The present invention relates to an orthopedic brace. In particular, the present invention relates to an elbow-forearm anti-rotation orthosis to immobilize the elbow and wrist or like injuries.
A “Sugar Tong” splint is a splint that is used to immobilize both lower arm bones so there is no motion relative to themselves—in other words an anti-rotation splint of the forearm. The indications for these types of splints are: distal radius or ulna fractures, and fractures of the wrist and elbow. Advantages of the splint are that it greatly restricts rotation of the forearm—supination and pronation of the forearm—while allowing for swelling and providing excellent strength. The name of the splint is derived from its appearance which is reminiscent of sugar tongs used to pick up cubes of sugar.
One of the disadvantages of this conventional sugar tong splint is the time involved and skilled technique required to properly make the splint and apply it to the patient. For example, each sugar tong splint is custom made to fit each patient using components such as adhesive tape, gauze, strips of casting tape, and bandage, which then must be cut to size with scissors and pieced together. Strips of splint or casting material must be selected for the correct dimensions and its length cut to match the patient's arm, moistened sufficiently but not overly, applied precisely to the patient's wrist/forearm/elbow regions, leaving gaps in key areas to accommodate for swelling. The technician must also carefully wrap and smooth out folds and creases, etc., to ensure efficacy and comfort for the patient.
The splint typically includes or is impregnated with hardenable material such as plaster, fiberglass, resin, etc. Thus, applying the splint to the patient correctly and doing so before the hardenable material begins to set, cure, or harden involves a time constraint. Due to this time constraint, once the hardenable material sets, cures, or hardens, no further adjustments can be made to accommodate for increase or decrease in swelling, to increase range of motion of the injured joint, to enable exercising the injured limb, to remove creases or smooth out bunched material, etc.
Thus, having an off-the-shelf bracing system ready to go offers greater ease and flexibility to doctors, cast technicians, and therapist to treat arm fractures more efficiently and effectively at the hospital, clinical, and therapeutic levels.
The present invention in a preferred embodiment is directed to an elbow-forearm anti-rotation support system that does not use hardenable material. As seen in
In the preferred embodiment, the proximal end of the forearm wrap 1 is tapered or bottlenecked to seat at the elbow of the patient, with proximal flaps 3 that come up the back of the upper arm and wrap around the sides of the back of the lower part of the upper arm. Straps 4 are connected to the end of each flap 3 (and can be connected pivotally, they are sewn in this prototype) and cross over the top of the forearm and secure on opposite sides of the forearm with hook means 5. An inner removable malleable aluminum stay 6 with attachment means at each end 7 is secured to the inside back portion of the proximal wrap flaps 3. The malleable aluminum strip is designed to be shaped around the back just above the elbow. A closure strap 8 is also attached to the forearm wrap 1 to assist with initial application. Removable lateral and medial stiffeners are placed inside of pockets that are sewn to the outside of forearm wrap 1, for increased stiffness and support.
Conventional sugar tong casts or splints are used to stabilize injuries of the forearm and wrist by preventing forearm rotation and wrist motion. These casts and splints may further be used to maintain alignment of broken bones or to protect a patient's forearm or wrist after surgery. A conventional sugar tong cast is made from plaster, fiberglass, or like hardenable splinting material, usually in the form of 3-inch or 4-inch wide strips. A skilled technician applies the strips to the patient with his or her palm down on the forearm behind the humerus and back to the top of hand like a stirrup. The present invention system completely replaces the conventional sugar tong cast that must be custom made from strips impregnated with hardenable material.
In the embodiment shown in
Preferred construction materials for the forearm wrap include rigid EVA (ethylene vinyl acetate) foam or other semi-rigid thermoplastic foam with fabric laminated to both sides of the flaps 9. The outer sides of the flaps 9 preferably have a UBL (unbroken loop) fabric that can receive VELCRO® hooks, or have added loops to make it VELCRO® hook receivable. There are optional pockets or compartments for one or more plastic or metal (aluminum) stiffeners 10 on one or both sides of the forearm wrap 1. The plurality of stiffeners 10 embedded within the flaps 9 preferably extend substantially the entire length of the forearm wrap 1. Thus, the stiffeners 10 further improve torsional stability of the forearm wrap 1 and of the entire brace.
In an alternative embodiment, the forearm wrap is made from a laminate with semi-rigid EVA foam on both sides of a malleable aluminum (aluminum in the middle to help retain a molded shape) with fabric on both outer sides of the EVA foam. So a laminated forearm wrap would be constructed with the following: fabric (UBL or other), EVA foam or other semi rigid foam, aluminum (malleable) strip(s), EVA foam or other semi rigid foam, fabric (UBL or other). The laminate panels may be glued, stitched, sewn, welded or likewise joined together.
The distal ends of the proximal flaps 3 each has a respective cross strap 4 used to wrap around the patient's forearm. When the brace is properly applied, the patient's elbow is covered by the soft fabric lining 12, then by the U-shaped reinforcement stay 6, then by the center region of the proximal flaps 3, all of which are secured in place by the cross straps 4. There may be fewer or more than the two cross straps 4 shown. The cross straps 4 are of sufficient length to attach to the exterior of the flaps 9 and/or attach to the wrist-hand orthosis (shown in
As shown in
An optional closure strap 8 extends from one of the forearm flaps 9 across the split or overlap and to the opposite forearm flap 9 to attach to the exterior thereof, preferably via hook and loop fasteners. More closure straps may be added for longer and larger sized forearm wraps. The strap may be replaced by or complemented by a plurality of laces extending from one flap over the split or gap and joined at the opposite end by a common attachment pad covered with VELCRO® hook fasteners.
All straps 4, 8 are preferably padded and made from soft fabric. Their lengths are preferably inelastic, but elastic straps that compress the forearm are contemplated in alternative embodiments. The ends of the straps 4, 8 are sewn to the base structure and the free distal ends of the straps are anchored to their intended attachment surface via hook and loop fasteners, but hooks, buckles, buttons, snaps, D-rings, laces and eyelets, and the like or any combination thereof, are contemplated.
As seen in
Further, the anti-rotation connective means 2 should have sufficient purchase of the wrist-hand orthosis, cast, or splint to minimize relative rotation between the two braces. If hook and loop fasteners are used, they should preferably be large panels for a positive contact to the splint or cast that resists and immobilizes twisting in the patient's forearm and wrist. This feature thus limits the amount of forearm pronation or supination to help with rehabilitation. Instead of hook and loop fasteners, the connective means in alternative embodiments may be snaps, laces and eyelets, D-rings, hooks, zippers, buckles or catches with belts, and the like, or any combination thereof.
Beneficially, the preferred embodiments of the forearm wrap 1 and its components and attachments shown in
It is contemplated that the patient may already be fitted with a wrist cast, short arm cast, thumb spica cast, or the like. So the patient can wear the existing cast and be fitted with the present invention sugar tong brace as described above. To do this, hook and loop fasteners or mechanical fasteners can be applied to the proximal end of the cast for attachment to the connective means 2 to minimize twisting between the two braces. This limits the amount of unwanted forearm pronation or supination. During the final stage of patient rehabilitation, the cast can be replaced with, for example, the hand-wrist orthosis shown in
While particular forms of the invention have been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. It is contemplated that disclosed embodiments and their components may be combined with other disclosed embodiments and their components.
This application claims priority to U.S. provisional patent application No. 61/883,826, filed Sep. 27, 2013, by the same inventors, the contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1643850 | Jones | Sep 1927 | A |
4235228 | Gaylord et al. | Nov 1980 | A |
5456659 | Gildersleeve | Oct 1995 | A |
7314457 | Reaux | Jan 2008 | B2 |
7329229 | Scheinberg | Feb 2008 | B2 |
7988653 | Fout | Aug 2011 | B2 |
8608677 | Motyer | Dec 2013 | B2 |
20030078530 | Wolfe | Apr 2003 | A1 |
20040002671 | Reaux | Jan 2004 | A1 |
20050234374 | Grim | Oct 2005 | A1 |
20090293884 | DaSilva | Dec 2009 | A1 |
20100210985 | Kuorak | Aug 2010 | A1 |
20100217168 | King | Aug 2010 | A1 |
20120184887 | Wynne | Jul 2012 | A1 |
20120215146 | Dao | Aug 2012 | A1 |
20130211304 | Romo | Aug 2013 | A1 |
20130296757 | Kaphingst | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
0439552 | Mar 1995 | EP |
Number | Date | Country | |
---|---|---|---|
61883826 | Sep 2013 | US |