The present invention relates to a protection device used in a high-voltage area which can detect an abnormal phenomenon produced by an electric arc discharge effect, and trigger a control signal to stop the high-voltage output in the high-voltage area.
The so-called “Arc Discharge” phenomenon refers to the situation of producing an arc electric spark between two electrodes, when these two electrodes having high voltage between themself are pushed towards each other until they reach a certain distance apart. Such situation is very similar to the lightning produced in a thundercloud, except the lightning fleets and the spark between two electrodes remains for a long time, which will accumulate heat.
In the area of electric circuit, arc discharge usually damages the functions of an electronic component and causes an imbalance to the ecology of electronic circuit. More seriously, the arc discharge may even jeopardize our life and safety. The traditional high-voltage output loading devices (such as a cold cathode tube, an anion generator, and a TV picture tube) are taken for example; the arc discharge phenomenon will occur before the loading device receives the high voltage, due to poor connection, change of temperature and humidity, or damage of some of the components in the electric circuit. Therefore, it is an urgent research and development subject for manufacturers to install an arc discharge protection device at a position where arc discharge occurs in order to avoid damages to the loading device. The solutions to the arc discharge problem focusing on the current design and component include the traditional high-voltage transformer and the step-up device of a ceramic voltage transformer, and their arc discharge protection device is described below:
1. Please refer to
2. Please refer to
The primary objective of the present invention is to provide a protection device to detect and trigger a control signal to stop the high-voltage output in the high-voltage output area when there is an arc discharge effect caused by an abnormal condition.
This invention focuses on the arc discharge effect produced by abnormal conditions in the high-voltage output area; after the high-voltage arc discharge signal of the high-voltage output area is received by the voltage conversion unit of this arc discharge protection device, the signal is converted into a low-voltage arc discharge signal. A filter unit is provided to determine the potential and filter the abnormal frequency signal, and then the rectify unit will receive the abnormal frequency signal and output an arc wave clutter after the rectification. The touch control unit will detect the arc wave clutter and output a trigger signal to stop the operation of the control unit or the driving unit, and thus achieving the purpose of preventing sparks or burning caused by the heat accumulation in the peripheral components during an arc discharge effect. Therefore, this invention directly uses a logic circuit to determine whether or not an arc discharge occurs, and immediately interrupts the high voltage output area if an arc discharge is detected. The cost for assembling the components in accordance with this invention is lower, and can meet the cost-effective requirements better.
To make it easier for our examiner to understand the objective of the invention, its structure, innovative features, and performance, we use a preferred embodiment together with the attached drawings for the detailed description of the invention.
Please refer to
The arc discharge protection device 20 of this invention has a high voltage arc discharge signal released from the high-voltage output area. The step-up unit 13 of the embodiment of this invention comprises a transformer 131 and a circuit board 133, and the locations having an arc discharge include the transformer 131 (when it breaks), the wiring location 132 between the transformer 131 and the circuit board 133 (when the wiring location ages or breaks due to the change of temperature and humidity), and the insert location 134 between the circuit board 133 and the load 14 (due to the aging of the insert location 134, or the gap produced between the male plug and the female socket by the improper use. If any of the foregoing factors occurs, a high-voltage arc discharge signal will be produced in the high-voltage output area. Then, after a voltage conversion unit 21 of a voltage divide circuit comprised of a plurality of resistors is connected to the foregoing arc discharge signal, the signal is converted into a low-voltage arc discharge signal, and a filter unit 22 receives the low-voltage arc discharge signal from the foregoing voltage conversion unit 21, and provides a determination on the potential 24 and selects an abnormal frequency signal 2c. This abnormal frequency signal 2c is received by a rectify unit 23 of the rectify circuit comprised of a diode and a capacitor. After the rectification, an arc discharge wave clutter is outputted. After a silicon controlled rectifier or a flip-flop of the contact control unit 24 detects such arc wave clutter, the touch control unit 24 will output a trigger signal to the control unit 11 or driving unit 12 to stop the operation and prevent the arc discharge effect.
The foregoing filter unit could be a low pass filter 22a, a high pass filter 22b, or a band reject filter 22c comprised of a low pass filter 22a and a high pass filter 22b.
If any position of the foregoing high-voltage output area does not allow the load 14 to cause the electric discharge phenomenon by the high voltage drive due to the damage or breakage, then the abnormal frequency signal 2c which exceeds the potential 2d determined by the filter unit 22 will pass through the filter unit 22 into the rectify unit 23. Then, after the rectify unit rectifies the abnormal frequency signal 2c to an arc wave clutter, the touch control unit 24 will detect and trigger a signal to stop the control unit 11 or the driving unit 12. As a result, it immediately stops the high voltage conversion and output, and thus will not produce the arc discharge effect anymore. Of course, the peripheral components will not accumulate heat or produce sparks, and thus preventing the occurrence of burning or accidents.