another elastically averaging alignment fastener, in accordance with an embodiment of the invention;



FIG. 6 depicts a rear plan view of a portion of the system of FIG. 1, in accordance with an embodiment of the invention;



FIG. 7 depicts an alternative rear plan view of a portion of the system of FIG. 1, in accordance with an embodiment of the invention;



FIG. 8 depicts a rear plan view similar to that of FIG. 6, but illustrating the elastically averaging alignment fastener of FIG. 3 in a fully deformed state, in accordance with an embodiment of the invention;



FIG. 9 depicts a rear plan view similar to that of FIG. 8, but illustrating the elastically averaging alignment fastener in a final post-engaged state of deformation, in accordance with an embodiment of the invention;



FIG. 10 depicts a rear plan view of a tri-lobular body of an elastically averaging alignment fastener, in accordance with an embodiment of the invention;



FIG. 11 depicts a rear plan view of another tri-lobular body of an elastically averaging alignment fastener, in accordance with an embodiment of the invention; and



FIG. 12 depicts a door assembly of a vehicle employing an elastically averaged alignment system having an elastically averaging alignment fastener, in accordance with an embodiment of the invention.





DESCRIPTION OF THE EMBODIMENTS

The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. For example, an embodiment shown comprises a vehicle body panel, but the alignment system may be used with any suitable components to provide elastic averaging for precision location, alignment and fastening of all manner of mating components and component applications, including many industrial, consumer product (e.g., consumer electronics, various appliances and the like), transportation, energy and aerospace applications, and particularly including many other types of vehicular components and applications, such as various interior, exterior and under hood vehicular components and applications. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.


As used herein, the term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.


Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles, or that would be further aided with the inclusion of a four-way elastic averaging fastening system as herein disclosed, to an assembly that does facilitate elastic averaging and the benefits associated therewith.


Any suitable elastically deformable material may be used for the mating components and alignment features disclosed herein and discussed further below, particularly those materials that are elastically deformable when formed into the features described herein. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof suitable for a purpose disclosed herein. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS). The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The elastically deformable alignment features and associated component may be formed in any suitable manner. For example, the elastically deformable alignment features and the associated component may be integrally formed, or they may be formed entirely separately and subsequently attached together. When integrally formed, they may be formed as a single part from a plastic injection molding machine, for example. When formed separately, they may be formed from different materials to provide a predetermined elastic response characteristic, for example. The material, or materials, may be selected to provide a predetermined elastic response characteristic of any or all of the elastically deformable alignment features, the associated component, or the mating component. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.


As used herein, the term vehicle is not limited to just an automobile, truck, van or sport utility vehicle, but includes any self-propelled or towed conveyance suitable for transporting a burden.


In accordance with an exemplary embodiment of the invention, and with reference to FIG. 1, an elastically averaged alignment system 10 includes a first component 100 having a first alignment member 102 and a first aperture 104 having a first diameter 160, a second component 200 having a second alignment member 202 and a second aperture 204 having a second diameter 260, and an elastically deformable alignment fastener 300 formed as a unitary object having a head portion 302 and an integrally formed body portion 304. The second aperture 204 is configured and disposed to align with the first aperture 104 when the first and second components 100, 200 are assembled together, as indicated by dash-dot assembly line 400. In an embodiment, the first and second apertures 104, 204 are circular apertures. A third component 50 is depicted in dash-double-dash line in FIG. 1, and represents the inclusion of one or more additional components, in addition to the first and second components 100, 200, in the elastically averaged alignment system 10. In an embodiment, the third component 50 includes a third aperture 52 configured and disposed to align with the first and second apertures 104, 204 when the first, second and third components 100, 200, 50 are assembled together.


For discussion purposes, the mating side of the first alignment member 102 visible in FIG. 1 is labeled 12, and the non-mating side of the second alignment member 202 visible in FIG. 1 is labeled 21. The non-visible sides of the first and second alignment members 102, 202 that are hidden from view in FIG. 1 are herein referred to by reference labels 11 and 22, respectively. For discussion purposes, a plan view of the elastically averaged alignment system 10 as viewed from side 21 of the second component 200 is herein referred to as a front view, and a plan view of the elastically averaged alignment system 10 as viewed from side 11 of the first component 100 is herein referred to as a rear view.


The body portion 304 has a form of an elastically deformable lobular hollow tube having a proximal end 306 proximate the head portion 302 and a distal end 308 axially displaced from the head portion 302. In an embodiment, the lobular hollow tube, also herein referred to by reference numeral 304, further may include a taper at the distal end 308, which may be created by a draft angle formed on the walls of a plastic injection molding machine configured to mold the elastically deformable alignment fastener 300, for example, or may be created by a chamfer formed on the distal end 308 of the lobular hollow tube 304. In accordance with an embodiment of the invention, the lobular hollow tube 304 has an outer surface 310 having one or more retention features 312.1, 312.2, 312.3, 312.4 (best seen with reference to FIGS. 2-5) oriented to provide a plurality of radially extending engagement surfaces along a length of the lobular hollow tube 304. The head portion 302 comprises a flange 314 that circumscribes the proximal end 306 of the lobular hollow tube 304. Portions of the elastically deformable lobular hollow tube 304 when inserted into the first and second apertures 104, 204 of the first and second components 100, 200 elastically deform to an elastically averaged final configuration that precisely aligns the first and second components 100, 200 in either four or two planar orthogonal directions, such as the +/−x-direction and/or the +/−y-direction of an orthogonal coordinate system, for example, which are herein respectively referred to as four-way and two-way alignment, depending on whether the first and second apertures 104, 204 are, respectively, circular apertures or slotted apertures.


In an embodiment, and with reference to FIG. 2, the lobular hollow tube 304 has three lobes (also herein referred to as apex wall portions) 304.1, 304.2, 304.3 equally distributed about a central axis 316 (best sees with reference to FIG. 6) of the lobular hollow tube 304, and interconnected by three connecting wall portions 304.4, 304.5, 304.6, which is herein referred to as a tri-lobular hollow tube 304.


The one or more retention features 312.1, 312.2, 312.3, 312.4 may take the form of ribs or serrations 312.1 (see FIG. 2 for example), notches or indentations 312.2 (see FIG. 3 for example), projections 312.3 (see FIG. 4 for example), helical ribs or notches 312.4 (see FIG. 5 for example), or any combination of ribs, serrations, notches, indentations, projections, or helical ribs or notches suitable for providing a radially extending engagement surface on at least the outer surface of each lobe 304.1, 304.2, 304.3 of the lobular hollow tube 304.



FIGS. 6 and 7 each depict a partial rear plan view, as viewed from side 11 of the first component 100 depicted in FIG. 1, of the elastically averaged alignment system 10 in an assembled state with the second component 200 fastened to the first component 100 via the elastically deformable alignment fastener 300 that is interferingly, deformably and matingly engaged with the circular aperture 104 of the first component 100. While the retention features 312.1, 312.2, 312.3, 312.4 are omitted from FIGS. 6 and 7 for clarity, it will be appreciated that any of the foregoing retention features may be employed in accordance with an embodiment of the invention. In FIGS. 6 and 7, the dashed lines represent a pre-engagement shape of the tri-lobular hollow tube 304 of the elastically deformable alignment fastener 300, and the correlating solid lines represent a fully-deformed shape of the tri-lobular hollow tube 304 during a particular stage of the assembly. In accordance with an embodiment of the invention, the outer surfaces of the three apex wall portions 304.1304.2304.3 are sized to create an interference fit with the circular aperture 104 of the first alignment member 102, which can be seen from the pre-engagement shape of the tri-lobular hollow tube 304 having an interference dimension 170 between each of the three apex wall portions 304.1, 304.2, 304.3 and the circular aperture 104, where dimension 170 is greater than zero (dimension 170>0). In an embodiment, the material of the first component 100 is thin gage sheet metal, and the spacing 340 (see FIG. 4 for example) between adjacent ones of respective retention features 312.1, 312.3, or the width 350 (see FIG. 3 for example) of respective retention features 312.2, 312.4, is appropriately sized to engage with the sheet metal thickness and provide a snap-fit-like engagement between the retention features on the apex wall portions and the inner diameter of the circular aperture 104 as the elastically deformable alignment fastener 300 is pressed through the circular apertures 204, 104 of the second and first components 200, 100, respectively.


Reference is now made to FIGS. 8 and 9 in combination with FIG. 6, where FIGS. 8 and 9 depict rear plan views similar to that of FIG. 6 from side 22 of the first alignment member 102, and illustrating the hidden retention features 312.2 of tri-lobular hollow tube 304 (see FIG. 3 for example) by dashed lines, in a fully deformed state of deformation (FIG. 8), and in a final post-engaged state of deformation (FIG. 9). In an embodiment, the interference dimension 170 (see FIG. 6) may be sized such that the tri-lobular hollow tube 304 first deforms from the pre-engagement shape (dashed line representation in FIG. 6) to the fully-deformed shape (solid line representation in FIG. 6, and illustration of FIG. 8) as the elastically deformable alignment fastener 300 is interferingly engaged with the circular aperture 104, and then snaps back toward the pre-engagement shape close to the pre-engagement shape, with a slight interference when the elastically deformable alignment fastener 300 is seated in the retention features 312.2 as the retention features 312.2 become aligned with the edge of the circular aperture 104 (FIG. 9). As such, the final post-engagement shape of the tri-lobular hollow tube 304 (FIG. 9), when the retention features 312.2 are engaged with the edge of the circular aperture 104, may have a shape that is between the pre-engagement shape (dashed line representation in FIG. 6) and the fully-deformed shape (solid line representation in FIG. 6, and illustration of FIG. 8), thereby resulting in the tri-lobular hollow tube 304 being at least partially deformed (FIG. 9) to provide a fastening arrangement where the elastically deformable fastener 300 remains interferingly, deformably and matingly engaged with the first component 100 when securing the second component 200 to the first component 100.


While FIGS. 6 and 7 depict an interference dimension 170 for each of the three apex wall portions 304.1, 304.2, 304.3, implying an equal interference dimension for each, it will be appreciated that the scope of the invention is not so limited, and also encompasses different interference conditions 170a, 170b, 170c for each of the three apex wall portions 304.1, 304.2, 304.3, respectively, which would still result in an elastically averaged alignment system 10 where a plurality of elastically deformable fasteners 300 are employed (see FIG. 12 for example depicting a plurality of elastically deformable fasteners 300).


While FIGS. 8 and 9 illustrate retention features 312.2 of the tri-lobular hollow tube 304 of FIG. 3, it will be appreciated that the scope of the invention is not so limited, and that the foregoing description of a pre-engagement shape, a fully deformed shape, and a final post-engagement shape, is equally applicable to the other retention features 312.1, 312.3 and 312.4, as depicted in FIGS. 2, 4 and 5, respectively.


In accordance with an embodiment of the invention, and with reference back to FIG. 6, the connecting wall portions 304.4, 304.5, 304.6 are sized to fit within the circular aperture 104 with a clearance dimension 180 therebetween (depicted in FIG. 6 in only one location, but understood to apply to all three similar locations), where dimension 180 is equal to or greater than zero (dimension 180≧0). In the embodiment depicted in FIG. 6, the connecting wall portions 304.4, 304.5304.6 are configured to elastically deform away from the central axis 316 of the tri-lobular hollow tube 304. In the embodiment of FIG. 7, the connecting wall portions 304.4, 304.5, 304.6 are configured to elastically deform toward the central axis 316 of the tri-lobular hollow tube 304.


While FIGS. 6 and 7 both depict the connecting wall portions 304.4, 304.5, 304.6 all deforming in a same direction (all outward in FIG. 6, and all inward in FIG. 7), it will be appreciated that the scope of the invention is not so limited and also encompasses an embodiment where the connecting wall portions 304.4, 304.5, 304.6 are configured to elastically deform in a combined arrangement that includes elastic deformation toward and away from the central axis 316 of the tri-lobular hollow tube 304.


In the embodiment depicted in FIG. 6 where the connecting wall portions 304.4, 304.5, 304.6 all deform outward during assembly of the first and second components 100, 200, it will be appreciated that an embodiment involves an arrangement where an outer perimeter 318 of a pre-engaged tri-lobular hollow tube 304 (best seen with reference to FIG. 2) must have a length that is less than a circumference of the circular aperture 104 in order to permit, albeit with elastically averaged deformation, insertion of the tri-lobular hollow tube 304 into the circular aperture 104 when the tri-lobular hollow tube 304 is interferingly, deformably and matingly engaged with the circular aperture 104 with outward deformation of the connecting wall portions 304.4, 304.5, 304.6. That is, when the connecting wall portions 304.4, 304.5, 304.6 of the tri-lobular hollow tube 304 are outwardly deformed by compression of the apex wall portions 304.1, 304.2, 304.3 such that the connecting wall portions and apex wall portions completely fill the opening of the circular aperture 104, the outer perimeter 318 of the now fully-deformed tri-lobular tube 304 must be sized to fit within the opening of the circular aperture 104, and therefore the outer perimeter 318 of the tri-lobular hollow tube 304 must be smaller in length than the circumference of the circular aperture 104 in order to avoid a line-on-line interference condition of the engaging surfaces.


Reference is now made to FIGS. 10 and 11, which depict distal end plan views of alternative tri-lobular hollow tubes 304′, 304″ consistent with an embodiment of the invention disclosed herein. Both versions of the tri-lobular hollow tubes 304′, 304″ have connecting wall portions 304.4, 304.5, 304.6 that are thinner in the middle section than at the end sections, as indicated by references numerals 360 and 370, where thickness 360<thickness 370, or more generally where thickness 360≠thickness 370. In the embodiment of FIG. 10, the outer surfaces of the connecting wall portions 304.4, 304.5, 304.6 are convex with respect to the central axis 316 of the tri-lobular hollow tube 304′, which is contemplated to facilitate elastic deformation of the tri-lobular hollow tube 304′ in the manner depicted in FIG. 7. In the embodiment of FIG. 11, the inner surfaces of the connecting wall portions 304.4, 304.5, 304.6 are concave with respect to the central axis 316 of the tri-lobular hollow tube 304″, which is contemplated to facilitate elastic deformation of the tri-lobular hollow tube 304″ in the manner depicted in FIG. 6. By controlling the direction of elastic deformation of the connecting wall portions 304.4, 304.5, 304.6 (inward or outward for example), it is contemplated that the overall elastic averaging achieved by the elastically averaging alignment system 10 will be more predictable as compared to a system having elastic deformation in random directions.


In view of the foregoing, it will be appreciated that there may be many applications where one or more elastically deformable alignment fasteners 300 may be utilized in an elastically averaged alignment system 10 to not only align but also fasten first and second components 100, 200 together. In one embodiment, and with reference to FIG. 12, an exemplary first component may be a door assembly 150 of a vehicle formed out of, for example, sheet metal and having a plurality of first circular apertures 104 (best seen with reference to FIG. 1) formed therein, and an exemplary second component may be a sound absorbing material 250 having a plurality of second circular apertures 204 (best seen with reference to FIG. 1) formed therein and arranged to align with the plurality of first circular apertures 104. In a manner disclosed herein, and in accordance with an embodiment of the invention, a plurality of elastically deformable alignment fasteners 300 are employed to interferingly, deformably, and matingly engage with the sheet metal of the door 150 to fasten the sound absorbing material 250 to the door 150 between the flange 314 and the one or more retention features 312 of each of the plurality of elastically deformable alignment fasteners 300. By using a plurality of elastically deformable alignment fasteners 300, added precision in the alignment of the first and second components 100, 200 can result.


While embodiments have been described and illustrated herein with reference to elastically deformable alignment fasteners 300 as an elastic averaging alignment feature, it will be appreciated that the scope of the invention is not limited to the use of elastically deformable alignment fasteners 300 by themselves, but also encompasses the use of elastically deformable alignment fasteners 300 in combination with other elastic averaging alignment features, such as, for example, those disclosed in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675.


In an embodiment, the first diameter 160 of the first aperture 104 in the first component 100 is smaller than second diameter 260 of the second aperture in the second component 200, that is first diameter 160<second diameter 260, which would allow the retention features 312.1, 312.2, 312.3, 312.4 to snap-fit engage with the first aperture 104 while slidably engaging with the second aperture 204. In another embodiment, second diameter 260 of the second aperture 204 in the second component 200 is sized to create an interference fit with the elastically deformable alignment fastener 300 at one or more locations (with particular reference being made to the plurality of elastically deformable alignment fasteners 300 depicted in FIG. 12) to better align the second component 200 with the first component 100.


While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.

Claims
  • 1. An elastically deformable alignment fastener configured to be inserted into circular apertures of first and second components, the elastically deformable alignment fastener comprising: an object having a head portion and a body portion;wherein the body portion comprises an elastically deformable lobular hollow tube having a proximal end proximate the head portion and a distal end axially displaced from the head portion;wherein the lobular hollow tube is tri-lobular;wherein the lobular hollow tube has an outer surface comprising one or more retention features oriented to provide a plurality of radially extending engagement surfaces along a length of the hollow tube;wherein the head portion comprises a flange that circumscribes the proximal end of the lobular hollow tube; andwherein portions of the elastically deformable lobular hollow tube when inserted into the circular apertures of the first and second components are adapted to elastically deform to an elastically averaged final configuration that aligns the first and second components in four planar orthogonal directions.
  • 2. The elastically deformable alignment fastener of claim 1, wherein: the plurality of radially extending engagement surfaces are disposed on the outer surface of each lobe of the lobular hollow tube.
  • 3. The elastically deformable alignment fastener of claim 1, wherein: the retention features comprise ribs, projections, notches, indentations, serrations, or any combination of ribs, projections, notches, indentations and serrations.
  • 4. The elastically deformable alignment fastener of claim 1, wherein: the object is a unitary object having the head portion and the body portion integrally formed.
  • 5. An elastically deformable alignment fastener configured to be inserted into circular apertures of first and second components, the elastically deformable alignment fastener comprising: an object having a head portion and a body portion;wherein the body portion comprises an elastically deformable lobular hollow tube having a proximal end proximate the head portion and a distal end axially displaced from the head portion;wherein the lobular hollow tube has an outer surface comprising one or more retention features oriented to provide a plurality of radially extending engagement surfaces along a length of the hollow tube;wherein the head portion comprises a flange that circumscribes the proximal end of the lobular hollow tube;wherein portions of the elastically deformable lobular hollow tube when inserted into the circular apertures of the first and second components are adapted to elastically deform to an elastically averaged final configuration that aligns the first and second components in four planar orthogonal directions; andwherein the lobular hollow tube comprises a tube wall having three apex wall portions equally distributed about a central axis of the lobular hollow tube and three connecting wall portions interconnected therebetween, wherein the three apex wall portions have a size adapted to interferingly, deformably and matingly fit within a defined circular aperture of the first component, wherein the connecting wall portions have a size adapted to fit within the defined circular aperture with clearance therebetween, and wherein the connecting wall portions are configured to elastically deform toward the central axis of the lobular hollow tube, away from the central axis of the lobular hollow tube, or in a combination that includes elastic deformation toward and away from the central axis of the lobular hollow tube when the lobular hollow tube is engaged with and is elastically deformed with respect to the circular apertures of the first and second components.
  • 6. The elastically deformable alignment fastener of claim 5, wherein the three connecting wall portions each comprise a wall surface that is curved inward toward the central axis of the lobular hollow tube.
  • 7. The elastically deformable alignment fastener of claim 5, wherein the three connecting wall portions each comprise a wall surface that is curved outward away from the central axis of the lobular hollow tube.
  • 8. The elastically deformable alignment fastener of claim 5, wherein: the object is a unitary object having the head portion and the body portion integrally formed.
  • 9. An elastically averaged alignment system, comprising: a first component comprising a first alignment member and a first aperture;a second component comprising a second alignment member and a second aperture, the second aperture being configured and disposed to align with the first aperture when the first and second components are assembled together; andan elastically deformable alignment fastener comprising an object having a head portion and a body portion;wherein the body portion comprises an elastically deformable lobular hollow tube having a proximal end proximate the head portion and a distal end axially displaced from the head portion;wherein the lobular hollow tube is tri-lobular;wherein the lobular hollow tube has an outer surface comprising one or more retention features oriented to provide a plurality of radially extending engagement surfaces along a length of the hollow tube;wherein the head portion comprises a flange that circumscribes the proximal end of the lobular hollow tube; andwherein portions of the elastically deformable lobular hollow tube are configured to be inserted into the first and second apertures of the first and second components, and when inserted into the first and second apertures of the first and second components elastically deform to an elastically averaged final configuration that aligns the first and second components in at least two planar orthogonal directions.
  • 10. The elastically averaged alignment system of claim 9, wherein: each of the first and second apertures are circular apertures; andportions of the elastically deformable lobular hollow tube when inserted into the first and second circular apertures of the first and second components elastically deform to an elastically averaged final configuration that aligns the first and second components in four planar orthogonal directions.
  • 11. The elastically averaged alignment system of claim 10, wherein: the first component comprises sheet metal;the second component comprises a compressible material; andthe elastically deformable alignment fastener interferingly, deformably, and matingly engages with the first component to fasten the second component to the first component between the flange and the one or more retention features.
  • 12. The elastically averaged alignment system of claim 11, wherein: the first component comprises a door assembly of a vehicle; andthe second component comprises sound absorbing material.
  • 13. The elastically averaged alignment system of claim 9, further comprising: at least a third component disposed between the first and second components, the third component comprising a third aperture configured and disposed to align with the first and second apertures when the first, second and at least the third components are assembled together.
  • 14. The elastically averaged alignment system of claim 9, wherein: the first component comprises a plurality of the first aperture;the second component comprises a plurality of the second aperture, each being configured and disposed to align with a respective one of the plurality of the first aperture when the first and second components are assembled together; and further comprising:a plurality of the elastically deformable alignment fastener disposed within respective pairs of the first and second apertures.
  • 15. The elastically averaged alignment system of claim 9, wherein: the elastically deformable alignment fastener interferingly, deformably, and matingly engages with the first component to fasten the second component to the first component between the flange and the one or more retention features.
  • 16. The elastically averaged alignment system of claim 15, wherein: the first aperture has a first diameter; andthe second aperture has a second diameter that is greater than the first diameter.
  • 17. The elastically averaged alignment system of claim 9, wherein: the object is a unitary object having the head portion and the body portion integrally formed.
US Referenced Citations (552)
Number Name Date Kind
1219398 Huntsman Mar 1917 A
1261036 Kerns Apr 1918 A
1301302 Nolan Apr 1919 A
1556233 Maise Oct 1925 A
1819126 Scheibe Aug 1931 A
1929848 Neely Oct 1933 A
1968168 Place Jul 1934 A
1982076 Spahn Nov 1934 A
1999990 Carr Apr 1935 A
2006525 Thal Jul 1935 A
2267558 Birger, et al. Dec 1941 A
2275103 Gooch, et al. Mar 1942 A
2275900 Hall Mar 1942 A
2385180 Allen Sep 1945 A
2482488 Franc Sep 1949 A
2560530 Burdick Jul 1951 A
2612139 Collins Sep 1952 A
2688894 Modrey Sep 1954 A
2693014 Monahan Nov 1954 A
2707607 O'Connor May 1955 A
2778399 Mroz Jan 1957 A
2780128 Rapata Feb 1957 A
2788046 Joseph Apr 1957 A
2862040 Curran Nov 1958 A
2902902 Slone Sep 1959 A
2940149 O'Connor Jun 1960 A
2946612 Ahlgren Jul 1960 A
2958230 Haroldson Nov 1960 A
3005282 Christiansen Oct 1961 A
3014563 Bratton Dec 1961 A
3087352 Daniel Apr 1963 A
3089269 McKiernan May 1963 A
3130512 Van Buren, Jr. Apr 1964 A
3152376 Boser Oct 1964 A
3168961 Yates Feb 1965 A
3169004 Rapata Feb 1965 A
3169439 Rapata Feb 1965 A
3188731 Sweeney Jun 1965 A
3194292 Borowsky Jul 1965 A
3213189 Mitchell et al. Oct 1965 A
3230592 Hosea Jan 1966 A
3233358 Dehm Feb 1966 A
3233503 Fernberg Feb 1966 A
3244057 Mathison Apr 1966 A
3248995 Meyer May 1966 A
3291495 Liebig Dec 1966 A
3310929 Garvey Mar 1967 A
3413752 Perry Dec 1968 A
3473283 Meyer Oct 1969 A
3531850 Durand Oct 1970 A
3551963 Long Jan 1971 A
3643968 Horvath Feb 1972 A
3669484 Bernitz Jun 1972 A
3680272 Meyer Aug 1972 A
3733655 Kolibar May 1973 A
3800369 Nikolits Apr 1974 A
3841044 Brown Oct 1974 A
3841682 Church Oct 1974 A
3842565 Brown et al. Oct 1974 A
3845961 Byrd, III Nov 1974 A
3847492 Kennicutt et al. Nov 1974 A
3860209 Strecker Jan 1975 A
3868804 Tantlinger Mar 1975 A
3895408 Leingang Jul 1975 A
3897967 Barenyl Aug 1975 A
3905570 Nieuwveld Sep 1975 A
3972550 Boughton et al. Aug 1976 A
3988808 Poe et al. Nov 1976 A
4035874 Liljendahl Jul 1977 A
4039215 Minhinnick Aug 1977 A
4042307 Jarvis Aug 1977 A
4043585 Yamanaka Aug 1977 A
4158511 Herbenar Jun 1979 A
4169297 Weihrauch Oct 1979 A
4193588 Doneaux Mar 1980 A
4213675 Pilhall Jul 1980 A
4237573 Weihrauch Dec 1980 A
4267680 Delattre May 1981 A
4300851 Thelander Nov 1981 A
4313609 Clements Feb 1982 A
4314417 Cain Feb 1982 A
4318208 Borja Mar 1982 A
4325574 Umemoto et al. Apr 1982 A
4358166 Antoine Nov 1982 A
4363839 Watanabe et al. Dec 1982 A
4364150 Remington Dec 1982 A
4384803 Cachia May 1983 A
4394853 Lopez-Crevillen et al. Jul 1983 A
4406033 Chisholm et al. Sep 1983 A
4407413 Jansson Oct 1983 A
4477142 Cooper Oct 1984 A
4481160 Bree Nov 1984 A
4527760 Salacuse Jul 1985 A
4564232 Fujimori et al. Jan 1986 A
4575060 Kitagawa Mar 1986 A
4591203 Furman May 1986 A
4599768 Doyle Jul 1986 A
4605575 Auld et al. Aug 1986 A
4616951 Maatela Oct 1986 A
4648649 Beal Mar 1987 A
4654760 Matheson et al. Mar 1987 A
4672732 Ramspacher Jun 1987 A
4745656 Revlett May 1988 A
4757655 Nentoft Jul 1988 A
4767647 Bree Aug 1988 A
4805272 Yamaguchi Feb 1989 A
4807335 Candea Feb 1989 A
4817999 Drew Apr 1989 A
4819983 Alexander et al. Apr 1989 A
4843975 Welsch Jul 1989 A
4843976 Pigott et al. Jul 1989 A
4865502 Maresch Sep 1989 A
4881764 Takahashi et al. Nov 1989 A
4917426 Copp Apr 1990 A
4973212 Jacobs Nov 1990 A
4977648 Eckerud Dec 1990 A
5005265 Muller Apr 1991 A
5039267 Wollar Aug 1991 A
5100015 Vanderstuyf Mar 1992 A
5111557 Baum May 1992 A
5139285 Lasinski Aug 1992 A
5154479 Sautter, Jr. Oct 1992 A
5165749 Sheppard Nov 1992 A
5170985 Killworth et al. Dec 1992 A
5180219 Geddie Jan 1993 A
5208507 Jung May 1993 A
5212853 Kaneko May 1993 A
5234122 Cherng Aug 1993 A
5250001 Hansen Oct 1993 A
5297322 Kraus Mar 1994 A
5309663 Shirley May 1994 A
5333965 Mailey Aug 1994 A
5339491 Sims Aug 1994 A
5342139 Hoffman Aug 1994 A
5348356 Moulton Sep 1994 A
5368427 Pfaffinger Nov 1994 A
5368797 Quentin et al. Nov 1994 A
5397206 Sihon Mar 1995 A
5407310 Kassouni Apr 1995 A
5446965 Makridis Sep 1995 A
5507610 Benedetti et al. Apr 1996 A
5513603 Ang et al. May 1996 A
5524786 Skudlarek Jun 1996 A
5538079 Pawlick Jul 1996 A
5556808 Williams et al. Sep 1996 A
5566840 Waldner Oct 1996 A
5575601 Skufca Nov 1996 A
5577301 DeMaagd Nov 1996 A
5577779 Dangel Nov 1996 A
5580204 Hultman Dec 1996 A
5586372 Eguchi et al. Dec 1996 A
5593265 Kizer Jan 1997 A
5601453 Horchler Feb 1997 A
5629823 Mizuta May 1997 A
5634757 Schanz Jun 1997 A
5639140 Labrash Jun 1997 A
5657516 Berg et al. Aug 1997 A
5666749 Waters Sep 1997 A
5667271 Booth Sep 1997 A
5670013 Huang et al. Sep 1997 A
5698276 Mirabitur Dec 1997 A
5702779 Siebelink, Jr. et al. Dec 1997 A
5706559 Oliver Jan 1998 A
5736221 Hardigg et al. Apr 1998 A
5765942 Shirai et al. Jun 1998 A
5775860 Meyer Jul 1998 A
5795118 Osada et al. Aug 1998 A
5797170 Akeno Aug 1998 A
5797714 Oddenino Aug 1998 A
5803646 Weihrauch Sep 1998 A
5806915 Takabatake Sep 1998 A
5810535 Fleckenstein et al. Sep 1998 A
5820292 Fremstad Oct 1998 A
5846631 Nowosiadly Dec 1998 A
5915678 Slocum et al. Jun 1999 A
5920200 Pendse Jul 1999 A
5929382 Moore Jul 1999 A
5931514 Chung Aug 1999 A
5934729 Baack Aug 1999 A
5941673 Hayakawa et al. Aug 1999 A
5988678 Nakamura Nov 1999 A
6006941 Hitchings Dec 1999 A
6010306 Bucher Jan 2000 A
6062763 Sirois et al. May 2000 A
6073315 Rasmussen Jun 2000 A
6079083 Akashi Jun 2000 A
6095594 Riddle et al. Aug 2000 A
6103987 Nordquist Aug 2000 A
6109882 Popov Aug 2000 A
6152436 Sonderegger et al. Nov 2000 A
6164603 Kawai Dec 2000 A
6193430 Culpepper et al. Feb 2001 B1
6199248 Akashi Mar 2001 B1
6202962 Snyder Mar 2001 B1
6209175 Gershenson Apr 2001 B1
6209178 Wiese et al. Apr 2001 B1
6254304 Takizawa et al. Jul 2001 B1
6264869 Notarpietro et al. Jul 2001 B1
6283540 Siebelink, Jr. et al. Sep 2001 B1
6286214 Bean Sep 2001 B1
6289560 Guyot Sep 2001 B1
6299478 Jones et al. Oct 2001 B1
6311960 Pierman et al. Nov 2001 B1
6318585 Asagiri Nov 2001 B1
6321495 Oami Nov 2001 B1
6336767 Nordquist et al. Jan 2002 B1
6345420 Nabeshima Feb 2002 B1
6349904 Polad Feb 2002 B1
6351380 Curlee Feb 2002 B1
6354574 Oliver et al. Mar 2002 B1
6354815 Svihla et al. Mar 2002 B1
6378931 Kolluri et al. Apr 2002 B1
6398449 Loh Jun 2002 B1
6470540 Aamodt et al. Oct 2002 B2
6478102 Puterbaugh Nov 2002 B1
6484370 Kanie et al. Nov 2002 B2
6485241 Oxford Nov 2002 B1
6498297 Samhammer Dec 2002 B2
6523229 Severson Feb 2003 B2
6523817 Landry, Jr. Feb 2003 B1
6533391 Pan Mar 2003 B1
6543979 Iwatsuki Apr 2003 B2
6557260 Morris May 2003 B1
6568701 Burdack et al. May 2003 B1
6579397 Spain et al. Jun 2003 B1
6591801 Fonville Jul 2003 B1
6609717 Hinson Aug 2003 B2
6637095 Stumpf et al. Oct 2003 B2
6658698 Chen Dec 2003 B2
6662411 Rubenstein Dec 2003 B2
6664470 Nagamoto Dec 2003 B2
6668424 Allen Dec 2003 B1
6677065 Blauer Jan 2004 B2
6692016 Yokota Feb 2004 B2
6712329 Ishigami et al. Mar 2004 B2
6746172 Culpepper Jun 2004 B2
6757942 Matsui Jul 2004 B2
6799758 Fries Oct 2004 B2
6821091 Lee Nov 2004 B2
6840969 Kobayashi et al. Jan 2005 B2
6857676 Kawaguchi et al. Feb 2005 B2
6857809 Granata Feb 2005 B2
6872053 Bucher Mar 2005 B2
6908117 Pickett, Jr. et al. Jun 2005 B1
6932416 Clauson Aug 2005 B2
6948753 Yoshida et al. Sep 2005 B2
6951349 Yokota Oct 2005 B2
6957939 Wilson Oct 2005 B2
6959954 Brandt et al. Nov 2005 B2
6966601 Matsumoto et al. Nov 2005 B2
6971831 Fattori et al. Dec 2005 B2
6997487 Kitzis Feb 2006 B2
7000941 Yokota Feb 2006 B2
7008003 Hirose et al. Mar 2006 B1
7014094 Alcoe Mar 2006 B2
7017239 Kurily et al. Mar 2006 B2
7036779 Kawaguchi et al. May 2006 B2
7055785 Diggle, III Jun 2006 B1
7055849 Yokota Jun 2006 B2
7059628 Yokota Jun 2006 B2
7073260 Jensen Jul 2006 B2
7089998 Crook Aug 2006 B2
7097198 Yokota Aug 2006 B2
7121611 Hirotani et al. Oct 2006 B2
7144183 Lian et al. Dec 2006 B2
7172210 Yokota Feb 2007 B2
7178855 Catron et al. Feb 2007 B2
7198315 Cass et al. Apr 2007 B2
7207758 Leon et al. Apr 2007 B2
7234852 Nishizawa et al. Jun 2007 B2
7275296 DiCesare Oct 2007 B2
7306418 Kornblum Dec 2007 B2
7322500 Maierholzner Jan 2008 B2
7344056 Shelmon et al. Mar 2008 B2
7360964 Tsuya Apr 2008 B2
7369408 Chang May 2008 B2
7435031 Granata Oct 2008 B2
7454105 Yi Nov 2008 B2
7487884 Kim Feb 2009 B2
7493716 Brown Feb 2009 B2
7500440 Chiu Mar 2009 B2
7547061 Horimatsu Jun 2009 B2
7557051 Ryu et al. Jul 2009 B2
7568316 Choby et al. Aug 2009 B2
7591573 Maliar et al. Sep 2009 B2
D602349 Andersson Oct 2009 S
7614836 Mohiuddin Nov 2009 B2
7672126 Yeh Mar 2010 B2
7677650 Huttenlocher Mar 2010 B2
7727667 Sakurai Jun 2010 B2
7764853 Yi et al. Jul 2010 B2
7793998 Matsui et al. Sep 2010 B2
7802831 Isayama et al. Sep 2010 B2
7803015 Pham Sep 2010 B2
7828372 Ellison Nov 2010 B2
7832693 Moerke et al. Nov 2010 B2
7862272 Nakajima Jan 2011 B2
7869003 Van Doren et al. Jan 2011 B2
7883137 Bar Feb 2011 B2
7891926 Jackson, Jr. Feb 2011 B2
7922415 Rudduck et al. Apr 2011 B2
7946684 Drury et al. May 2011 B2
7959214 Salhoff Jun 2011 B2
8029222 Nitsche Oct 2011 B2
8061861 Paxton et al. Nov 2011 B2
8101264 Pace et al. Jan 2012 B2
8136819 Yoshitsune et al. Mar 2012 B2
8162375 Gurtatowski et al. Apr 2012 B2
8203496 Miller et al. Jun 2012 B2
8203843 Chen Jun 2012 B2
8206029 Vaucher et al. Jun 2012 B2
8228640 Woodhead et al. Jul 2012 B2
8249679 Cui Aug 2012 B2
8261581 Cerruti et al. Sep 2012 B2
8263889 Takahashi et al. Sep 2012 B2
8276961 Kwolek Oct 2012 B2
8291553 Moberg Oct 2012 B2
8297137 Dole Oct 2012 B2
8297661 Proulx et al. Oct 2012 B2
8312887 Dunn et al. Nov 2012 B2
8371788 Lange Feb 2013 B2
8414048 Kwolek Apr 2013 B1
8424173 Shiba Apr 2013 B2
8444199 Takeuchi et al. May 2013 B2
8474214 Dawe Jul 2013 B2
8480186 Wang Jul 2013 B2
8511707 Amamori Aug 2013 B2
8572818 Hofmann Nov 2013 B2
8579141 Tejima Nov 2013 B2
8619504 Wyssbrod Dec 2013 B2
8677573 Lee Mar 2014 B2
8695201 Morris Apr 2014 B2
8720016 Beaulieu May 2014 B2
8726473 Dole May 2014 B2
8746801 Nakata Jun 2014 B2
8773846 Wang Jul 2014 B2
8811004 Liu Aug 2014 B2
8826499 Tempesta Sep 2014 B2
8833771 Lesnau Sep 2014 B2
8833832 Whipps Sep 2014 B2
8834058 Woicke Sep 2014 B2
8905812 Pai-Chen Dec 2014 B2
8910350 Poulakis Dec 2014 B2
9003891 Frank Apr 2015 B2
9039318 Mantei et al. May 2015 B2
9050690 Hammer et al. Jun 2015 B2
9061403 Colombo et al. Jun 2015 B2
9061715 Morris Jun 2015 B2
9062991 Kanagaraj Jun 2015 B2
9067625 Morris Jun 2015 B2
9194413 Christoph Nov 2015 B2
20010016986 Bean Aug 2001 A1
20010030414 Yokota Oct 2001 A1
20010045757 Hideki et al. Nov 2001 A1
20020045086 Tsuji et al. Apr 2002 A1
20020060275 Polad May 2002 A1
20020092598 Jones et al. Jul 2002 A1
20020130239 Ishigami et al. Sep 2002 A1
20020136617 Imahigashi Sep 2002 A1
20030007831 Lian et al. Jan 2003 A1
20030059255 Kirchen Mar 2003 A1
20030080131 Fukuo May 2003 A1
20030082986 Wiens et al. May 2003 A1
20030085618 Rhodes May 2003 A1
20030087047 Blauer May 2003 A1
20030108401 Agha et al. Jun 2003 A1
20030180122 Dobson Sep 2003 A1
20040028503 Charles Feb 2004 A1
20040037637 Lian et al. Feb 2004 A1
20040052574 Grubb Mar 2004 A1
20040131896 Blauer Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040140651 Yokota Jul 2004 A1
20040208728 Fattori et al. Oct 2004 A1
20040262873 Wolf et al. Dec 2004 A1
20050016116 Scherff Jan 2005 A1
20050031946 Kruger et al. Feb 2005 A1
20050042057 Konig et al. Feb 2005 A1
20050054229 Tsuya Mar 2005 A1
20050082449 Kawaguchi et al. Apr 2005 A1
20050109489 Kobayashi May 2005 A1
20050156409 Yokota Jul 2005 A1
20050156410 Yokota Jul 2005 A1
20050156416 Yokota Jul 2005 A1
20050217088 Lin Oct 2005 A1
20050244250 Okada et al. Nov 2005 A1
20060082187 Hernandez et al. Apr 2006 A1
20060092653 Tachiiwa et al. May 2006 A1
20060102214 Clemons May 2006 A1
20060110109 Yu May 2006 A1
20060113755 Yokota Jun 2006 A1
20060125286 Horimatsu et al. Jun 2006 A1
20060141318 MacKinnon et al. Jun 2006 A1
20060163902 Engel Jul 2006 A1
20060170242 Forrester et al. Aug 2006 A1
20060197356 Catron et al. Sep 2006 A1
20060202449 Yokota Sep 2006 A1
20060237995 Huttenlocher Oct 2006 A1
20060249520 Demonte Nov 2006 A1
20060264076 Chen Nov 2006 A1
20070034636 Fukuo Feb 2007 A1
20070040411 Dauvergne Feb 2007 A1
20070051572 Beri Mar 2007 A1
20070113483 Hernandez May 2007 A1
20070113485 Hernandez May 2007 A1
20070126211 Moerke et al. Jun 2007 A1
20070137018 Aigner et al. Jun 2007 A1
20070144659 De La Fuente Jun 2007 A1
20070205627 Ishiguro et al. Sep 2007 A1
20070227942 Hirano Oct 2007 A1
20070251055 Gerner Nov 2007 A1
20070258756 Olshausen Nov 2007 A1
20070274777 Winkler Nov 2007 A1
20070292205 Duval Dec 2007 A1
20080014508 Van Doren et al. Jan 2008 A1
20080018128 Yamagiwa et al. Jan 2008 A1
20080073888 Enriquez Mar 2008 A1
20080094447 Drury et al. Apr 2008 A1
20080128346 Bowers Jun 2008 A1
20080217796 Van Bruggen et al. Sep 2008 A1
20080260488 Scroggie et al. Oct 2008 A1
20090028506 Yi et al. Jan 2009 A1
20090072591 Baumgartner Mar 2009 A1
20090091156 Neubrand Apr 2009 A1
20090093111 Buchwalter et al. Apr 2009 A1
20090126168 Kobe et al. May 2009 A1
20090134652 Araki May 2009 A1
20090140112 Carnevali Jun 2009 A1
20090141449 Yeh Jun 2009 A1
20090154303 Vaucher et al. Jun 2009 A1
20090174207 Lota Jul 2009 A1
20090211804 Zhou et al. Aug 2009 A1
20090243172 Ting et al. Oct 2009 A1
20090265896 Beak Oct 2009 A1
20090309388 Ellison Dec 2009 A1
20100000156 Salhoff Jan 2010 A1
20100001539 Kikuchi et al. Jan 2010 A1
20100021267 Nitsche Jan 2010 A1
20100061045 Chen Mar 2010 A1
20100102538 Paxton et al. Apr 2010 A1
20100134128 Hobbs Jun 2010 A1
20100147355 Shimizu et al. Jun 2010 A1
20100162537 Shiba Jul 2010 A1
20100232171 Cannon Sep 2010 A1
20100247034 Yi et al. Sep 2010 A1
20100263417 Schoenow Oct 2010 A1
20100270745 Hurlbert et al. Oct 2010 A1
20100307848 Hashimoto Dec 2010 A1
20110012378 Ueno et al. Jan 2011 A1
20110036542 Woicke Feb 2011 A1
20110076588 Yamaura Mar 2011 A1
20110083392 Timko Apr 2011 A1
20110103884 Shiomoto et al. May 2011 A1
20110119875 Iwasaki May 2011 A1
20110131918 Glynn Jun 2011 A1
20110154645 Morgan Jun 2011 A1
20110175376 Whitens et al. Jul 2011 A1
20110183152 Lanham Jul 2011 A1
20110191990 Beaulieu Aug 2011 A1
20110191993 Forrest Aug 2011 A1
20110207024 Bogumil et al. Aug 2011 A1
20110239418 Huang Oct 2011 A1
20110296764 Sawatani et al. Dec 2011 A1
20110311332 Ishman Dec 2011 A1
20120000291 Christoph Jan 2012 A1
20120000409 Railey Jan 2012 A1
20120020726 Jan Jan 2012 A1
20120073094 Bishop Mar 2012 A1
20120112489 Okimoto May 2012 A1
20120115010 Smith et al. May 2012 A1
20120187812 Gerst Jul 2012 A1
20120240363 Lee Sep 2012 A1
20120251226 Liu et al. Oct 2012 A1
20120261951 Mildner et al. Oct 2012 A1
20120301067 Morgan Nov 2012 A1
20120311829 Dickinson Dec 2012 A1
20120321379 Wang et al. Dec 2012 A1
20120324795 Krajenke et al. Dec 2012 A1
20130010413 Kim Jan 2013 A1
20130017038 Kestner et al. Jan 2013 A1
20130019454 Colombo et al. Jan 2013 A1
20130019455 Morris Jan 2013 A1
20130027852 Wang Jan 2013 A1
20130055822 Frank Mar 2013 A1
20130071181 Herzinger et al. Mar 2013 A1
20130157015 Morris Jun 2013 A1
20130212858 Herzinger et al. Aug 2013 A1
20130269873 Herzinger et al. Oct 2013 A1
20130287992 Morris Oct 2013 A1
20140033493 Morris et al. Feb 2014 A1
20140041176 Morris Feb 2014 A1
20140041185 Morris et al. Feb 2014 A1
20140041199 Morris Feb 2014 A1
20140042704 Polewarczyk Feb 2014 A1
20140047691 Colombo et al. Feb 2014 A1
20140047697 Morris Feb 2014 A1
20140132023 Watanabe May 2014 A1
20140172112 Marter Jun 2014 A1
20140175774 Kansteiner Jun 2014 A1
20140199116 Metten et al. Jul 2014 A1
20140202628 Sreetharan et al. Jul 2014 A1
20140208561 Colombo et al. Jul 2014 A1
20140208572 Colombo et al. Jul 2014 A1
20140220267 Morris et al. Aug 2014 A1
20140264206 Morris Sep 2014 A1
20140292013 Colombo et al. Oct 2014 A1
20140298638 Colombo et al. Oct 2014 A1
20140298640 Morris et al. Oct 2014 A1
20140298962 Morris et al. Oct 2014 A1
20140300130 Morris et al. Oct 2014 A1
20140301103 Colombo et al. Oct 2014 A1
20140301777 Morris et al. Oct 2014 A1
20140301778 Morris et al. Oct 2014 A1
20140360824 Morris et al. Dec 2014 A1
20140360826 Morris et al. Dec 2014 A1
20140366326 Colombo et al. Dec 2014 A1
20140369742 Morris et al. Dec 2014 A1
20140369743 Morris et al. Dec 2014 A1
20150016864 Morris et al. Jan 2015 A1
20150016918 Colombo Jan 2015 A1
20150023724 Morris et al. Jan 2015 A1
20150043959 Morris Feb 2015 A1
20150050068 Morris et al. Feb 2015 A1
20150052725 Morris et al. Feb 2015 A1
20150056009 Morris Feb 2015 A1
20150063943 Morris Mar 2015 A1
20150069779 Morris et al. Mar 2015 A1
20150078805 Morris et al. Mar 2015 A1
20150086265 Morris Mar 2015 A1
20150093177 Morris Apr 2015 A1
20150093178 Morris Apr 2015 A1
20150093179 Morris et al. Apr 2015 A1
20150098748 Morris et al. Apr 2015 A1
20150135509 Morris et al. May 2015 A1
20150165609 Morris et al. Jun 2015 A1
20150165985 Morris Jun 2015 A1
20150165986 Morris Jun 2015 A1
20150166124 Morris Jun 2015 A1
20150167717 Morris Jun 2015 A1
20150167718 Morris et al. Jun 2015 A1
20150174740 Morris et al. Jun 2015 A1
20150175091 Morris et al. Jun 2015 A1
20150175217 Morris et al. Jun 2015 A1
20150175219 Kiester Jun 2015 A1
20150176759 Morris et al. Jun 2015 A1
20150194650 Morris et al. Jul 2015 A1
20150197970 Morris et al. Jul 2015 A1
20150232130 Colombo Aug 2015 A1
20150232131 Morris et al. Aug 2015 A1
20150274217 Colombo Oct 2015 A1
20150291222 Colombo et al. Oct 2015 A1
20150375798 Morris et al. Dec 2015 A1
Foreign Referenced Citations (139)
Number Date Country
842302 Sep 1976 BE
1036250 Oct 1989 CN
1129162 Aug 1996 CN
2285844 Jul 1998 CN
1205285 Jan 1999 CN
1204744 Jul 1999 CN
1328521 Dec 2001 CN
1426872 Jul 2003 CN
1496451 May 2004 CN
2661972 Dec 2004 CN
2679409 Feb 2005 CN
1670986 Sep 2005 CN
100573975 Sep 2005 CN
1693721 Nov 2005 CN
1771399 May 2006 CN
1774580 May 2006 CN
2872795 Feb 2007 CN
1933747 Mar 2007 CN
2888807 Apr 2007 CN
1961157 May 2007 CN
2915389 Jun 2007 CN
101005741 Jul 2007 CN
200941716 Aug 2007 CN
200957794 Oct 2007 CN
101250964 Apr 2008 CN
101390022 Mar 2009 CN
201259846 Jun 2009 CN
201268336 Jul 2009 CN
201310827 Sep 2009 CN
201540513 Aug 2010 CN
101821534 Sep 2010 CN
101930253 Dec 2010 CN
201703439 Jan 2011 CN
201737062 Feb 2011 CN
201792722 Apr 2011 CN
201818606 May 2011 CN
201890285 Jul 2011 CN
102144102 Aug 2011 CN
102235402 Nov 2011 CN
202024057 Nov 2011 CN
202079532 Dec 2011 CN
102313952 Jan 2012 CN
202132326U Feb 2012 CN
102540855 Jul 2012 CN
102756633 Oct 2012 CN
102803753 Nov 2012 CN
202561269 Nov 2012 CN
102817892 Dec 2012 CN
102869891 Jan 2013 CN
202686206 Jan 2013 CN
102939022 Feb 2013 CN
202764872 Mar 2013 CN
202987018 Jun 2013 CN
103201525 Jul 2013 CN
103206595 Jul 2013 CN
103206596 Jul 2013 CN
203189459 Sep 2013 CN
203344856 Dec 2013 CN
104100609 Oct 2014 CN
203991175 Dec 2014 CN
1220673 Jul 1966 DE
2527023 Dec 1976 DE
2736012 Feb 1978 DE
2703897 Aug 1978 DE
2809746 Sep 1979 DE
3704190 Dec 1987 DE
3711696 Oct 1988 DE
3805693 Feb 1989 DE
3815927 Nov 1989 DE
9109276 Jul 1991 DE
4002443 Aug 1991 DE
4111245 Oct 1991 DE
9201258 Mar 1992 DE
29714892 Oct 1997 DE
29800379 May 1998 DE
69600357 Dec 1998 DE
10202644 Jun 2003 DE
10234253 Apr 2004 DE
10333540 Feb 2005 DE
60105817 Feb 2006 DE
202007006175 Aug 2007 DE
102008005618 Jul 2009 DE
102008063920 Sep 2009 DE
102008047464 Apr 2010 DE
102010028323 Nov 2011 DE
102011050003 Oct 2012 DE
102012212101 Jul 2013 DE
102013003028 Mar 2014 DE
0118796 Sep 1984 EP
0616140 Sep 1994 EP
132263 Sep 2001 EP
1243471 Sep 2002 EP
1273766 Jan 2003 EP
1293384 Mar 2003 EP
1384536 Jan 2004 EP
1388449 Feb 2004 EP
1452745 Sep 2004 EP
1550818 Jul 2005 EP
2166235 Mar 2010 EP
2450259 May 2012 EP
2458454 May 2012 EP
1369198 Aug 1964 FR
2009941 Feb 1970 FR
2750177 Dec 1997 FR
2942749 Sep 2010 FR
2958696 Oct 2011 FR
155838 Mar 1922 GB
994891 Jun 1965 GB
2175626 Dec 1986 GB
2281950 Mar 1995 GB
2348924 Oct 2000 GB
H08200420 Aug 1996 JP
H0942233 Feb 1997 JP
2000010514 Jan 2000 JP
2001141154 May 2001 JP
2001171554 Jun 2001 JP
2003158387 May 2003 JP
2003314515 Nov 2003 JP
2005268004 Sep 2005 JP
2006205918 Aug 2006 JP
2008307938 Dec 2008 JP
2009084844 Apr 2009 JP
2009187789 Aug 2009 JP
2011085174 Apr 2011 JP
2012060791 Mar 2012 JP
2012112533 Jun 2012 JP
20030000251 Jan 2003 KR
100931019 Dec 2009 KR
9602963 Feb 1996 WO
9822739 May 1998 WO
0055517 Mar 2000 WO
0132454 Nov 2001 WO
2004010011 01 Jan 2004 WO
2007126201 Nov 2007 WO
2008140659 Nov 2008 WO
2010105354 Sep 2010 WO
2011025606 Mar 2011 WO
2013088447 Jun 2013 WO
2013191622 Dec 2013 WO
Non-Patent Literature Citations (22)
Entry
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002.
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/elastic—averaging.html>.
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and Edip Sevincer, Proceeding of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechnical Engineers (ASME), Sep. 2006.
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechnical Engineering, Dec. 2007.
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004.
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007.
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010, 1 page.
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall.
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, James M. Kushner, Victoria L. Enyedy, Jennifer P.
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Stev.
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo.
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E. Morris, Edward D. Groninger, and Raymond J. Chess.
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo.
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap Member Aligning and Fastening System”, inventors: Steven E. Morris and Jennifer P. Lawall.
Chinese Office Action for Application No. 201410430041.4 dated Dec. 2, 2015; 5 pages.
Rojas, F.E., et al., “Kinematic Coupling for Precision Fixturing & Assembly” MIT Precision Engineering Research Group, Apr. 2013; 24 pgs.
Slocum, A.H., et al., “Kinematic and Elastically Averaged Joints: Connecting the Past, Present and Future” International Symposium on Ultraprecision Engineering and Nanotechnology, Tokyo, Japan, Mar. 13, 2013; 4 pgs.
Willoughby, P., “Elastically Averaged Precision Alignment”, Degree of Doctor of Philosophy in Mechanical Engineering Dissertation, Massachusetts Institute of Technology, 2005; 158 pgs.
Related Publications (1)
Number Date Country
20150063943 A1 Mar 2015 US