The present invention relates to a surgical instrument. The present invention further relates to a method of manufacturing a surgical instrument.
It is known to provide surgical instruments comprising two or more components. As a first example, a surgical instrument set may be provided in which there is a single handle arranged to couple to a range of other components, for instance a reamer or a positioning tool. The term “surgical instrument” as used herein is intended to refer either to a whole assembled surgical instrument, for instance a handle coupled to a reamer, or to a part of a surgical instrument. For instance, the first component of the surgical instrument may comprise the handle a second component may comprise a clip or latch coupled to the handle and arranged to move relative to the handle to secure the handle to a further component or a further surgical instrument.
As a second example, a first component of a surgical instrument could comprise a handle and a second component could comprise part of an adjustment mechanism, for instance for extending the length of the handle.
For a surgical instrument comprising a handle and a clip arranged to secure the handle to a further component, it is known for the clip to be pivotally coupled to the handle and for a spring to be provided coupled between the handle and the clip and arrange to bias part of the clip away from or towards the handle.
Referring to
a shows the clip 2 being biased under the action of a leaf spring 14 such that latch 8 engages groove 10. The leaf spring 14 is integrally formed with the clip 2. Alternatively, the leaf spring 14 may be integrally formed with the handle 4 or may be a separate component. Similarly,
More generally, surgical instruments commonly comprise springs arranged to bias movement of a first component relative to a second component. Typically, the springs are stock metal components such as the leaf and coil springs described above. Although such springs function well, they give rise to problems when the instrument requires cleaning (for a reusable instrument). Often additional flushing holes and other features must be incorporated into the instrument to enable the springs to be easily cleaned. For instance, in the surgical instruments illustrated in
It is an object of embodiments of the present invention to obviate or mitigate one or more of the problems associated with the prior art, whether identified herein or elsewhere.
According to a first aspect of the present invention there is provided a surgical instrument comprising: a first component; a second component coupled to the first component and arranged to move relative to the first component; and a grip secured to the second component and arranged to be manipulated by a user to move the second component relative to the first component; wherein the grip is formed from an elastomeric material and the instrument further comprises an elastomeric spring portion integrally formed with the grip, the spring portion extending from the grip and arranged to bias relative movement between the first and second components.
An advantage of the present invention is that because the spring portion comprises part of the grip secured to the second component, this reduces the number of separate components and hence the complexity of the surgical instrument. Furthermore, a spring portion formed from an elastomeric material can have a relatively simple shape having a less complex, and potentially smaller surface area than a convention metallic leaf or coil spring, which reduces the potential for contamination of the instrument. Additionally, as the spring portion is integrally formed with the grip, this makes it easier to clean the instrument as there are fewer cavities for dirt to be trapped within. Consequently, there is less need to provide cleaning channels and other such structures.
The grip may overly and surround a portion of the second component and the second component is shaped such that the grip interlocks with the second component to secure the grip to the second component.
The second component may comprise at least one indent or hole passing through the second component and the elastomeric grip material extends into the at least one indent or hole to secure the grip to the second component.
The first component may comprise a handle and the second component may comprise a clip pivotally coupled to the handle and arranged to secure the handle to a further surgical instrument, the spring portion being arranged to bias the clip towards an engaged position in which the further surgical instrument is secured to the handle.
The grip may be shaped to provide an ergonomic grip for a user to manipulate to move the first and second components relative to one another.
The spring portion may be arranged to be compressed as the second component moves from a first position to a second position relative to the first component so that the second component is biased towards the first position.
The spring portion may be shaped to provide a variable spring response as the first and second components move relative to one another.
The spring portion may be shaped to provide a non-linear spring response as the first and second components move relative to one another.
The cross sectional area of the spring portion may vary with distance away from the grip.
According to a second aspect of the present invention there is provided a method of manufacturing a surgical instrument comprising: forming first and second components; moulding an elastomeric material over at least part of the second component to form a grip and an integral spring portion extending from the grip; and coupling the second component to the first component such that the second component can move relative to the first component when the grip is manipulated by a user and the spring portion biases relative movement between the first and second components.
Said step of moulding may form a grip which overlies and surrounds a portion of the second component and the second component is shaped such that the grip interlocks with the second component to secure the grip to the second component.
The method may further comprise forming at least one indent or hole passing into or through the second component such that said step of moulding comprises providing elastomeric material extending into the at least one indent or hole to form the grip and to secure the grip to the second component.
Said step of moulding may comprise: forming a mould surrounding at least part of the grip, the mould being shaped according to the desired shape of the grip including the spring portion; and providing liquid elastomeric material to the mould to form the grip and spring portion.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
a, 1b and 1c illustrate cross sectional views of portions of known surgical instruments incorporating conventional spring components
a illustrates a cross sectional view of a portion of a surgical instrument in accordance with an embodiment of the present invention including an elastomeric grip and spring portion with the spring portion at rest;
b illustrates the cross sectional view of
Referring to
The surgical instrument of
Spring portion 118 is shown at substantially at rest in
The spring portion 118 is integrally formed with the grip 114 and may be formed using a conventional manufacturing process such as injection moulding the elastomeric material. For instance, an elastomeric material such as silicon is injected into a mould surrounding the end of clip 102 so that the material forms around the clip 102 and secures the grip 114 and the spring portion 118 to the clip 102. In order to ensure that the grip 114, and hence the spring portion 118, cannot easily be removed from the clip 102, the clip 102 may be shaped or textured to ensure that the elastomeric material is firmly keyed into the clip. For instance, a hole 120 may be provided passing through the clip 102, or there may be an indent in the surface of the clip 102, into which the elastomeric material flows during moulding. Once set, the grip 114 cannot be simply pulled from the end of the clip 102.
Alternative manufacturing techniques will be well known the appropriately skilled person. For instance, compression or transfer moulding may be used in place of injection moulding.
As discussed above, the spring portion 118 biases the grip 114 away from the handle 104.
The grip 114 provides a tactile grip for the user to engage the clip 102 due to the inherent properties of elastomeric materials. Advantageously, this makes is easier to operate the clip, for instance if covered in blood during an operation. The grip may be made easier still to manipulate by providing a textured surface, as visible in the cross sectional views of
While the present invention has been primarily described above in connection with a spring portion integrally formed with a grip attached to a clip coupled to a handle, the present invention is not limited to this application. More generally, the present invention relates to any surgical instrument, or portion of a surgical instrument, having first and second components coupled together and arranged to move relative to one another where there is a requirement to provide a spring to bias movement of the components and where it is desirable to form the spring integrally with a grip for manipulating one or other of the components. For instance, the present invention could comprise a spring-loaded instrument adjustment mechanism forming part of a surgical instrument.
Components of the instrument other than the grip and the spring portion may be formed from any suitable materials known in the art, for instance a metal such as stainless steel.
The elastomeric grip and spring portion may be coloured to contrast with the remainder of the instrument, or any required colour scheme. Advantageously, this draws the user's attention to the grip making it readily apparent that it is a part of the instrument intended to be operated, thereby making the instrument easier to interpret.
The embodiments of the invention described above relate to an integral elastomeric grip and spring portion in which the spring portion acts under compression to bias relative movement of first and second components of a surgical instrument. However, it will be readily apparent that alternatively the elastomeric spring portion may be arranged to act under extension or shear in order to bias the movement of the two components. In order for the spring portion to act under extension or shear the spring portion may be coupled permanently or temporarily to both components of the instrument.
Further applications of, and modifications to, the present invention will be readily apparent to the appropriately skilled person from the teaching herein without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0921940.3 | Dec 2009 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB10/51869 | 11/10/2010 | WO | 00 | 6/27/2012 |