The priority application Number Japan Patent Application No. 2007-177645 upon which this patent application is based is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to an electric connection box and a manufacturing method thereof, and particularly to an electric connection box controlling electric power supplied to a load and a manufacturing method thereof.
2. Description of the Related Art
So far, as an electric connection box in which a semiconductor relay such as an intelligent power switch (IPS) is used, an electric connection box in which a connector for connection and semiconductor relay are mounted on a board has been known. The connector connects the board to a load such as a headlamp, fog lamp and various motors. The semiconductor relay supplied electric power to a load according to instructions from the board. As mentioned above, in an electric connection box mounting a semiconductor relay on a board, the heat-releasing property is improved by releasing heat from the semiconductor relay. As a result, it is required that a heat-releasing plate is provided on a back surface of the board. Therefore, it is difficult to perform the heat-releasing property and miniaturization together.
Accordingly, an electric connection box 100 shown in
The above die pad 105 is made of conductive metal. The semiconductor relay 106 is mounted on the die pad 105. The power source lead 107 is arranged on part of the die pad 105, and electric power is supplied to the power source lead 107. A load is connected to the connector lead 108, and the board lead 109 is connected to the board 102. The semiconductor relay 106 is electrically connected to the power source lead 107 by a wire bonding 111, and also the semiconductor relay 106 is electrically connected to the board lead 109 by a wire bonding 111.
In the electric connection box 100 described above, the semiconductor relay 106 of high calorific power and the board 102 are formed from a different member. Furthermore, the board 102 does not have a wiring of electric source toward the semiconductor relay 106. Thereby, the electric connection box 100 can improve the hear-release characteristic and can downsize so that heat produced from the semiconductor relay 106 can be released through the connector lead 108. However, in the semiconductor relay module 103 descried above, the die pad 105 on which the semiconductor relay 106 is mounted is sealed into the resin mold part 110, and supported. As a result, various problems are caused as described below.
That is, the semiconductor relay 106 is protected by the resin mold part 110. Also, in order to protect the circuit element 101 mounted on the board 102, it is required to cover the circuit element 101 by protective film such as a silicone gel. Thereby, a protective film for protecting the circuit element 101 and the resin mold part 110 such as a protective film for protecting the semiconductor relay 106 should be provided in separate manufacturing process. As a result, a number of parts and manufacturing process be increased, and cause an increase in cost.
Furthermore, in the above mentioned electric connection box 100, it is required to mount the semiconductor relay module 103 on the board 102, and to solder the board lead 109 of the semiconductor relay module 103 on the board 102. Thereby, also this causes increases of manufacturing process and cost. In addition, since the semiconductor relay 106, the power source lead 107 and the connector lead 108 is formed integrally with the resin mold part 110, the housing 104 can not be molded in condition inserting the connector lead 108. Thereby, also this causes an increase of cost. Furthermore, when a terminal for supplying electric source is fit against the power source lead 107, it may give stress to the board 102.
Patent document 1:
Patent document 2:
It is therefore an objective of the present invention to solve the above problems and to provide an electric connection box and a manufacturing method thereof, by which a board can be protected, and by which a manufacturing process and parts can be reduced.
According to a first aspect of the present invention, an electric connection box includes a board having a circuit element mounted thereon, a bus bar, an electric source lead, a connector lead connected to a load, a semiconductor relay and a housing. The bus bar is arranged on a member different from the board and made of a conductive member in a plate shape. The electric source lead is arranged on the bus bar, and an electric source is supplied to the electric source lead. The semiconductor relay is electrically connected between the electric source lead and the connector lead, and is mounted on the bus bar. The housing has a board supporting part for supporting the board, and a bus bar supporting part for supporting the bus bar. The bus bar supporting part is arranged on another area different from the board supporting part.
According to a second aspect of the present invention, the circuit element is mounted on an upper face of the board, the semiconductor relay is mounted on an upper face of the bus bar, and both the circuit element and the semiconductor relay are covered with a protective film of a same member each other.
According to a third aspect of the present invention, the electric connection box further includes a wire. One end of the wire is connected to the semiconductor relay, and the other end of the wire is connected to the board.
According to a fourth aspect of the present invention, the board and the bus bar is arranged in the same place each other.
According to a fifth aspect of the present invention, the bus bar is formed integrally with the housing.
According to a sixth aspect of the present invention, a manufacturing method of an electric connection box includes the steps of: injecting a molten member of a housing into a forming die of the housing in condition that a bus bar formed with a conductive member of a plate shape is inserted in the forming die, and molding the housing, mounting a semiconductor relay on the bus bar, attaching a board on which a circuit element is mounted to the housing, and connecting the semiconductor relay to the board by a wire and further connecting the semiconductor relay to a connector lead by a wire.
According to the invention, even if a terminal for electric supply is fit and connected to the electric source lead, stress have no effect on the board. Thereby, the board can be protected. Also, it is not necessary to provide the electric connection box with a resin mold part. As a result, protective films for protecting the circuit element and the semiconductor relay can be provided in the same process. Furthermore, since the resin mold part is not required, the semiconductor relay and the board can be connected by a wire. Thereby, there is no necessity to arrange the board lead on the board, and to solder the board load on the board as before. In addition, the housing can be molded in condition that the bus bar is inserted into the housing. Therefore, manufacturing process and a number of parts can be reduced, and a cheap electric connection box can be provided.
According to the invention, since the protective film for protecting the circuit element and the protective film for protecting the semiconductor relay can be formed with a same process, providing a wire between the semiconductor relay and the board is easier. Thereby, manufacturing process can be reduced, and an inexpensive electric connection box can be produced.
According to the invention, since the housing and the bus bar can be formed integrally, manufacturing process and a number of parts can be reduced. Consequently, an inexpensive electric connection box can be manufactured.
The above and other objects and features of this invention will become more apparent from the following description taken in conjunction with the accompanying drawings.
In the following, the preferred embodiments of the present invention are explained with reference to
The above case body 2 opens upwardly (one side) in an orthogonal direction Y1 (
As shown in
The above board 3 is formed into a rectangular shape. The board 3 is mounted on a board supporting part 11 arranged in the center of a bottom face of the above case body 2, and supported by the board supporting part 11. In this board 3, a circuit element 10 such as a control microcomputer is mounted on opening side of the case body 2. That is, the circuit element 10 is mounted on an upper surface (one side) of the orthogonal direction Y1. Also, a wiring pattern (not shown) which is connected to the circuit element 10 and having a circuit is formed in the board 3. When the board 3 is mounted on the board supporting part 11, the exposure hole 12 fits with a projection 21 arranged on the case body 2.
The bus bar 4 is formed with a conductive member of a plate shape, and is arranged on another member different from the board 3. As shown in
As shown in
For example, the power source lead 5 fits in an external terminal connected to the power source through a fuse (not shown). The power source lead 5 is arranged on a part of the above bus bar 4, and is received into the left-side hood 9 of the horizontal direction Y2. The connector lead 6 is formed into an elongate shape and a plate shape. Each one end of a plurality of connector leads 6 are exposed between the hood 9 and the bus bar 4, and each the other end is received into the hood 9 and inserted into the case body 2. Thereby, the connector lead 6 is supported. Furthermore, each the plate-shaped connector lead 6 is arranged in parallel to the board 3 and the bus bar 4.
As shown in
Also, the semiconductor relay 7 has two source electrodes S and a gate electrode G in an upper side of the orthogonal direction Y1. The gate electrode G of the semiconductor relay 7 is electrically connected to the board 3 by a first wire W1. The source electrode S of the semiconductor relay 7 is electrically connected to the connector lead 6 by a second wire W2.
Thereby, the gate electrode G is connected to the circuit element 10 through the first wire W1, and the source electrode S is connected to a load through the second wire W2 and the connector lead 6. In addition, the drain electrode D is connected to the power source through the bus bar 4 and the power source lead 5. When the circuit element 10 outputs an ON signal to the gate electrode G of the semiconductor relay 7, an electric power is passed between the drain electrode D and the source electrode S. And then, the power source is supplied to the load.
The control lead 8 is formed into a conductive bar shape. One end of the control lead 8 is exposed from the projection 21 of the case body 2, and the other end is received into the hood 9 and inserted into the case body 2. By exposing one end of the control lead 8 from the projection 21 of the case body 2, one end of the control lead 8 is exposed from the exposure hole 12. The above one end of the control lead 8 is electrically connected to the board 3 by a third wire W3.
A manufacturing method of the above mentioned electric connection box 1 is explained with reference to
Next, the semiconductor relay 7 is mounted on the bus bar 4. In particular, the semiconductor relay 7 is mounted by applying a paste adhesive (for example, solder or Ag paste) to an area on which the semiconductor relay 7 of the bus bar 4 is mounted. Thereafter, the area is hardened by heating. Thereby, the drain electrode D of the semiconductor relay 7 and the bus bar 4 connect electrically. Then, the board 3 mounting the circuit element 10 is assembled on the board supporting part 11 of the case body 2. Thereafter, the gate electrode G of the semiconductor relay 7 bonds to the board 3 by the first wire W1, the source electrode S of the semiconductor relay 7 bonds to the connector lead 6 by the second wire W2, and the board 3 bonds to the control lead 8 by the third wire W3.
And then, a protective film 14 is formed by filling silicone gel from an upper side of the orthogonal direction Y1. The protective film 14 protects the semiconductor relay 7 mounted on the bus bar 4 and the circuit element 10 mounted on the board 3. Thereby, the circuit element 10 and the semiconductor relay 7 are covered with the protective film 14 of a same member each other. After, the electric connection box 1 is completed by attaching a cover to an opening arranged on the upper side of the orthogonal direction Y1.
According to the above mentioned electric connection box 1, the semiconductor relay 7 of high calorific value is arranged on the bus bar 4 mounted on another member different from the board 3, and the bus bar 4 is mounted near a side of the hood 9. Thereby, heat produced from the semiconductor relay 7 is released directly from the connector lead 6 to an outer side without a passing through the board 3. As a result, it is not required to arrange a radiator plate on the board 3. Therefore, the electric connection box can downsize and can reduce parts of member.
Furthermore, according to the above mentioned electric connection box 1, since the bus bar supporting part 13 for supporting the bus bar 4 with another area differing from the board supporting part 11 is arranged on the case body 2, the bus bar 4 can be supported on the case body 2. Thereby, it is unnecessary to seal the bus bar 4 and the board lead by a resin mold part and to solder the board lead into the board 3 such as a conventional apparatus. Therefore, the protective film 14 for protecting the circuit element 10 and the semiconductor relay 7 can be manufactured with a same process.
Additionally, the semiconductor relay 7 and the board 3 can connect by the first wire W1. Thereby, it is not required to arrange the board lead as a conventional apparatus, and to solder the board lead to the board 3. Also, since the case body 2 can be molded in condition inserting the bus bar 4, manufacturing process and parts of the electric connection box can be reduced. Thereby, the inexpensive electric connection box 1 can be provided.
According to the above mentioned electric connection box 1 and manufacturing method thereof, since the case body 2 is formed by injecting the molten member of the case body 2 into the forming die in condition that the bus bar 4, the connector lead 6 and the control lead 8 is inserted into the forming die of the case body 2, the case body 2 and the bus bar 4 can be formed together.
According to the above embodiment, the circuit element 10 and the semiconductor relay 7 are arranged on the upper side of the orthogonal direction Y1 (one side), and a forming process of the protective film 14 is performed with a same process. However, the present invention is not limited thereto. For example, when it is not required to perform with a same process, the circuit element 10 can be arranged on a lower side of the orthogonal direction Y1.
Also, according to the above embodiment, the board 3 and the bus bar are arranged on one plate each other. However, the present invention is not limited thereto. For example, a step can be arranged between the board 3 and the bus bar 4. Therefore, it can be unnecessary to arrange the board 3 and the bus bar 4 in the same plate.
According to the above embodiment, in condition that the bus bar 4 is inserted into the forming die of the case body 2, the case body 2 is formed by injecting the molten member of the case body 2 into the forming die. However, the present invention is not limited thereto. For example, after forming the case body 2, the bus bar 4 can be attached to the case body 2.
According to the above embodiment, the power source is supplied to the load from the connector lead 6 of the semiconductor relay 7. However, the present invention is not limited thereto. For example, an H/L signal or a status signal (control signal) outputted from the circuit element 10 can be supplied from the connector lead 6.
The embodiments of the present invention are only exemplary and not limited thereto. Any modification and alteration are within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2007-177645 | Jul 2007 | JP | national |