This invention relates generally to electric motors. More Specifically, the invention comprises an electric drive system that replaces conventional motors with a more efficient, compact and lightweight alternative.
There are many known electric motors used in a wide range of industries. Most of these rotate an armature in a central hub using phasing magnetic fields acting upon permanent magnets.
The size and complexity of these motors is proportional to their output; the higher the horsepower, the greater the weight, size and complexity. The present invention provides an alternative to current motor design in an efficient, lightweight, powerful and simple to manufacture method and apparatus.
The present invention comprises an electric leverage drive method and apparatus for any industry that utilizes electric motors for power. The invention is configured to be in the position customarily occupied by the motor it replaces as well as being powered from the same source.
The invention includes a hubless magnetic gyroscope that is propelled by a ring that contains circulatory field coils that produce phasing electromagnetic energy located proximate to the magnetic gyroscope. The electrically conductive circulatory field coil system returns the unused portion of the electromagnetic fields back to the power source as electricity to increase overall efficiency. The induction coil creates an electromagnetic field and functions as an artery by delivering energy to the motor. The collection coil collects unused electromagnetic energy and functions as a vein by returning electric energy to the battery.
Connected to the hubless gyroscope is a means to transfer rotation from the gyroscope to the end use.
Control features are preferably provided by microprocessors that control each individual electromagnetic field coil, one controller per coil, allowing for timing changes based on the industry. For example, changes in torque and horsepower are created by altering the electric leverage drive's timing in virtually infinite ways through its fully digital control means.
Preferred and alternative examples of the present invention are described in detail below with reference to the following drawings:
The terminology used herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well as the singular forms, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising” when used in this specification, specify the presence of stated features, steps operations, elements, and/or components, but do not preclude the presence of addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one having ordinary skill in the art to which the invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the one context of the relevant art and the present disclosure and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
In describing the invention, it will be understood that several techniques and steps are disclosed. Each of these has individual benefit and each can also be used in conjunction with one or more, or in some cases all, of the other disclosed techniques. Accordingly, for the sake of clarity, this description will refrain from repeating every possible combination of the individual steps in an unnecessary fashion. Nevertheless, the specification and claims should be read with the understanding that such combination are entirely within the scope of the invention and the claims
New electric circulatory leverage drive method and apparatus for creating an alternative to current motor design in a lightweight, powerful and simple to manufacture method and apparatus is discussed herein. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details.
The present disclosure is to be considered as an exemplification of the invention and is not intended to limit the invention to the specific embodiments illustrated by the figures or description below.
The present invention will now be described by referencing the appended figures representing preferred embodiments.
Proximate to the gyroscope flywheel is stator 114, which may be made of lightweight composite materials, iron, or another suitable material. The teeth 112 of the stator 114 shown in
In an alternate embodiment, multiple induction field coils may be controlled by a single motor controller. In yet an alternate embodiment, the bodywork or shell surrounding the magnetic gyroscope integrates the circulatory field coils in its skin. The shell is manufactured with a network of electrically conductive materials integrated into its composite matrix inside of or along the shell's inner surfaces.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment.
This application is a continuation of U.S. patent application Ser. No. 16/824,200 filed Mar. 19, 2020; which claims the benefit of priority from U.S. Provisional Patent Application No. 62/820,840 filed Mar. 19, 2019, the contents of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62820840 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16824200 | Mar 2020 | US |
Child | 18520469 | US |