Electric blower with an axial fan and motor for sweeping and cleaning

Information

  • Patent Grant
  • 11248620
  • Patent Number
    11,248,620
  • Date Filed
    Wednesday, September 18, 2019
    5 years ago
  • Date Issued
    Tuesday, February 15, 2022
    2 years ago
Abstract
An electric blower (10) is disclosed as including a brushless motor (16), and an axial fan (18, 18C) driven by the motor, the motor being operable at a first speed of rotation of 15,000 revolutions per minute (rpm) and a second speed of rotation of 18,000 rpm, the axial fan including a hub (34C) and a plurality of fan blades (36C) engaged with the hub, the hub having a hub diameter (ϕH), the axial fan having an outer diameter (ϕT), and
Description

The present application is based on and claims priority to European Patent Application No. 18196082.4 having a filing date of Sep. 21, 2018, which is incorporated by reference herein.


This invention relates to an electric blower, such as an electric blower suitable for, but not limited to, sweeping and cleaning purposes.


There are commercially available electric blowers which are powered by electric batteries. Lightweight and compact battery packs generally supply limited electric power (e.g. less than 630 W) due to commercial technology limitations and reliability considerations. The sweeping nozzle end of the blower should be designed by reducing the passage sectional area to limit the flow rate and thus increase the air speed. However, resistance of the system would be changed according to such changes in pressure and flow rate.


It is thus an object of the present invention to provide an electric blower in which the aforesaid shortcomings are mitigated, or at least to provide a useful alternative to the trade and public.


According to the present invention, there is provided an electric blower including a motor, and an axial fan driven by said motor, wherein said motor is operable at a first speed of rotation of substantially 15,000 revolutions per minute (rpm) and a second speed of rotation of substantially 18,000 rpm, wherein said axial fan includes a hub and a plurality of fan blades engaged with said hub, wherein said hub has a hub diameter (ϕH), wherein said axial fan has an outer diameter (πT), and wherein







ϕ
H


ϕ
T






is between substantially 0.6 and substantially 0.65.





An electric blower according to an embodiment of the present invention will now be described, by way of example only, with reference to the accompany drawings, in which:



FIG. 1 is a perspective view of an electric blower according to an embodiment of the present invention;



FIG. 2 is a side view of the electric blower of FIG. 1;



FIG. 3 is a front view of the electric blower of FIG. 1;



FIG. 4 is a rear view of the electric blower of FIG. 1;



FIG. 5 is longitudinal sectional view of the electric blower of FIG. 1;



FIG. 6A is a side view of a first axial fan used in experiments conducted for the purpose of the present invention;



FIG. 6B is a top view of the axial fan of FIG. 6A;



FIG. 7A is a side view of a second axial fan used in experiments conducted for the purpose of the present invention;



FIG. 7B is a top view of the axial fan of FIG. 7A;



FIG. 8A is a side view of a third axial fan used in experiments conducted for the purpose of the present invention; and



FIG. 8B is a top view of the axial fan of FIG. 8A.





An electric blower according to an embodiment of the present invention is shown in FIGS. 1 to 5, and generally designated as 10. The electric blower 10 is powered by an electric battery pack 12 detachably engaged with a body 14 of the electric blower 10. The body 14 houses a motor 16 (e.g. a brushless motor) and an axial fan 18. When a switch 20 below a gripping handle 22 of the body 14 is activated (e.g. by a user), the electric battery pack 12 will power the motor 16 to drive the axial fan 18 into rotation. An auxiliary switch 24 on a side of the gripping handle 22 is operable (e.g. by a user) to change the speed of rotation of the motor 16 between a first lower speed of 15,000 revolutions per minute (rpm) and a second higher speed of 18,000 rpm.


Upon rotation of the axial fan 18, air is drawn into the body 14 of the electric blower 10 through a number of air inlets 26 at and adjacent a rear end of the electric blower 10. Such drawn-in air is then forced to flow through the axial fan 18 in an axial direction along a longitudinal axis M-M of and through an air duct 28 within an elongate air tube 30 of the body 14. Such air eventually is blown by the axial fan 18 out of the air duct 28 of the elongate air tube 30 of the body 14 through an air outlet 32 of a nozzle 33 at a front end of the air tube 30.


Study on the geometry of the axial fan 18 has been carried out with a view to optimizing the flow rate and velocity of air blown out of the air outlet 32 of the nozzle 33 of the air tube 30 of the electric blower 10. As mentioned above, the motor 18 of the electric blower 10 is set to run at two different rotation speeds, namely 15,000 rpm and 18,000 rpm. It is found that these two rotational speeds are reasonable to both mechanical and electrical design.


In case of limited rotational speed, it is possible to increase the air flow rate and air flow velocity by a higher blade attack angle, a larger blade tip radius, a lower hub radius, and a longer blade axial width. However, amperage loading would be increased exponentially with such changes. In most cases, the system efficiency will drop if unstable air flow occurs, which will result in higher air flow friction and system resistance.


Experiments on three axial fans 18A, 18B, 18C of different geometry were carried out, in which FIGS. 6A and 6B show a first axial fan 18A, FIGS. 7A and 7B show a second axial fan 18B, and FIGS. 8A and 8B show a third axial fan 18C. The axial fan 18A has a hub 34A and a number of fan blades 36A fixedly engaged therewith for simultaneous movement; the axial fan 18B has a hub 34B and a number of fan blades 36B fixedly engaged therewith for simultaneous movement; and the axial fan 18C has a hub 34C and a number of fan blades 36C fixedly engaged therewith for simultaneous movement. Various relevant dimensions of the axial fans 18A, 18B and, 18C are shown in Table 1 below:















TABLE 1






ϕT
ϕH





ϕ
H


ϕ
T





W




W

ϕ
T





θ







Axial Fan
  78 mm
49.5 mm
0.635
25 mm
0.321
58°


18A








Axial Fan
94.5 mm
  48 mm
0.508
19 mm
0.201
54°


18B








Axial Fan
95.5 mm
  60 mm
0.628
14 mm
0.147
50°


18C










wherein:
    • ϕT is the outer diameter (also called the “tip diameter”) of the respective axial fan 18A, 18B, 18C;
    • ϕH is the diameter of the hub 34A, 34B, 34C of the respective axial fan 18A, 18B, 18C;
    • W is the axial width of fan blades 36A, 36B, 36C along a longitudinal axis L-L of the respective axial fan 18A, 18B, 18C; and
    • θ is the angle (“attack angle”) between a plane perpendicular to the longitudinal axis L-L of the respective axial fan 18A, 18B, 18C and a line where the respective fan blade 36A, 36B. 36C joins the respective hub 34A, 34B. 34C of the respective axial fan 18A, 18B, 18C.


Table 2A below shows various results of experiments conducted on the axial fans 18A, 18B, and 18C at a motor rotational speed of 15,000 rpm and Table 2B shows various results of experiments conducted on the axial fans 18A, 18B, and 18C at a motor rotational speed of 18,000 rpm.













TABLE 2A







Input
Flow Rate





Power
(Cubic Feet
Air Flow Velocity




(Watt)
per Minute)
(Miles per Hour)








Axial Fan 18A
150
204
76



Axial Fan 18B
380
235
68



Axial Fan 18C
344
267
77




















TABLE 2B







Input
Flow Rate





Power
(Cubic Feet
Air Flow Velocity




(Watt)
per Minute)
(Miles per Hour)








Axial Fan 18A
370
239
89



Axial Fan 18B
690
294
86



Axial Fan 18C
550
314
90









According to the above experimental results, it can be seen that the axial fan 18C is the most efficient design in achieving the desired output airflow velocity and rate of air flow. In particular, it can be seen that, in the axial fan 18C:







ϕ
H


ϕ
T






is between 0.6 and 0.65,






W

ϕ
T






is between 0.14 and 0.15,


ϕH is 60 mm,


ϕT is 95.5 mm,


W is between 13.5 mm and 15 mm, in particular 14 mm, and


θ is below 500, e.g. between 45° and 50°.


The electric blower 10 has a sweep nozzle design allowing the user to control the air stream blowing zone and/or increase the air speed for focused lift up debris and/or avoid blowing up dust in closed ground area. It is found that the ratio between the area (AO) of the air outlet 32 at the front end of the nozzle 33 of the air tube 30 of the electric blower 10 and the flow through area at fan position (AF) of the electric blower 10 also affects the performance of the electric blower 10.


Table 3A below shows various experimental results on an axial fan 18 at a motor rotational speed of 15,000 rpm with different







A
O


A
F






ratios, and Table 3B shows various experimental results on an axial fan 18 at a motor rotational speed of 18,000 rpm with different







A
O


A
F






ratios.














TABLE 3A







  Flow Through Area at Fan Position (AF) (mm2)
      Air Outlet Area (AO) (mm2)
     
AOAF

    Air Flow Velocity (Miles per Hour)
    Flow Rate (Cubic Feet per Minute)
          Amperage





4831.5
3674.5
0.76
 94
324
18.56



2324.3
0.48
 89
193
16.54



1385.4
0.29
132
164
16.5 



 907.9
0.19
120
103
19.3 





















TABLE 3B







  Flow Through Area at Fan Position (AF) (mm2)
      Air Outlet Area (AO) (mm2)
     
AOAF

    Air Flow Velocity (Miles per Hour)
    Flow Rate (Cubic Feet per Minute)
          Amperage





4831.5
3674.5
0.76
113
387
30.5



2324.3
0.48
109
236
29  



1385.4
0.29
162
200
27.2



 907.9
0.19
125
146
32.8









It can be seen from the above experimental data that the electric blower 10 is of the best performance in terms of air speed and rate of reduction in flow rate when







A
O


A
F






is close to 0.3, e.g. between 0.25 and 0.35.


It should be understood that the above only illustrates and describes an example whereby the present invention may be carried out, and that modifications and/or alterations may be made thereto without departing from the spirit of the invention. It should also be understood that various features of the present invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any appropriate sub-combinations.

Claims
  • 1. An electric blower comprising: a motor, anda single axial fan driven by said motor,wherein said motor is operable at a first speed of rotation and a second speed of rotation different than the first speed of rotation,wherein said axial fan has a single stage including a hub and a plurality of fan blades engaged with said hub,wherein said hub has a hub diameter (ØH),wherein said axial fan has an outer diameter (ØT), andwherein
  • 2. An electric blower according to claim 1, wherein each of said fan blades has an axial width (W), and wherein
  • 3. An electric blower according to claim 1, wherein ØH is substantially 60 mm.
  • 4. An electric blower according to claim 1, wherein ØT is substantially 95.5 mm.
  • 5. An electric blower according to claim 2, wherein W is between substantially 13.5 mm and 15 mm.
  • 6. An electric blower according to claim 1, wherein each of said fan blades has an attack angle (Ø) of between substantially 45° and 50°.
  • 7. An electric blower according to claim 1, further including a nozzle with an outlet allowing outflow of air from said electric blower through said outlet, said outlet having an area (AO).
  • 8. An electric blower according to claim 7, wherein
  • 9. An electric blower according to claim 8, wherein
  • 10. The electric blower of claim 1, further comprising a body having a handle; anda detachable battery disposed at a rear end of the body above an air inlet,wherein the motor is electrically coupled with the detachable battery, andwherein the axial fan is disposed downstream of the air inlet below the handle.
  • 11. An electric blower comprising: a body having a handle;a detachable battery disposed at a rear end of the body above an air inlet;a motor electrically coupled with the battery; anda single-stage axial fan driven by said motor and disposed below the handle,wherein said motor is operable at a first speed of rotation and a second speed of rotation different than the first speed of rotation,wherein said axial fan includes a hub and a plurality of fan blades engaged with said hub,wherein said hub has a hub diameter (ØH),wherein said axial fan has an outer diameter (ØT), andwherein
  • 12. An electric blower according to claim 11, wherein each of said fan blades has an axial width (W), and wherein
  • 13. An electric blower according to claim 11, wherein ØH is substantially 60 mm.
  • 14. An electric blower according to claim 11, wherein ØT is substantially 95.5 mm.
  • 15. An electric blower according to claim 12, wherein W is between substantially 13.5 mm and 15 mm.
  • 16. An electric blower according to claim 11, wherein each of said fan blades has an attack angle (Ø) of between substantially 45° and 50°.
  • 17. An electric blower according to claim 11, further including a nozzle with an outlet allowing outflow of air from said electric blower through said outlet, said outlet having an area (AO).
  • 18. An electric blower according to claim 17, wherein
  • 19. An electric blower according to claim 18, wherein
  • 20. An electric blower comprising: a body having a handle;a detachable battery disposed at a rear end of the body above an air inlet;a motor electrically coupled with the battery;a single-stage axial fan driven by said motor; anda nozzle with an outlet allowing outflow of air from said electric blower through said outlet, said outlet having an area (AO),wherein said motor is operable at a first speed of rotation and a second speed of rotation different than the first speed of rotation,wherein said axial fan includes a hub and a plurality of fan blades engaged with said hub,wherein said hub has a hub diameter (ØH),wherein said axial fan has an outer diameter (ØT),wherein
Priority Claims (1)
Number Date Country Kind
18196082 Sep 2018 EP regional
US Referenced Citations (11)
Number Name Date Kind
5652995 Henke et al. Aug 1997 A
20080089785 Schliemann et al. Apr 2008 A1
20110008170 Suzuki Jan 2011 A1
20110275302 Tarada Nov 2011 A1
20130202443 Tzeng Aug 2013 A1
20140230181 Yamaoka Aug 2014 A1
20160169249 Takahashi et al. Jun 2016 A1
20170252760 Campbell Sep 2017 A1
20180087513 Hoffman Mar 2018 A1
20180140146 Shu et al. May 2018 A1
20180228326 Crichton et al. Aug 2018 A1
Foreign Referenced Citations (2)
Number Date Country
1428272 Jan 1969 DE
WO2018028639 Feb 2018 WO
Non-Patent Literature Citations (1)
Entry
European Office Action Corresponding to Application No. 18196082.4 dated Oct. 19, 2021.
Related Publications (1)
Number Date Country
20200096001 A1 Mar 2020 US