The present invention relates to an elastically deformable conduit assembly, as well as a method of fittingly retaining wires within the elastically deformable conduit assembly.
Currently, components which are to be mated together in a manufacturing process are subject to positional variation based on the mating arrangements between the components. One common arrangement relates to an assembly configured to retain a bundle of wires or cables and securing the assembly in a fixed location. The arrangement may include components mutually located with respect to each other by 2-way and/or 4-way male alignment features; typically undersized structures which are received into corresponding oversized female alignment features such as apertures in the form of openings and/or slots. There may be a clearance between at least a portion of the alignment features which is predetermined to match anticipated size and positional variation tolerances of the mating features as a result of manufacturing (or fabrication) variances. As a result, occurrence of significant positional variation between the mated components is possible, which may contribute to the presence of undesirably large and varying gaps and otherwise poor fit. The clearance between the aligning and attaching features may lead to relative motion between mated components, which contributes to poor perceived quality. Additional undesirable effects may include squeaking and rattling of the mated components, for example.
A wire retaining conduit that is mounted via a fastener or mated component is an example of mated components, as described above. Typically, the wires contained within the wire retaining conduit are loosely bundled within the conduit, such that they are prone to movement and “slapping” with each other and other surrounding components.
In one exemplary embodiment, an elastically deformable conduit assembly includes a conduit comprising an outer surface and formed of an elastically deformable material, the conduit is configured to deform from a relaxed condition to an elastically deformed condition. Also included is a mating component configured to engage the outer surface of the conduit in the elastically deformed condition.
In another exemplary embodiment, a method of fittingly retaining wires is provided. The method includes extending a plurality of wires through a conduit, wherein the conduit is formed of an elastically deformable material. The method also includes elastically deforming the conduit to an elastically deformed condition, the elastically deformed condition comprising a narrowing of at least a portion of the conduit. The method further includes engaging a mating component with the portion of the conduit that is narrowed in response to the elastic deformation of the conduit.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
Referring to
Referring to
Referring to
The fitted arrangement of the plurality of wires 24, as well as the tight mated arrangement of the conduit 12 and the mating component 14, is facilitated by the elastically deformable nature of the conduit 12, which accounts for positional variation of the components that is inherently present due to manufacturing processes. In a relaxed condition (
In the illustrated first embodiment of
As described above, upon release of the conduit 12 from the elastically deformed condition, a fully engaged position between the conduit 12 and the mating component 14 results. In the fully engaged position, contact interference between the outer surface 18 of the conduit 12 and the inner surface 20 of the mating component 14 advantageously achieves a tight, fitted engagement between the components. Since the inner surface 20 of the mating component 14 is dimensioned to prevent full expansion of the conduit 12 to the relaxed condition, the conduit 12 remains partially elastically deformed in the fully engaged position.
Referring to
In a second embodiment (
In a third embodiment (
Any suitable elastically deformable material may be used for the conduit 12. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS), such as an ABS acrylic. The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The material, or materials, may be selected to provide a predetermined elastic response characteristic of the conduit 12. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.
Each of the embodiments described above include elastic deformation of the conduit 12 while engaged with the mating component 14 in the fully engaged position. The elastic deformation of the conduit 12 occurs predominantly proximate the engagement portion 32 of the conduit 12. This elastic deformation may be elastically averaged to account for any positional errors of the conduit 12 and the mating component 14. In other words, gaps and/or misalignment that would otherwise be present due to positional errors associated with portions or segments of the conduit 12 and the mating component 14, particularly locating and retaining features, are eliminated by averaging the deformation of the engagement portion 32 in an over-constrained condition. Specifically, the positional variance of regions of the engagement portion 32 is offset by the remainder of the engagement portion 32 that is being compressed by the mating component 14. In other words, the deformation along the outer surface 18 of the entire engagement portion 18 is averaged in aggregate along the outer surface 18. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, the disclosure of which is incorporated by reference herein in its entirety.
Referring to
A method of fittingly retaining wires 100 is also provided, as illustrated in
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
Number | Name | Date | Kind |
---|---|---|---|
4879810 | Sergeant | Nov 1989 | A |
4990143 | Sheridan | Feb 1991 | A |
5172878 | Lederman | Dec 1992 | A |
5187852 | Stanley et al. | Feb 1993 | A |
5199891 | Reed | Apr 1993 | A |
5938587 | Taylor et al. | Aug 1999 | A |
6354545 | Liao | Mar 2002 | B1 |
20090099574 | Fleming, III | Apr 2009 | A1 |
20090233052 | Thuot et al. | Sep 2009 | A1 |
20090306574 | Kopperschmidt | Dec 2009 | A1 |
20110125133 | Aggerholm | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2487798 | Apr 2002 | CN |
1587573 | Jun 2008 | EP |
Entry |
---|
Office Action regarding related CN App. No. 201410089011.1; ated Dec. 23, 2015; 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20140264206 A1 | Sep 2014 | US |