The present invention relates to an electric actuator.
In recent years, electrification of automobiles and the like has been promoted for power saving and reduction in fuel consumption. For example, a system for operating an automatic transmission, a brake, a steering wheel, and the like of the automobile with use of power of an electric motor has been developed and brought to the market. As an electric actuator for use in such an application, there has been known an electric linear actuator employing a ball screw mechanism configured to convert a rotary motion of a motor into a motion in a linear direction.
For example, as illustrated in
Incidentally, in the electric linear actuator disclosed in Patent Literature 1, in order to support the nut 202, two rolling bearings 600 and 700 are arranged on both sides of the nut 202 while sandwiching the second gear 502. However, in the case in which the rolling bearings 600 and 700 are arranged at such positions, when other component parts are to be arranged around the ball screw 200, such a restriction in terms of layout that interference with the respective rolling bearing 600 and 700 needs to be prevented on the both sides of the second gear 502 is imposed, which may pose a problem in size reduction or design change.
The present invention has been made in view of the above-mentioned problem, and therefore has an object to provide an electric actuator capable of achieving size reduction and increase in degree of freedom in design.
As a technical measure to attain the above-mentioned object, according to one embodiment of the present invention, there is provided an electric actuator, comprising: a drive part; a motion conversion mechanism part configured to convert a rotary motion from the drive part to a linear motion in an axial direction parallel with an output shaft of the drive part; a driving force transmission part comprising a transmission gear mechanism configured to transmit a driving force from the drive part to the motion conversion mechanism part; and a motion-conversion-mechanism support part comprising a double-row bearing configured to support the motion conversion mechanism part, wherein the double-row bearing is arranged on one side in the axial direction with respect to the transmission gear mechanism.
Through the arrangement of the double-row bearing on the one side with respect to the transmission gear mechanism in the axial direction in such a manner, there is no need to consider interference between the double-row bearing and other component parts on the side on which the double-row bearing is not arranged. Accordingly, the degree of freedom in design of the component layout thus increases, and the downsizing can also be attained.
Further, the double-row bearing is arranged on the opposite side of the drive part with respect to the transmission gear mechanism. Thus, the drive part can be arranged close to the motion conversion mechanism part in a direction orthogonal to the axial direction thereof on the side on which the double-row bearing is not arranged. With this, an axis-to-axis distance between the drive part and the motion conversion mechanism part can be reduced, and downsizing of the electric actuator can thus be attained.
It is desired that the double-row bearing comprise a double-row angular contact ball bearing. In this case, the double-row bearing can bear a radial load as well as axial loads in both directions, and can thus stably and reliably support the motion conversion mechanism part.
Further, it is desired that the double-row angular contact ball bearing have a back-to-back configuration. This case is advantageous also with respect to a moment load.
Moreover, the electric actuator may comprise a stroke sensor configured to detect a stroke of the linear motion of the motion conversion mechanism part. In this case, the stroke sensor can be arranged on the opposite side of the double-row bearing with respect to the transmission gear mechanism, and the stroke sensor can thus be arranged without considering interference with the double-row bearing.
Moreover, the electric actuator may comprise a boot configured to prevent a foreign substance from entering the motion conversion mechanism part. In this case, the boot can be arranged on the opposite side of the double-row bearing with respect to the transmission gear mechanism, and the boot can thus be arranged without considering interference with the double-row bearing.
The drive part may comprise a driving motor and a motor case configured to accommodate the driving motor. In this case, an outer peripheral surface of the motor case on a side of the motion conversion mechanism part is arranged at a position closer to the motion conversion mechanism part than a position of an imaginary plane of an extension in the axial direction of an outer peripheral surface of the double-row bearing. Thus, an axis-to-axis distance between the driving motor and the motion conversion mechanism part can be reduced, and downsizing of the electric actuator can thus be attained.
According to one embodiment of the present invention, the electric actuator capable of achieving the size reduction and the increase in degree of freedom in design can be provided.
Now, description is made of the present invention with reference to the accompanying drawings. In the respective drawings for illustrating the present invention, components such as members and component parts having the same functions or shapes are denoted by the same reference symbols as long as the components can be distinguished, and description thereof is therefore omitted after the description is made once.
As illustrated in
Each of the parts forming the electric actuator 1 has a case. Component parts are accommodated in each of the cases. Specifically, the motor part 8 comprises a motor case 11 configured to accommodate a driving motor 10. The speed reduction mechanism part 9 comprises a speed reduction gear case 17 configured to accommodate a speed reduction gear mechanism 16. Moreover, the driving force transmission part 4 comprises a transmission gear case 29 configured to accommodate a transmission gear mechanism 28. The motion-conversion-mechanism support part 5 comprises a bearing case 41 configured to accommodate a support bearing 40. Further, respective pairs of the motor part 8 and the speed reduction mechanism part 9, the speed reduction mechanism part 9 and the driving force transmission part 4, and the driving force transmission part 4 and the motion-conversion-mechanism support part 5 are configured to be capable of being coupled to and decoupled from one another while the pairs are accommodated in the cases. Further, a shaft case 50 is configured to be capable of being coupled to and decoupled from the bearing case 41. Now, description is made of detailed configurations of the respective parts forming the electric actuator 1.
The motor part 8 mainly comprises the driving motor (DC motor) 10 and the motor case 11. The driving motor 10 is configured to drive the motion conversion mechanism part 3. The motor case 11 is configured to accommodate the driving motor 10. The motor case 11 comprises a case main body 12 and a projecting portion 13. The case main body 12 has a bottomed cylindrical shape, and is configured to accommodate the driving motor 10 therein. The projecting portion 13 projects from a bottom portion 12a of the case main body 12 to the outside. The projecting portion 13 has a hole portion 13a which communicates to an internal space of the case main body 12. The hole portion 13a is sealed by a seal member 14 that is made of resin and covers an outer surface of the projecting portion 13.
Under a state in which the driving motor 10 is inserted from an opening portion 12d of the case main body 12 into an inside of the case main body 12, an end surface of the driving motor 10 on an inner side in an insertion direction is held in abutment against the bottom portion 12a of the case main body 12. Moreover, a fitting hole 12c is formed in a center portion of the bottom portion 12a. A projection 10b of the driving motor 10 in the inner side in the insertion direction is fitted to the fitting hole 12c, thereby preventing interference of a rear end (left end portion in
Moreover, as illustrated in
Next, description is made of the speed reduction mechanism part 9.
As illustrated in
The speed reduction gear case 17 has an accommodating recessed portion 17a configured to accommodate the planetary-gear speed reduction mechanism 18 from an opposite side of the driving motor 10. Moreover, the speed reduction gear case 17 is formed so as to enable a motor adaptor 19 serving as a motor mounting member to be mounted thereto. The motor adaptor 19 is a tubular member, and a projection 10d of the driving motor 10 on an output side (right side in
The speed reduction gear case 17 is configured to be capable of being fitted to the motor case 11 and the transmission gear case 29 described later and arranged on the opposite side of the motor case 11. A portion of the speed reduction gear case 17 arranged on the motor case 11 side is internally fitted to the opening portion 12d side of the motor case 11. A portion of the speed reduction gear case 17 arranged on the transmission gear case 29 side is externally fitted to the transmission gear case 29. Moreover, the speed reduction gear case 17 is fastened to the driving motor 10 through bolts 21 (see
Next, description is made of the motion conversion mechanism part 3.
The motion conversion mechanism part 3 is formed of a ball screw 22. The ball screw 22 mainly comprises a ball screw nut 23, a ball screw shaft 24, a large number of balls 25, and deflectors 26. The ball screw nut 23 serves as a rotary body. The ball screw shaft 24 is a shaft portion performing a linear motion. The deflectors 26 serve as circulation members. Spiral grooves 23a and 24a are respectively formed in an inner peripheral surface of the ball screw nut 23 and an outer peripheral surface of the ball screw shaft 24. The balls 25 are loaded between both of the spiral grooves 23a and 24a, and the deflectors 26 are assembled therebetween. With this configuration, the balls 25 in two rows circulate.
The ball screw nut 23 receives the driving force from the driving motor 10, to thereby rotate in a forward direction or a backward direction. Meanwhile, the rotation of the ball screw shaft 24 is restricted by a pin 27 that is provided on a rear end portion (right end portion in
Next, description is made of the driving force transmission part 4.
The driving force transmission part 4 mainly comprises the transmission gear mechanism 28 and the transmission gear case 29. The transmission gear mechanism 28 is configured to transmit the driving force from the driving motor 10 of the drive part 2 to the ball screw 22 being the motion conversion mechanism part 3. The transmission gear case 29 is configured to accommodate the transmission gear mechanism 28. The transmission gear mechanism 28 comprises a drive gear 30 on a drive side and a driven gear 31 on a driven side meshing with the drive gear 30.
A gear boss 32 is press-fitted to a rotation center portion of the drive gear 30. The drive gear 30 is rotatably supported through intermediation of the gear boss 32 by two rolling bearings 33 and 34 mounted to both the transmission gear case 29 and the bearing case 41 described later. Meanwhile, the driven gear 31 is press-fitted and fixed to the outer peripheral surface of the ball screw nut 23. When the driving force from the driving motor 10 is transmitted to the drive gear 30 through intermediation of the planetary-gear speed reduction mechanism 18, the driven gear 31 and the ball screw nut 23 integrally rotate, and the ball screw shaft 24 advances and retreats.
The transmission gear case 29 comprises an accommodating recessed portion 29a configured to accommodate the drive gear 30 and the driven gear 31 therein. Moreover, the transmission gear case 29 has an insertion hole 29b through which the gear boss 32 is inserted. On an inner peripheral surface of the insertion hole 29b, there is formed a bearing mounting surface 29c to which the one rolling bearing 33 configured to support the gear boss 32 is mounted. Moreover, the transmission gear case 29 comprises an annular projection 29d fitted to an inner peripheral surface of the speed reduction gear case 17. In an outer peripheral surface (fitting surface) of the annular projection 29d, there is formed a mounting groove 29e configured to mount an O ring 35. Moreover, in a surface of the transmission gear case 29 on the bearing case 41 side, there is formed a fitting recessed portion 29f in a groove form fitted to the bearing case 41.
Moreover, the transmission gear case 29 comprises a cylindrical portion 29g projecting toward a distal end portion side (left side in
Next, description is made of the motion-conversion-mechanism support part 5.
The motion-conversion-mechanism support part 5 mainly comprises the support bearing 40 and the bearing case 41. The support bearing 40 is configured to support the ball screw 22 being the motion conversion mechanism part 3. The support bearing 40 is formed of a double-row angular contact ball bearing mainly comprising an outer ring 42, an inner ring 43, double-row balls 44, and a retainer (not shown). The outer ring 42 has double-row raceway surfaces 42a formed on an inner peripheral surface. The inner ring 43 has double-row raceway surfaces 43a formed on an outer peripheral surface. The balls 44 are interposed between the raceway surfaces 42a and 43a. The retainer is configured to retain the balls 44.
The support bearing 40 is accommodated in a sleeve 45 formed integrally with the bearing case 41, and is fixed through a snap ring 46 mounted to an inner peripheral surface of the sleeve 45. Moreover, the support bearing 40 is fixed by being press-fitted to an outer peripheral surface of the ball screw nut 23 on a rear end side (right side in
On the transmission gear case 29 side of the bearing case 41, there is formed a protruding portion 41a configured to be fitted to the fitting recessed portion 29f of the transmission gear case 29. Moreover, on the transmission gear case 29 side of the bearing case 41, there is formed a gear boss accommodating portion 41b configured to accommodate a part of the gear boss 32 projecting from the transmission gear case 29 under a state in which the bearing case 41 is fitted to the transmission gear case 29. On an inner peripheral surface of the gear boss accommodating portion 41b, there is formed a bearing mounting surface 41c which is configured to mount the rolling bearing 34 configured to support the gear boss 32.
On an opposite side of the bearing case 41 with respect to the transmission gear case 29 side, the shaft case 50 having a bottomed tubular shape configured to accommodate a rear end portion side (right end portion side in
As illustrated in
Now, description is made of the planetary-gear speed reduction mechanism 18 with reference to
The planetary-gear speed reduction mechanism 18 comprises a ring gear 55, a sun gear 56, a plurality of planetary gears 57, a planetary gear carrier 58 (see
The sun gear 56 is arranged at the center of the ring gear 55. The output shaft 10a of the driving motor 10 is press-fitted to the sun gear 56. Moreover, the respective planetary gears 57 are arranged between the ring gear 55 and the sun gear 56 so as to mesh with the ring gear 55 and the sun gear 56. The respective planetary gears 57 are rotatably supported by the planetary gear carrier 58 and the planetary gear holders 59. The planetary gear carrier 58 comprises a cylindrical portion 58a at its center portion. The cylindrical portion 58a is press-fitted between an outer peripheral surface of the gear boss 32 and an inner peripheral surface of the rolling bearing 33 (see
In the planetary-gear speed reduction mechanism 18 having the configuration described above, when the driving motor 10 performs the rotational drive, the sun gear 56 coupled to the output shaft 10a of the driving motor 10 rotates, and, along with this rotation, the respective planetary gears 57 revolve along the ring gear 55 while rotating. Then, the planetary gear carrier 58 is rotated by the revolving motion of the planetary gears 57. With this, the rotation of the driving motor 10 is reduced in speed and transmitted to the drive gear 30, and a rotation torque increases. When the driving force is transmitted through the planetary-gear speed reduction mechanism 18 in such a manner, a high output of the ball screw shaft 24 can be obtained, and downsizing of the driving motor 10 can be attained.
Next, description is made of the lock mechanism part 7 with reference to
The lock mechanism part 7 mainly comprises a lock member 60, a sliding screw nut 61, a sliding screw shaft 62, a lock-member fixation plate 63, a locking motor (DC motor) 64, and a spring 65. When the lock mechanism part 7 is to be assembled, first, the lock member 60 is fastened to the sliding screw nut 61 through intermediation of the lock-member fixation plate 63 with bolts 84 (see
The holder portion 66 is formed into a bottomed tubular shape, and a cap 67 is mounted on an opposite side of a bottom portion 66a thereof. The locking motor 64 is held in abutment against the bottom portion 66a of the holder portion 66 and an inner surface of the cap 67 under a state in which the locking motor 64 is inserted into the holder portion 66 and the cap 67 is mounted. Moreover, under this state, a projection 64b of the locking motor 64 on an output side (left side in
Lock-mechanism accommodating recessed portions 66d and 41f are respectively formed in a portion of the shaft case 50 at which the holder portion 66 is formed and a portion of the bearing case 41 opposed thereto. A through hole 41g is formed in the lock-mechanism accommodating recessed portion 41f on the bearing case 41 side. As illustrated in
The drive gear 30 is arranged in the advancing direction of the lock member 60. The drive gear 30 has engagement holes 30a with which the distal end portion of the lock member 60 can be engaged. As illustrated in
A lock sensor 69 configured to detect a locking state is mounted to the bearing case 41 (see
Now, description is made of an operation of the lock mechanism part 7.
When power is not supplied to the locking motor 64, the lock member 60 is held at the advanced position by the spring 65, and is in the locking state in which the distal end portion of the lock member 60 is engaged with the engagement hole 30a of the drive gear 30. When the power is supplied to the driving motor 10 in order to start the driving of the ball screw shaft 24 in this state, the power is also supplied to the locking motor 64, and the locking motor 64 drives the lock member 60 in a retreating direction. With this, the sliding screw shaft 62 rotates. Meanwhile, the rotation of the sliding screw nut 61 is restricted through the insertion of the flat-plate-shaped distal end portion of the lock member 60 into the through hole 41g. Thus, when the sliding screw shaft 62 rotates, the sliding screw nut 61 retreats against the urging force of the spring 65, and the lock member 60 retreats integrally with the sliding screw nut 61. With this, the distal end portion of the lock member 60 is disengaged from the engagement hole 30a of the drive gear 30, and the locking state is thus released. In this way, while the ball screw shaft 24 is being driven, the lock member 60 is held at the retreated position, and the drive gear 30 is thus held in the unlocked state.
After that, when the supply of power to the driving motor 10 is shut off and the drive of the ball screw shaft 24 is thus stopped, the supply of power to the locking motor 64 is also shut off. With this, the driving force for causing the lock member 60 to retreat is no longer generated, and the lock member 60 is thus pushed to move in the advancing direction by the spring 65. Then, the locking state is brought about through the engagement of the distal end portion of the lock member 60 with the engagement hole 30a of the drive gear 30, thereby restricting the rotation of the drive gear 30.
Through restriction of the rotation of the drive gear 30 by the lock member 60 in such a manner, the ball screw shaft 24 is held in the state in which the ball screw shaft 24 does not retreat. With this, even when an external force is input from the object device to be operated to the ball screw shaft 24 side, a position of the ball screw shaft 24 can be held at a predetermined position. This configuration is particularly preferred for a case in which the electric actuator is applied to an application that requires holding a position of the ball screw shaft 24.
In this embodiment, the lock member 60 is caused to retreat by driving the locking motor 64. Conversely, the locking motor 64 may be driven to cause the lock member 60 to advance. Moreover, the lock member 60 may be caused to advance and retreat by rotating the locking motor 64 forward and backward.
A stroke sensor 70 configured to detect a stroke of the ball screw shaft 24 is mounted to the electric actuator 1 of this embodiment (see
Next, with reference to
As illustrated in
When the driving motor 10 receives the control signal, the driving motor 10 starts the rotational drive, and the driving force thereof is transmitted to the ball screw shaft 24 through intermediation of the planetary-gear speed reduction mechanism 18, the drive gear 30, the driven gear 31, and the ball screw nut 23, and the ball screw shaft 24 thus advances. With this, the object device to be operated arranged on the distal end portion side (actuator head side) of the ball screw shaft 24 is operated.
At this time, the stroke value (position in the axial direction) of the ball screw shaft 24 is detected by the stroke sensor 70. The detection value detected by the stroke sensor 70 is transmitted to a comparison portion 82 of the control device 80, and a difference between the detection value and the target value is calculated. Then, the driving motor 10 is driven until the detection value matches the target value. When the electric actuator 1 of this embodiment is applied to, for example, a shift-by-wire system, a shift position can reliably be controlled by feeding back the stroke value detected by the stroke sensor 70 to control the position of the ball screw shaft 24 in such a manner.
Next, with reference to
As illustrated in
An operation pressure of the ball screw shaft 24 at this time is detected by the pressure sensor 83, and the position of the ball screw shaft 24 is subjected to the feedback control based on the detection value and the target value as in the case of the use of the stroke sensor 70. When the electric actuator 1 of this embodiment is applied to, for example, a brake-by-wire system, a hydraulic pressure of a brake can reliably be controlled by feeding back the pressure value detected by the pressure sensor 83 to control the position of the ball screw shaft 24 in such a manner.
The configuration and the operation of the electric actuator 1 of this embodiment are as described above. Now, description is made of components suitable for downsizing and increase in degree of freedom in design relating to the electric actuator 1 of this embodiment.
As illustrated in
Specifically, in this embodiment, through the arrangement of the support bearing 40 on an opposite side of the drive part 2 with respect to the driven gear 31, the drive part 2 can be arranged close to the ball screw 22 in a direction (radial direction) orthogonal to the axial direction thereof. Unlike this embodiment, when the support bearing 40 is arranged on the drive part 2 side, in order to prevent interference with the outer peripheral surface of the support bearing 40, the drive part 2 needs to be arranged at a position separated farther from the ball screw 22 in the radial direction than a position of a long dashed short dashed line a illustrated in
In contrast, as in this embodiment, when the support bearing 40 is arranged on the opposite side of the drive part 2, the support bearing 40 is not present on the drive part 2 side. Therefore, an outer peripheral surface of the drive part 2 (motor case 11) on the ball screw 22 side can be arranged closer to the ball screw 22 than the position indicated by the long dashed short dashed line a in the radial direction. With this, the axis-to-axis distance between the driving motor 10 and the ball screw shaft 24 is reduced, and downsizing of the electric actuator 1 in the vertical direction can be attained. Moreover, the support bearing 40 is not arranged on the drive part 2 side. Thus, as in this embodiment, a space not used for the arrangement may be used to arrange the boot 36, the boot cover 39, the cylindrical portion 29g to which the boot 36 is mounted, the stroke sensor 70, the permanent magnet 73 serving as the target, and the like.
Moreover, in this embodiment, in order to achieve a stable cantilever configuration for the ball screw 22, the double-row angular contact ball bearing is used as the support bearing 40. Any of the balls 44 in the double rows are in contact with the raceway surfaces 42a of the outer ring 42 and the raceway surfaces 43a of the inner ring 43 at contact angles, and the double-row angular contact ball bearing can thus bear a radial load as well as axial loads in the both directions, and can stably and reliably support the ball screw 22 performing the linear motion. The contact angle is an angle formed between a plane (radial plane) perpendicular to a center axis of the bearing and a line of action (long dashed short dashed line passing through the center of each of the balls 44 illustrated in
In the support bearing 40 of this embodiment, a preload does not act on the balls 44, and gaps between the respective raceway surfaces 42a and 43a of the outer ring 42 and the inner ring 43 and the balls 44 are positive gaps. Moreover, conversely, a preload may be applied to the balls 44, thereby forming negative gaps.
The electric actuator 1 illustrated in
Also in the electric actuator 1 illustrated in
As described above, according to one embodiment of the present invention, the size reduction and the increase in degree of freedom in design of the electric actuator can be achieved. Thus, the design of the electric actuator can be easily changed in accordance with various applications and usages. Thus, the configuration of the electric actuator according to one embodiment of the present invention is preferred for series production and multiple-type deployment of the electric actuator adapted to applications and usages such as an electric parking brake mechanism for vehicles including two-wheeled vehicles, an electric/hydraulic brake mechanism, an electric shift change mechanism, and an electric power steering as well as a 2WD/4WD electric switching mechanism and an electric shift change mechanism for an outboard engine (for a vessel propulsion engine).
In the above-mentioned embodiment, description is made of the example employing the double-low angular contact ball bearing as the support bearing 40. However, the support bearing 40 is not limited to this type of bearing, and a pair of single-row angular contact ball bearings may be used in combination. Moreover, as the support bearing 40, in addition to the angular contact ball bearing, another double-row bearing using, for example, a deep groove ball bearing may be applied. Even in the case in which such a double-row bearing is used, the increase in degree of freedom in design and downsizing can be attained thorough the support of the ball screw 22 by the double-row bearing on the one side with respect to the driven gear 31 as in the case described above. Moreover, the support bearing 40 may be formed so that the outer ring 42 is formed integrally with the bearing case 41, or the inner ring 43 is formed integrally with the ball screw nut 23.
The motion conversion mechanism part 3 is not limited to the ball screw 22, and may be a sliding screw device. However, the ball screw 22 is more preferred in terms of reducing the rotation torque and downsizing the driving motor 10.
The speed reduction mechanism part 9 may be a speed reduction mechanism other than the planetary-gear speed reduction mechanism 18. Moreover, the rotational drive may be transmitted at a constant speed or transmitted at a reduced speed between the drive gear 30 and the driven gear 31.
The present invention is not limited to the above-mentioned embodiments. As a matter of course, the present invention may be carried out in various modes without departing from the spirit of the present invention. The scope of the present invention is defined in claims, and encompasses equivalents described in claims and all changes within the scope of claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2016-069065 | Mar 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/011441 | 3/22/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/170035 | 10/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2949036 | Ellis | Aug 1960 | A |
3216264 | Lloyd | Nov 1965 | A |
3382954 | Charlson | May 1968 | A |
3517781 | Weerd | Jun 1970 | A |
3532001 | Dunn | Oct 1970 | A |
3742772 | Makovec | Jul 1973 | A |
4535998 | Katz | Aug 1985 | A |
4537289 | VonGrunberg | Aug 1985 | A |
4709789 | Czich | Dec 1987 | A |
4747319 | Sakuta | May 1988 | A |
4754854 | Adachi | Jul 1988 | A |
4777361 | Affa | Oct 1988 | A |
4916423 | Sugiyama | Apr 1990 | A |
5029401 | Masom | Jul 1991 | A |
5231352 | Huber | Jul 1993 | A |
7202658 | Ketelaars | Apr 2007 | B2 |
7537080 | Murakami | May 2009 | B2 |
8141445 | Yoshioka | Mar 2012 | B2 |
20030000766 | Tatewaki | Jan 2003 | A1 |
20050150873 | Schmitt-Walter | Jul 2005 | A1 |
20060213298 | Tateishi | Sep 2006 | A1 |
20070151794 | Mizutani | Jul 2007 | A1 |
20110271793 | Hatano | Nov 2011 | A1 |
20120186896 | Yamamoto | Jul 2012 | A1 |
20120247240 | Kawahara | Oct 2012 | A1 |
20130112022 | Shimizu | May 2013 | A1 |
20130118827 | Imanishi | May 2013 | A1 |
20130249335 | Motoda | Sep 2013 | A1 |
20140008905 | Rudy | Jan 2014 | A1 |
20140157918 | Ikeda | Jun 2014 | A1 |
20140238168 | Ikeda | Aug 2014 | A1 |
20140245848 | Ikeda | Sep 2014 | A1 |
20140291062 | Tojo | Oct 2014 | A1 |
20140345966 | Asakura et al. | Nov 2014 | A1 |
20140352466 | Ikeda | Dec 2014 | A1 |
20150101428 | Mizuuchi | Apr 2015 | A1 |
20150211624 | Pasaribu | Jul 2015 | A1 |
20150240922 | Parker | Aug 2015 | A1 |
20160195115 | Fenn | Jul 2016 | A1 |
20160319922 | Fukunaga | Nov 2016 | A1 |
20170050669 | Asakura | Feb 2017 | A1 |
20170088251 | Nfonguem | Mar 2017 | A1 |
20170089435 | Tsai | Mar 2017 | A1 |
20170145727 | Yamagata | May 2017 | A1 |
20170291590 | Shigeta | Oct 2017 | A1 |
20170350479 | Shimizu | Dec 2017 | A1 |
20180313438 | Yamasaki | Nov 2018 | A1 |
20190264789 | Shimizu | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
102006009829 | Sep 2006 | DE |
2 856 452 | Dec 2004 | FR |
62-270861 | Nov 1987 | JP |
2008-95913 | Apr 2008 | JP |
2008-116037 | May 2008 | JP |
2009-44888 | Feb 2009 | JP |
5243018 | Jul 2013 | JP |
2014-189060 | Oct 2014 | JP |
2014-227048 | Dec 2014 | JP |
2015-89694 | May 2015 | JP |
2015-89717 | May 2015 | JP |
2015-174481 | Oct 2015 | JP |
2015-178329 | Oct 2015 | JP |
2016-30479 | Mar 2016 | JP |
WO-2007064271 | Jun 2007 | WO |
Entry |
---|
Extended European Search Report dated Oct. 30, 2019 in corresponding European Patent Application No. 17774576.7. |
International Preliminary Report on Patentability dated Oct. 2, 2018 in International (PCT) Application No. PCT/JP2017/011441. |
International Search Report dated Jun. 20, 2017 in International (PCT) Application No. PCT/JP2017/011441. |
Notice of Reasons for Refusal dated Jun. 17, 2020 in corresponding Japanese Patent Application No. 2016-069065, with Machine Translation. |
Number | Date | Country | |
---|---|---|---|
20190092399 A1 | Mar 2019 | US |