1. Technical Field
The apparatus of the present application relates to a centrifugal force bearing for a rotor hub.
2. Description of Related Art
Centrifugal force bearings can include a combination of elastomeric members and metal shims of uniform thickness. The compression induced shear strain of the elastomeric members is typically the leading life limiter of the bearing.
Hence, there is a need for an improved bearing design having reduced compression induced shear strain during operation. Further, there is a need for a bearing that provides increased load capacity without increasing the size of the bearing.
The novel features believed characteristic of the apparatus of the present application are set forth in the appended claims. However, the apparatus itself, as well as a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, wherein:
Illustrative embodiments of the apparatus are described below. In the interest of clarity, all features of an actual implementation may not be described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction.
The apparatus of the present application is a bearing having alternating layers of tapered shims and tapered elastomeric members that are collectively configured to reduce compression induced shear strain of the elastomeric members. It should be appreciated that even though the tapered shims are described herein as being metal, tapered shims can be manufactured with any rigid material, such as a composite material for example.
Referring to
Referring to
Referring to
When subjected to a centrifugal force 307, the tapered metal shims 305 function to increase the axial stiffness in the direction of the centrifugal force 307. One beneficial result is that increasing axial stiffness, a reduction in the axial deflection under loading is achieved, as compared to non-tapered shims. The increase in axial stiffness in direction 307 can be attributed to the majority of the operational compression load being reacted by the interior portion (where metal shims 305 are thicker), thereby preventing the outer portions (wherein the elastomeric members 303 are thicker) from reacting the compression load, which reduces compression induced shear strain near the outer portions of the elastomeric members 303, where loads are typically higher. Since compression induced shear strain typically drives the size of the bearing during design, bearing 301 can be sized smaller than a convention bearing having non-tapered shims, while having the same capability.
Further, reducing axial deflection reduces clearance issues that may arise when the rotor blade is allowed to axial deflect significant distances. As such, tapering metal shims 305 can increase the capacity of the bearing 301, as compared to non-tapered shims.
During operation, bearing 301 may be subjected to not only a centrifugal force 307, but also a flapping (cocking) force 309. An elastomeric portion 121 can be configured to deflect upon a flapping force 309. Further, elastomeric members 303 can also deflect when subjected to flapping force 309.
Further, during operation a torsional load can be subjection on the bearing 301 when the pitch of rotor blade 123 is changed. The resulting torsional deflection can occur about a centerline axis 311, which also corresponds to the pitch change axis of the rotor blade 123. Another unique advantage to bearing 301 is that since the outer portion has more elastomeric material, as compared to the inner portion, the elastomeric members 303 can carry the strain from the torsional loading. Having a bearing that carry the torsional strain, while act stiff in axial compression can be very desirable. Further, the degree and size of the tapered metal shims 305 and tapered elastomeric members 303 can be selected to individually tailor the torsional capacity and axial stiffness of bearing 301.
The bearing of the present application provides significant advantages, including: 1) decreasing compression induced shear strain of the elastomeric portions of the bearing, 2) increasing a usage life of the bearing, 3) reducing the size of the bearing, 4) increasing the torsional capacity of the bearing, and 5) increase axial compression stiffness so as to decrease load deflection and clearance requirements.
The particular embodiments disclosed above are illustrative only, as the apparatus may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Modifications, additions, or omissions may be made to the apparatuses described herein without departing from the scope of the invention. The components of the apparatus may be integrated or separated. Moreover, the operations of the apparatus may be performed by more, fewer, or other components.
Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the application. Accordingly, the protection sought herein is as set forth in the claims below.
To aid the Patent Office, and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims to invoke paragraph 6 of 35 U.S.C. §112 as it exists on the date of filing hereof unless the words “means for” or “step for” are explicitly used in the particular claim.
Number | Name | Date | Kind |
---|---|---|---|
3071422 | Hinks | Jan 1963 | A |
3862812 | Gorndt et al. | Jan 1975 | A |
3967918 | Mouille et al. | Jul 1976 | A |
3999887 | McGuire | Dec 1976 | A |
4115031 | Drees et al. | Sep 1978 | A |
4142833 | Rybicki | Mar 1979 | A |
4257739 | Covington et al. | Mar 1981 | A |
4333728 | Drees et al. | Jun 1982 | A |
4477225 | Burkam | Oct 1984 | A |
4566856 | Miller | Jan 1986 | A |
4569629 | Ferris et al. | Feb 1986 | A |
4588356 | Pariani | May 1986 | A |
4895354 | Byrnes | Jan 1990 | A |
5110259 | Robinson | May 1992 | A |
5601408 | Hunter et al. | Feb 1997 | A |
5905212 | Moses et al. | May 1999 | A |
6287076 | Mouille | Sep 2001 | B1 |
6296444 | Schellhase et al. | Oct 2001 | B1 |
6439849 | Sehgal et al. | Aug 2002 | B1 |
6523708 | Weckbecker | Feb 2003 | B2 |
6726394 | Garnier et al. | Apr 2004 | B2 |
6827553 | Jones et al. | Dec 2004 | B2 |
6848886 | Schmaling et al. | Feb 2005 | B2 |
7097169 | Mueller | Aug 2006 | B2 |
7368158 | Herpin et al. | May 2008 | B2 |
7686584 | Schmaling | Mar 2010 | B2 |
7850429 | Pancotti | Dec 2010 | B2 |
7896747 | Russell | Mar 2011 | B2 |
8029371 | Stamps et al. | Oct 2011 | B2 |
8181755 | Stamps et al. | May 2012 | B2 |
8257051 | Stamps et al. | Sep 2012 | B2 |
8275585 | Cunningham et al. | Sep 2012 | B2 |
8360721 | Podgurski et al. | Jan 2013 | B2 |
8511997 | Cunningham et al. | Aug 2013 | B2 |
8764300 | Errard et al. | Jul 2014 | B2 |
8882462 | Schmaling et al. | Nov 2014 | B2 |
8926281 | Stamps et al. | Jan 2015 | B2 |
8956117 | Stamps et al. | Feb 2015 | B2 |
8961325 | Schofield et al. | Feb 2015 | B2 |
9010679 | Sutton et al. | Apr 2015 | B2 |
9068621 | Halladay et al. | Jun 2015 | B1 |
9085357 | Davis et al. | Jul 2015 | B2 |
20030235499 | Schmaling | Dec 2003 | A1 |
20040136829 | Jones et al. | Jul 2004 | A1 |
20040208745 | Schmaling | Oct 2004 | A1 |
20050001366 | Hederstiema | Jan 2005 | A1 |
20050073111 | Herpin et al. | Apr 2005 | A1 |
20060067823 | Pancotti | Mar 2006 | A1 |
20070137956 | Stamps et al. | Jun 2007 | A1 |
20090175725 | Podgurski et al. | Jul 2009 | A1 |
20090268997 | Cunningham et al. | Oct 2009 | A1 |
20100009764 | Stamps et al. | Jan 2010 | A1 |
20110274548 | Stamps et al. | Nov 2011 | A1 |
20120257847 | Allred et al. | Oct 2012 | A1 |
20130121828 | Davis et al. | May 2013 | A1 |
20130216384 | Stamps et al. | Aug 2013 | A1 |
20130341458 | Sutton et al. | Dec 2013 | A1 |
20140270610 | Schofield et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1214016 | Jun 2001 | CN |
101936337 | Jan 2011 | CN |
Entry |
---|
Chinese Office Action in related Chinese Application No. 201210376396.0, dated Aug. 27, 2014, 10 pages. |
European Search Report in related European Application No. 13189561.7, dated Jan. 24, 2014, 7 pages. |
Canadian Office Action in related Canadian Application No. 2,790,085, dated Jan. 16, 2014, 2 pages. |
European Search Report in related European Application No. 12185110.9, dated Mar. 11, 2013, 6 pages. |
Office Action in related U.S. Appl. No. 14/029,906 dated Nov. 13, 2015, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20130084186 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
61542584 | Oct 2011 | US |