1. Field of the Invention
The present invention relates to an electric actuator capable of making rectilinear reciprocating motion of a displaceable member under a rotary driving action of a rotary driving source.
2. Description of the Related Art
A transport mechanism such as an actuator has been conventionally used, for example, in order to transport a workpiece.
A conventional electric actuator is shown in
The conventional electric actuator 1 includes a slider 4 which is displaceable along a recess 3 of a frame 2, and a screw shaft 6 which is driven by an unillustrated motor and which is screwed to a nut member 5 that is detachable with respect to the slider 4. Screw shaft support members 7a, 7b, which rotatably support the screw shaft 6, are provided at both ends of the screw shaft 6. The screw shaft support members 7a, 7b are attached to an upper surface 8 of the frame 2.
The rigidity of the conventional electric actuator 1, as described above, is secured by the frame 2 which is formed of, for example, a metal material such as aluminum. If, however, the frame 2 is removed from the electric actuator 1 to reduce the number of parts and to lighten the weight, it will become difficult to secure the rigidity of the electric actuator 1.
A general object of the present invention is to provide an electric actuator which makes it possible to reduce the number of parts and lighten the weight without the need for a frame.
The above and other objects, features, and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings in which a preferred embodiment of the present invention is shown by way of illustrative example.
With reference to FIGS. 1 to 3, reference numeral 10 indicates an electric actuator according to an embodiment of the present invention.
The electric actuator 10 comprises a housing 12 having a substantially flat block member, a rotary driving source 14 which is connected to one end of the housing 12, a rod cover (end block) 16 which is separated from the housing 12 at a predetermined distance, and which is disposed on the opposite side of the rotary driving source 14, and a feed screw shaft (driving force-transmitting shaft) 18 which transmits the rotary driving force of the rotary driving source 14 via a coupling member.
The electric actuator 10 further comprises a pair of guide rods 20a, 20b, a piston 22, a hollow cylindrical piston rod 24, and a socket 26. The guide rods 20a, 20b are arranged in parallel to one another with the feed screw shaft 18 disposed in-between. Each of the guide rods 20a, 20b has one end connected to the housing 12 and the other end connected to the rod cover 16. The piston 22 comprises a feed nut which is moves along the pair of guide rods 20a, 20b under the action of the rotary driving force transmitted by the feed screw shaft 18. The piston rod 24 penetrates through a hole 23 of the rod cover 16 and moves back and forth integrally with the piston 22. The socket 26 is installed to the forward end of the piston rod 24 to close the hole.
The piston 22 and the piston rod 24 function as displaceable members.
In this arrangement, when the piston rod 24 is removed from the piston 22 to use another rod cover 16a in which the hole 23 for the penetration of the piston rod 24 is closed, it is possible to change the rod type electric actuator to a slide table type electric actuator 10a which is used to connect an unillustrated slide table to the piston 22 (see
As for the surface treatment for the feed screw shaft 18, it is preferable to apply an electroless nickel plating treatment.
As shown in
As shown in
In this arrangement, the bearing 38 and the spacer 40 are inserted into the end of the feed screw shaft 18, and then the fastening member 42 is pressed along the end of the feed screw shaft 18. Accordingly, the tongues 46 encircle and fasten the end of the feed screw shaft 18.
As shown in
When producing the piston 22, it is preferable to use a material containing nodular or spheroidal graphite and carbon fiber in a resin material such as PBT or polyacetal. The nodular graphite makes it possible to improve abrasion resistance characteristics by lowering the coefficient of dynamic friction. The carbon fiber makes it possible to retain the mechanical strength at a minimum required strength by enhancing the dimensional stability by preventing any deformation, which would be otherwise be caused by the heat generated upon sliding movement.
The following values are required for the mechanical characteristics.
As for the grease, it is preferable to use those of aromatic diurea compound, or olefinic lithium soap with a kinematic viscosity of 100 cs. These compounds are compatible with the materials as described above, and it is possible to effectively increase the duration of the traveling motion.
Guide sections 52 (see
All of the housing 12, the piston 22, and the rod cover 16 are formed to have a similar flat shape when viewed from the axial direction. The dimension in the height direction is decreased as compared with the conventional box-shaped contour (see
The electric actuator 10 according to the embodiment of the present invention is basically constructed as described above. Next, its operation, function, and effect will be explained.
When an unillustrated power source is energized, the rotary driving force of the rotary driving source 14 is transmitted to the feed screw shaft 18 via the coupling member 28. The feed screw shaft 18, which is rotated in the predetermined direction, is screwed into the screw hole of the piston 22 as the feed nut. Accordingly, the piston 22 is displaced in the axial direction integrally with the piston rod 24 under the guiding action of the pair of guide rods 20a, 20b. When the polarity of the current flowing through the rotary driving source 14 is reversed, the piston 22 and the piston rod 24 can be operated in the direction opposite to the above.
In the embodiment of the present invention, the actuator is driven by a motor, which used in the same way as using an air cylinder, even in an environment in which there is no compressed air or compressed air cannot be used.
In this case, the phrase “used in the same way as using an air cylinder” refers to, for example, the fact that the actuator is driven on the basis of the ON/OFF control, no controller is required, abutment operation can be performed for the piston 22, the actuator can be driven without any sensor for detecting the position of the piston, and ability to control the speed and the thrust force of the piston 22 and the piston rod 24.
In the embodiment of the present invention, the rigid body 2 used in the conventional technique is unnecessary, and the pair of parallel guide rods 20a, 20b are used to secure predetermined rigidity. Accordingly, production cost can be reduced by decreasing the number of parts, and the weight of the electric actuator is lightened.
The method for producing the housing 12 and the rod cover 16 may include, for example, integrated forming with aluminum die-casting, resin forming, and sheet metal deep drawing. Alternatively, it is preferable to use, for example, stacked steel plates integrally formed by staking a plurality of steel plates as shown in
For the rotary driving source 14, it is preferable to use, for example, a DC brush-equipped motor, a DC brushless motor, a stepping motor, or an AC servomotor.
For the feed screw shaft 18, it is preferable to use, for example, a slide screw shaft made of resin, a slide screw shaft made of metal, or a ball screw shaft. Alternatively, it is also preferable to use, for example, a timing belt run over pulleys.
Next, an electric actuator according to another embodiment installed with a cover member is shown in FIGS. 11 to 16. The same constitutive components or parts as those of the electric actuator 10 shown in
In an electric actuator 60 shown in
An electric actuator 70 shown in
An electric actuator 80 shown in
The pair of sensor attachment grooves 82 are formed on the cover members 62, 74 and the sensor rails 84a, 84b. A variety of sensors including, for example, proximity sensors and photomicrosensors are installed to the sensor attachment grooves 82. In
Next, an electric actuator 90 having a rectangular box-shaped frame 92 is shown in FIGS. 17 to 19.
The electric actuator 90 comprises a frame 92 which has four sensor attachment grooves 82 formed therein which extend along the axial direction, a feed screw shaft 18 which transmits the rotary driving force of a rotary driving source 94, a feed nut section 96 which is screwed with the feed screw shaft 18, and a rod section 98 which is connected to the feed nut section 96 and which has a part exposed outside of the frame 92.
Although certain preferred embodiments of the present invention have been shown and described in detail, it should be understood that various changes and modifications may be made therein without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-274928 | Jul 2003 | JP | national |