Not Applicable
Not Applicable
The pursuant of this invention is to develop a vehicle visor that implements electric motors to position the visor for shielding strong sunlight rays, with an option to implement the already manual operation approached by moving the sun visors with a hand when operating a motor vehicle. With a power switch to select either the driver or passenger side button and control panel to position the visors, the electric powered visor to be called the Electric Assist Vehicle Visor can assist driver or passenger in maneuvering the visors to desired position, where the center position of the switch situate the electric assistance to off mode.
A sun visor is said to assist a driver and/or passenger with shielding strong sunlight rays when operating an automobile or motor vehicle. There exist some patented electric operated visors like U.S. Pat. No. 5,076,633 of Hsu et al, “Automatic Sun Screen For Motor Vehicles” and U.S. Pat. No. 5,947,544 of Hubeshi “Electromechanical Sun Visor For Motor Vehicle Window”, where an electric motor assist for drawing or retracting the sunlight shield or screen-like mechanism when approached; but there are some inconveniences with these glide-out sun visors attentions to one planar coverage view per motorized system; contrary to the improved Electric Assist Vehicle Visor, the improved invention, EAVV provides a wide array of visor positions for blocking the strong sunlight rays for both the windshield and side windows with a control or manual panel operation as one system panel for the main visor.
The Electric Assist Vehicle Visor consists of two systems, the main visor and the center visor, both motorized to function by a control panel. The main visor is constructed to truncate and pitch towards the roof when pivoting to the side of the window of the vehicle, later pitches back, to parallel with the side window, then awaits for further operation from the control panel. The main visor is comprised of the Main Frame [100] and Extending Frame [150] covered with the Main Frame Shell Cover [105] and the Extending Frame Shell Cover [129] with parts and components associated within the shell covers, discussed in the Detailed Description of the Invention section. The truncation of the main visor is due to two visors constructed with the Main Frame Shell Cover [105] fitted within the Extending Frame Shell Cover [129]; fitted within the shells are the Main Frame [100] and the Extending Frame [120] for sliding feature towards the Main Frame [100] side as well as lengthen extension feature, as illustrated in
The center visor is identified as the Front Visor [150], an electric assisted visor independent of the main visor; as function to pitch forward, normal from the driver or passenger frontal view, when the main visor is positioned at the side window position illustrated in
The advancement in automobile has lead to many electric power assisted features on vehicles, like the sliding door on a mini-van which slides automatically when the handle is open or a button is pushed, the rear trunk of a vehicle functions when triggered with a hand/feet motion and/or such activation methods, and the side mirrors where one method folds inward when the vehicle engine disengages, and many more convenience feature. This invention for the Electric Assist Vehicle Visor delivers another great feature to the automobile, where the visor allows for an easy to reach feature for the driver and/or passenger; with the electronic assist capabilities allows for the front visor panel to pitch forward, backward, and pivots to side window of the driver or passenger.
The Electric Assist Vehicle Visor comprises of the main visor and the center visor; where the two visor systems can be place at the driver side and/or passenger side of the vehicle. The main visor is constructed to truncate and pitch towards the roof, for pitching to the side window; where the Main Frame [100] construction allows the Extending Frame [150] to slide for short length and extend for longer length of the visor. The main visor is affixed inside the vehicle to the roof, door, and windshield edge corner with a magnet to support the suspension at the other end of the main visor when at the rest or pitch displacement position. The center visor is another motorized system that is independent of the main visor, placed center of the driver or passenger; its function is to pitch forward and towards the driver or passenger when the main visor is at the side window.
In the drawings, figures in some views are composed with the same reference numbers and in different assembly views for better illustrations.
A preferred embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention as shown in
At the first insert hole of the Main Frame [100], below the Primary Glider Rod [20], mounts the Retractable Wire Harness [130], where next below, mounts the Motor Mount Bracket [38] with the Primary Support Rod [60] passing through the Translation Glider Bracket [30] as the Primary Rod Belt Grip [32] attaches, there thread to the mid hole inserts elbow of the Main Frame [100], with the Main Frame Rubber Cushion [34] and Motor Mount Cushion [36] to allow dampening for the Translation Glider Bracket [30] to absorb.
Normal to the Motor Mount Bracket [38], at the Primary Pivot Mount [50] side of the Main Frame [100], houses the Motor Bracket [116] for the motor unit with the Drive Pulley Gear [134] system for the Extending Frame [120], which comprises of the Extending Glider Rod [126] attaches the rod drive end with the Extending Rod Belt Grip [122] and Extending Rod Coupler [124]; the Extending Support Rod [128] allows stability for the Extending Frame [120], as the Metal Drum [140] allows for magnetic suspension to take hold when at appropriate position of the Electric Assist Vehicle Visor. The Pulley Gear [132] and Pulley Gear Bracket [118] completes the drive-train belt system for the Extending Frame [120]. The Extending Frame Cushion [112] attached at the end side of the Main Frame [100] absorbs/stops the Extending Frame [120] for smooth stop motion, where the Wire Path [114] allows for wirings to take route along the Wiring Duct [110] continues on through the Primary Glider Rod [20] and Primary Pivot Mount [50] for electrical wiring.
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the EAVV invention in
An embodiment of like structure of the invention in
An embodiment of like structure of the invention in
The Electric Assist Vehicle Visor can be operated manually or with the controller as shown in
Translation A, motions within Translation B and B′, which moves the entire Electric Assist Vehicle Visor along the y-axis between that limit, by method of the Translation Glider Bracket [30] held by Primary Insert Ring [22] to Primary Glider Rod [20] guided and supported by Primary Support Rod [60] allows for Translation Glider Bracket [30] attached to Primary Rod Belt Grip [32] to pass through, is gripped to the Primary Translation Belt [144], which is driven by Motor [14] with the Motor Mount Bracket [38] to the Main Frame [100] and the Drive Pulley [134] to Pulley Gear [132] held by Pulley Gear Bracket [118] tensioned to the Main Frame [100].
Translation C motion normal from C′ as fixed point along the y-axis, moves Extending Frame [120] outward by method of Extending Support Rod [128] and Extending Glider Rod [126] that attaches to the Extending Rod Coupler [124] to Extending Rod Belt Grip [122] to Secondary Translation Belt [146], which is driven by Motor [14] with Motor L-Bracket [111] to the Main Frame [100] with Drive Pulley [134] to Pulley Gear [132] held by Pulley Gear Bracket [118] tensioned to the Main Frame [100].
In
In
The Electric Assist Vehicle Visors in
The Electric Assist Vehicle Visor invention is to improve the already existing manual operation sun visor and enhance the user convenience with an electric power operation by method of motor, motion delivery system, a controller, switch and visor panels. The EAVV system comprises of the main visor and center visor, where the main visor feature truncates and pitches towards the roof when application is for the side window; the center visor pitches towards and normal from the windshield. The main visor is additionally support with a magnet when at rest and pitching position at the windshield position. The center visor is an additional support optional for blocking strong sunlight rays when the main visor stays position at the side window.
The motion delivery system of the EAVV consists of the motor, belt and gear drive-train system but there are other translation drive systems like actuators and the screw drive system. The button and knobs are to control the displacement position of the visors and may have many programming methods or approaches. The frame and internal components of the visors shall implement strong to lightweight materials with heat resistance.
For future development, the Electric Assist Vehicle Visor can be enhanced to deliver for the driver or passenger visor system to have the option to connect to the global positioning system for the vehicle to locate the strong sunlight rays disturbing the driver's or passenger's eyes will automatically shield by method implementing artificial intelligence technology to maneuver the positioning of the visor(s) by itself. With the concept of artificial intelligence technology, implementation of the Electric Assist Vehicle Visor development approach may be further developed to contain an automatic feature to carry on the sunlight detection, by method of sensors monitoring system to the human eye(s) and sync with the location of the strong sunlight rays directing at the pupil or iris area of the eye, there maneuvers the visors to shade the strong sunlight rays.
Number | Name | Date | Kind |
---|---|---|---|
3825296 | Peterson | Jul 1974 | A |
4762359 | Boerema | Aug 1988 | A |
4921300 | Lawassani | May 1990 | A |
5071186 | Hemmeke | Dec 1991 | A |
5104174 | Gute | Apr 1992 | A |
5192110 | Mykytiuk | Mar 1993 | A |
5350212 | Corn | Sep 1994 | A |
5417466 | Giantonio | May 1995 | A |
5580117 | Goclowski | Dec 1996 | A |
5902002 | Wilson | May 1999 | A |
6170899 | Corn | Jan 2001 | B1 |
6189947 | Annan | Feb 2001 | B1 |
9333836 | Blankson | May 2016 | B2 |
9493055 | Murat | Nov 2016 | B1 |
20050046223 | Virts | Mar 2005 | A1 |
20090152891 | Lee | Jun 2009 | A1 |
20090250964 | Demma | Oct 2009 | A1 |
20100201149 | Frotz | Aug 2010 | A1 |
20120146357 | Huang | Jun 2012 | A1 |
20150197138 | Kuenzel | Jul 2015 | A1 |
20160075218 | Frownfelter | Mar 2016 | A1 |
20170021703 | Szentkiralyi | Jan 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190135090 A1 | May 2019 | US |