Information
-
Patent Grant
-
6371816
-
Patent Number
6,371,816
-
Date Filed
Monday, January 4, 199926 years ago
-
Date Issued
Tuesday, April 16, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Abrams; Neil
- Duverne; J. F.
Agents
- Antonelli, Terry, Stout & Kraus, LLP
-
CPC
-
US Classifications
Field of Search
US
- 439 660
- 439 736
- 439 74
-
International Classifications
-
Abstract
An electric connector enclosed with an insulating housing (2) and having a plurality of contacts (10) arranged in parallel rows and along internal surfaces (3a) of the insulating housing. Each contact (10) has a contacting portion (11) exposed in the internal surface and a solderable lead end (12) extending outwardly through a bottom (4) of the housing. A bent anchoring portion (13) is formed as a part of each contact and continuing from an upper end of the contacting portion (11) and bent outwardly to reach an external surface (3b) of the insulating housing, so that the bent anchoring portion (13) is embedded in the housing (2) so as to hold the contacts at regular intervals and protect the contact from deviating from the insulating housing.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electric connector of the circuit board-to-circuit board type on one hand and also relates to a method of making such an electric connector that comprises an insulating housing and two rows of contacts, wherein the respective rows of the contacts are disposed on and along opposite internal surfaces of the housing and at regular intervals.
2. Prior Art
Generally, each row of the contacts built in the prior art connectors of this type will have been united together with a tie ledge before finally treated to give such a finished connector. This is because those contacts are inserted in an injection mold and between an outer section and an inner section thereof, during the so-called insert molding process to form an insulating housing. Subsequently, the tie ledge will be severed from the contacts so that the latter thus becoming discrete from each other within the housing, thereby forming two parallel rows of those contacts arranged at a predetermined pitch along the internal opposite surfaces of said housing.
Those contacts included in each row are very narrow and made of a so thin metallic sheet that the pitch at which they are arranged may sometimes become out of order after having been set in between the outer and inner sections of a mold. Further, they are likely to become bent within the mold. The insulating housing made of a resin is not so sticky to the metal contacts that the latter are protected well from exfoliation apart from and inclination away from the housing's internal surfaces.
The Japanese Patent Laying-Open Gazette No. 8-31486 discloses one of prior proposals directed to resolution of the described problems. According to this proposal, an upper free end of each contact tapers to engage with a tapered portion that is formed in the outer or inner section of a mold for forming an insulating housing. Such a prior art connector and a method of making it seem effective to avoid any irregularity in the pitch at which the contacts are arranged.
The prior art shown in the Gazette No. 8-31486 could however not contribute to resolve the second problem that the upper portions of the contacts tend to be slanted away from the internal surfaces of the insulating housing.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide an electric connector and a method of making same such that each contact will be secured firmly in the connector at a precise pitch and without any fear of exfoliation from the internal surfaces of its insulating housing.
In order to achieve this object, the present inventor has employed a novel technological feature as summarized below. In this invention, a preamble structure is such that a plurality of contacts are arranged in parallel rows and at a given pitch along internal surfaces of an insulating housing, and each contact has a contacting portion and a solderable lead end, wherein the contacting portion is exposed in the internal surface and the lead end extends outwardly through a bottom of the insulating housing. The characterizing feature of the present connector is that each contact comprises a bent anchoring portion continuing from an upper end of the contacting portion and bent outwardly to reach an external surface of the insulating housing, wherein the bent anchoring portion is embedded in said housing.
Preferably, the bent anchoring portion of each contact may be hook-shaped. The contacting portion of each contact may not be disposed in flush with the internal surface but may protrude therefrom to render the connector more reliable in electrical connection.
A method proposed herein is designed to manufacture electric connectors each having a plurality of contacts that are arranged in parallel rows and at a given pitch along internal surfaces of an insulating housing, with each contact having a contacting portion and a solderable lead end, the method comprising the steps of preparing a mold for forming the insulating housing and consisting of an outer section and an inner section, with the inner section having curved recesses, further preparing a contact assembly that has a tie ledge uniting together the contacts each having a bent anchoring portion continuing from the conducting portion, subsequently placing the contact assembly in between the outer and inner sections of the mold in such a state that the respective bent anchoring portions fit in part in the respective curved recesses, and finally injection molding the insulating housing so that the contacting portions are exposed in the internal surfaces and the solderable lead ends extend outwardly through a bottom of the insulating housing, whereby the bent anchoring portions are embedded in said housing.
The inner section of the mold may have grooves formed therein to fit on the contacting portions of the contacts so that the contacts are more surely held in position at the predetermined pitch during the injection molding, and the contacting portion of each contact is not disposed in flush with the internal surface but protrudes therefrom after the insulating housing has been molded. Each groove may be shaped straight and continue to the curved recess, and thus the word ‘groove’ is meant herein to include the latter. In this context, the contacting portions in the finished connector will be exposed in the internal surfaces and protrude inwardly therefrom over their full length and partially in the direction of their width, as if they form ridge-shaped protuberances.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a vertical cross section of an electric connector provided in an embodiment of the present invention;
FIG. 2
is a cross section of the connector in accordance with another embodiment;
FIG. 3
is a front elevation of a contact assembly shown in part and adapted for use to manufacture the connector;
FIG. 4
is a side elevation of the contact assembly;
FIGS. 5
a
to
5
e
are vertical cross sections respectively showing the first to fifth stages in a process proposed herein to manufacture the electric connector;
FIGS. 6
a
to
6
e
are horizontal cross sections corresponding to
FIGS. 5
a
to
5
e
, respectively;
FIGS. 7
a
to
7
e
are vertical cross sections respectively showing the first to fifth stages in an alternative process also proposed herein to manufacture the electric connector;
FIGS. 8
a
to
8
e
are horizontal cross sections corresponding to
FIGS. 5
a
to
5
e
, respectively;
FIG. 9
is a cross section of the connector in accordance with a further embodiment; and
FIG. 10
is a cross section of the connector in accordance with a still further embodiment.
THE PREFERRED EMBODIMENTS
Now, some embodiments of the present invention will be described in detail referring to the drawings.
FIGS. 1 and 2
illustrate two examples of electric connectors
1
and
1
′ of the present invention. Those connectors are of the so-called ‘board-to-board’ type adapted for use to bring two printed circuit boards together into electric connection. Each connector
1
and
1
′ comprises an elongated and box-shaped insulating housing
2
that extends perpendicular to the drawing sheet and has opposite side walls
3
and
3
taking a right and left positions in the drawings. A plurality of contacts
10
of each connector are disposed along internal surfaces
3
a
and
3
a
of those side walls in two parallel rows and at a given pitch.
The housing
2
is molded with a synthetic resin, and the side walls
3
are connected to a bottom
4
and end walls
5
and
5
(only one of them being shown in the drawings), thus assuming a shape like a rectangular box and having an open top. A cavity
6
defined by and in such a box-shaped housing is intended to fit on a part of a (first) printed circuit board not shown so that the contacts
10
are electrically connected thereto.
Those contacts, which may be prepared by punching and then bending a thin and conductive metal sheet, have each a connecting portion
11
, a solderable lead end
12
and a bent-anchoring portion
13
. The contacting portion
11
takes a position in flush with the internal surface
3
a
of either sidewall
3
and exposed in part. The lead end
12
continues from the lower end of the contacting portion
11
and extends outwardly through the bottom
4
so as to be soldered to a conductive part in a mating (or second) printed circuit board not shown. The bent anchoring portion
13
continues from the upper end of the contacting portion
11
bent into a curved, hook-like shape. The anchoring portion
13
is embedded in either side wall
3
of the housing
2
, as a result of the insert-molding thereof as further discussed below. A curved end
13
a
of each bent portion
13
terminates at the external surface of either side wall
3
. In use, the part of the first-mentioned circuit board accommodated in the cavity
6
will thus come into electric contact with the contacting portions
11
of the contacts
10
, thereby establishing electric connection to the second-mentioned circuit board.
The contacting portions
11
of the connector
1
shown in
FIG. 1
have their exposed regions located in flush with the internal surface
3
a
of either side wall
3
. However, the other connector
1
′ shown in
FIG. 2
has the contacting portions
11
that are not only exposed in part but also protrude inwardly from said internal surfaces
3
a
. This arrangement is advantageous in that any flashes, which the insert molding process may possibly and undesirably produce, will not cause any failure in electric connection or any misconnection that would impair functional reliability of the connector.
FIGS. 3 and 4
show a contact assembly
15
that will be prepared for use in the insert molding process, and this assembly consists of the contacts
10
whose contacting portions
11
and lead ends
12
lie straight and flat in a state just punched from a metal sheet. The upper ends of those contacting portions
11
will then be bent into a hook-shape to give the bent anchoring portions
13
. The lower ends of the solderable lead ends
12
are united together by and formed integral with a tie ledge
14
such that said contacts are kept in a row at a predetermined accurate pitch ‘P’. After having insert-molded the insulating housing, the lead ends
12
will be bent outwards generally at a right angle to the contacting portions, before severing the ledge
14
therefrom.
The method of making such an electric connector
1
or
1
′ as detailed above will now be described.
FIGS. 5
a
to
6
e
show a left-hand half of the connector
1
that is being manufactured. A mold consisting of an outer section
21
, an inner section
22
and a base section
23
is designed such that the contacts
10
will be embedded in an insulating housing
2
, which is formed in the mold by the insert-molding process. The inner section
22
has a plurality of curved recesses
24
arranged at a given pitch ‘P’. When an assembly
15
of the contacts
10
is placed between the outer and inner sections
21
and
22
, the contacts' bent anchoring portions
13
will be brought into engagement in part with the respective curved recesses
24
so that those contacts
10
take their exact positions at regular intervals.
As seen in
FIGS. 5
a
and
6
a
, a tie ledge
14
uniting the contacts together to form the assembly
15
will temporarily be set in the base section
23
, as the assembly is inserted in between the outer and inner sections of the mold as mentioned above. Outer ends
13
a
of the anchoring portions
13
all fitting in the recesses
24
are held in abutment with an internal surface of the outer mold section
21
while an amount of molten resin is injected into the mold to form an insulating housing
2
. Thus, all the contacts' bent anchoring portions
13
will be embedded in a side wall
3
of the housing
2
(see
FIG. 5
b
). Subsequent to injection molding, the mold sections will be separated from each other to leave an unfinished product shown in
FIGS. 5
c
and
6
c
. In this unfinished product, the tie ledge
14
as well as the solderable lead ends
12
continuing therefrom extend straightly and downwards through a bottom
4
of the insulating housing
2
thus molded with the assembly
15
having acted as an ‘insert’. Thereafter, the lead ends
12
will be bent generally at a right angle so as to extend in flush with the housing's bottom
4
, in a manner shown in
FIGS. 5
d
and
6
d
. Finally, the tie ledge
14
ill be severed off to give a finished electric connector
1
which
FIGS. 5
e
and
6
e
illustrate in part.
FIGS. 7
a
to
8
e
show an alternative mode of the method modified to manufacture the modified connector
1
′ illustrated in FIG.
2
. An inner section
22
of the mold used in this mode has channels or grooves
25
arranged at the pitch ‘P’ and substituting the curved recesses
24
in the mold for the first type of connector
1
. Each groove
25
will receive not only a minor part of the bent anchoring portion
13
but also a major part of the contacting portion
11
of each contact
10
. The other points of the mold and the method are all the same as those which have been discussed above for the first type connector
1
, and details thereof will not be repeated here. In short, an end region of each bent anchoring portion
13
is embedded in the housing's side wall
3
, with each exposed contacting portion
11
protruding from an inner surface of the side wall.
FIG. 9
shows a further embodiment wherein each contact of the connector
1
′ has a bent anchoring portion
13
of a modified shape.
FIG. 10
shows a still further embodiment wherein an extension
16
from the anchoring portion
13
descends along an external surface of the insulating housing's sidewall
3
. A free end region of such an extension
16
is bent outwards at a level in flush with the bottom
4
so as to provide the solderable lead end
12
not directly extending from the contacting portion.
In summary, during the insert molding of the connector's housing, each contact's contacting portion and each bent anchoring portion continuing therefrom, or the latter only, are kept in engagement with the mold inner section's recess or groove. By virtue of this feature in manufacture process, all the contacts in one connector will surely take their correct position at regular intervals and their bent anchoring portions embedded in the insulating housing's side walls will protect those contacts from the deviation from the internal surfaces of said housing.
Claims
- 1. An electric connector enclosed with an insulating housing and having a plurality of contacts arranged in parallel rows and at regular intervals along internal surfaces of the insulating housing, wherein each contact has a contacting portion exposed in the internal surface and a solderable lead end extending outwardly through a bottom of the housing, comprising:a hook-shaped bent anchoring portion formed as a part of each contact and continuing from an upper end of the contacting portion and bent outwardly to reach an external surface of the insulating housing, wherein the bent anchoring portion is embedded in said housing.
- 2. An electric connector enclosed with an insulating housing and having a plurality of contacts arranged in parallel rows and at regular intervals along internal surfaces of the insulating housing, wherein each contact has a contacting portion exposed in the internal surface and a solderable lead end extending outwardly through a bottom of the housing, comprising:a bent anchoring portion formed as a part of each contact and continuing from an upper end of the contacting portion and bent outwardly to reach an external surface of the insulating housing, wherein the bent anchoring portion is embedded in said housing, wherein an extension from the bent anchoring portion extends down along an external surface of the insulating housing and then bent outwards at a region thereof adjacent to the bottom so as to provide the solderable lead end.
- 3. An electric connector as defined in claim 1 or 2, wherein the contacting portion of each contact protrudes in part inwardly from the internal surface.
- 4. An electric connector enclosed with an insulating housing and having a plurality of contacts arranged in parallel rows and at regular intervals along internal surfaces of the insulating housing, wherein each contact has a contacting portion exposed in the internal surface and a solderable lead end extending outwardly through a bottom of the housing, comprising:a bent anchoring portion formed as a part of each contact and continuing from an upper end of the contacting portion and bent outwardly to reach an external surface of the insulating housing, wherein the bent anchoring portion is embedded in said housing, and wherein the contacting portion of each contact protrudes in part inwardly from the internal surface.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-020354 |
Jan 1998 |
JP |
|
US Referenced Citations (4)